1
|
Zhou X, Chieng A, Wang S. Label-Free Optical Imaging of Nanoscale Single Entities. ACS Sens 2024; 9:543-554. [PMID: 38346398 PMCID: PMC10990724 DOI: 10.1021/acssensors.3c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The advancement of optical microscopy technologies has achieved imaging of nanoscale objects, including nanomaterials, virions, organelles, and biological molecules, at the single entity level. Recently developed plasmonic and scattering based optical microscopy technologies have enabled label-free imaging of single entities with high spatial and temporal resolutions. These label-free methods eliminate the complexity of sample labeling and minimize the perturbation of the analyte native state. Additionally, these imaging-based methods can noninvasively probe the dynamics and functions of single entities with sufficient throughput for heterogeneity analysis. This perspective will review label-free single entity imaging technologies and discuss their principles, applications, and key challenges.
Collapse
Affiliation(s)
- Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Andy Chieng
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Iriya R, Braswell B, Mo M, Zhang F, Haydel SE, Wang S. Deep Learning-Based Culture-Free Bacteria Detection in Urine Using Large-Volume Microscopy. BIOSENSORS 2024; 14:89. [PMID: 38392008 PMCID: PMC10887190 DOI: 10.3390/bios14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Bacterial infections, increasingly resistant to common antibiotics, pose a global health challenge. Traditional diagnostics often depend on slow cell culturing, leading to empirical treatments that accelerate antibiotic resistance. We present a novel large-volume microscopy (LVM) system for rapid, point-of-care bacterial detection. This system, using low magnification (1-2×), visualizes sufficient sample volumes, eliminating the need for culture-based enrichment. Employing deep neural networks, our model demonstrates superior accuracy in detecting uropathogenic Escherichia coli compared to traditional machine learning methods. Future endeavors will focus on enriching our datasets with mixed samples and a broader spectrum of uropathogens, aiming to extend the applicability of our model to clinical samples.
Collapse
Affiliation(s)
- Rafael Iriya
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA; (R.I.); (B.B.); (M.M.); (F.Z.); (S.E.H.)
- School of Electrical and Computer Engineering, Tempe, AZ 85287, USA
| | - Brandyn Braswell
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA; (R.I.); (B.B.); (M.M.); (F.Z.); (S.E.H.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Manni Mo
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA; (R.I.); (B.B.); (M.M.); (F.Z.); (S.E.H.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Fenni Zhang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA; (R.I.); (B.B.); (M.M.); (F.Z.); (S.E.H.)
| | - Shelley E. Haydel
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA; (R.I.); (B.B.); (M.M.); (F.Z.); (S.E.H.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA; (R.I.); (B.B.); (M.M.); (F.Z.); (S.E.H.)
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Jiang X, Borkum T, Shprits S, Boen J, Arshavsky-Graham S, Rofman B, Strauss M, Colodner R, Sulam J, Halachmi S, Leonard H, Segal E. Accurate Prediction of Antimicrobial Susceptibility for Point-of-Care Testing of Urine in Less than 90 Minutes via iPRISM Cassettes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303285. [PMID: 37587020 PMCID: PMC10625094 DOI: 10.1002/advs.202303285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Indexed: 08/18/2023]
Abstract
The extensive and improper use of antibiotics has led to a dramatic increase in the frequency of antibiotic resistance among human pathogens, complicating infectious disease treatments. In this work, a method for rapid antimicrobial susceptibility testing (AST) is presented using microstructured silicon diffraction gratings integrated into prototype devices, which enhance bacteria-surface interactions and promote bacterial colonization. The silicon microstructures act also as optical sensors for monitoring bacterial growth upon exposure to antibiotics in a real-time and label-free manner via intensity-based phase-shift reflectometric interference spectroscopic measurements (iPRISM). Rapid AST using clinical isolates of Escherichia coli (E. coli) from urine is established and the assay is applied directly on unprocessed urine samples from urinary tract infection patients. When coupled with a machine learning algorithm trained on clinical samples, the iPRISM AST is able to predict the resistance or susceptibility of a new clinical sample with an Area Under the Receiver Operating Characteristic curve (AUC) of ∼ 0.85 in 1 h, and AUC > 0.9 in 90 min, when compared to state-of-the-art automated AST methods used in the clinic while being an order of magnitude faster.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Talya Borkum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sagi Shprits
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Joseph Boen
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Baruch Rofman
- Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Merav Strauss
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
4
|
Celik C, Kalin G, Cetinkaya Z, Ildiz N, Ocsoy I. Recent Advances in Colorimetric Tests for the Detection of Infectious Diseases and Antimicrobial Resistance. Diagnostics (Basel) 2023; 13:2427. [PMID: 37510171 PMCID: PMC10377832 DOI: 10.3390/diagnostics13142427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Diagnosis of infection-causing microorganisms with sensitive, rapid, selective and economical diagnostic tests is critical to start the right treatment. With these tests, the spread of infections can be prevented. In addition to that, the detection of antimicrobial resistance also makes a significant contribution to public health. In recent years, different types of diagnostic tests have been developed as alternatives to traditional diagnostic tests used in clinics. In particular, colorimetric tests, which minimize the need for an instrument, have advantages owing to their cost effectiveness, rapid response and naked-eye detection and practical use. In this review, we especially focused on pH indicators and nanomaterial-based colorimetric tests in detection of infection-causing microorganisms and antimicrobial resistance.
Collapse
Affiliation(s)
- Cagla Celik
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Corum 19000, Turkey
| | - Gamze Kalin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| | | | - Nilay Ildiz
- Medical Imaging Department, Vocational School of Health Services, Bandırma Onyedi Eylul University, Bandirma 10200, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
5
|
Needs SH, Pivetal J, Hayward J, Kidd SP, Lam H, Diep T, Gill K, Woodward M, Reis NM, Edwards AD. Moving microcapillary antibiotic susceptibility testing (mcAST) towards the clinic: unravelling kinetics of detection of uropathogenic E. coli, mass-manufacturing and usability for detection of urinary tract infections in human urine. SENSORS & DIAGNOSTICS 2023; 2:736-750. [PMID: 37216011 PMCID: PMC10197089 DOI: 10.1039/d2sd00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Innovation in infection based point-of-care (PoC) diagnostics is vital to avoid unnecessary use of antibiotics and the development of antimicrobial resistance. Several groups including our research team have in recent years successfully miniaturised phenotypic antibiotic susceptibility tests (AST) of isolated bacterial strains, providing validation that miniaturised AST can match conventional microbiological methods. Some studies have also shown the feasibility of direct testing (without isolation or purification), specifically for urinary tract infections, paving the way for direct microfluidic AST systems at PoC. As rate of bacteria growth is intrinsically linked to the temperature of incubation, transferring miniaturised AST nearer the patient requires building new capabilities in terms of temperature control at PoC, furthermore widespread clinical use will require mass-manufacturing of microfluidic test strips and direct testing of urine samples. This study shows for the first-time application of microcapillary antibiotic susceptibility testing (mcAST) directly from clinical samples, using minimal equipment and simple liquid handling, and with kinetics of growth recorded using a smartphone camera. A complete PoC-mcAST system was presented and tested using 12 clinical samples sent to a clinical laboratory for microbiological analysis. The test showed 100% accuracy for determining bacteria in urine above the clinical threshold (5 out of 12 positive) and achieved 95% categorical agreement for 5 positive urines tested with 4 antibiotics (nitrofurantoin, ciprofloxacin, trimethoprim and cephalexin) within 6 h compared to the reference standard overnight AST method. A kinetic model is presented for metabolization of resazurin, demonstrating kinetics of degradation of resazurin in microcapillaries follow those observed for a microtiter plate, with time for AST dependent on the initial CFU ml-1 of uropathogenic bacteria in the urine sample. In addition, we show for the first time that use of air-drying for mass-manufacturing and deposition of AST reagents within the inner surface of mcAST strips matches results obtained with standard AST methods. These results take mcAST a step closer to clinical application, for example as PoC support for antibiotic prescription decisions within a day.
Collapse
Affiliation(s)
- Sarah H Needs
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jeremy Pivetal
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jessica Hayward
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Stephen P Kidd
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - HoYin Lam
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - Tai Diep
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Kiran Gill
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Martin Woodward
- Department of Food and Nutrition Sciences, University of Reading Whiteknights Campus Reading RG6 6DX UK
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Biodevices and Bioelectronics (C3Bio), University of Bath Claverton Down Bath BA2 7AY UK +44(0)1225 383 369
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| |
Collapse
|
6
|
Hwang S, Choi J. Rapid antimicrobial susceptibility testing for low bacterial concentrations integrating a centrifuge based bacterial cell concentrator. LAB ON A CHIP 2023; 23:229-238. [PMID: 36484274 DOI: 10.1039/d2lc00974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance threatens human health worldwide. Patients infected with antibiotic-resistant bacteria require appropriate antibiotic prescriptions based on a rapid antibiotic susceptibility test (AST). Various rapid AST methods have been developed to replace the conventional AST method, which requires a long testing time. However, in most cases, these methods require a high density of bacterial samples, which leads to an additional incubation or concentration process. In this study, we introduce a rapid AST platform that allows the use of low-density bacterial samples by concentrating bacterial cells and performing AST on a single microfluidic chip. In addition, the outlet-free loading process enables the platform to load the sample and concentrate bacteria into a small field of view for single-cell detection. Using this method, rapid AST determined antibiotic resistance in three hours from a standard strain of 103 colony-forming unit (CFU) per ml bacterial concentration. This technique can be used for the cell-based drug testing of various low-concentration bacterial samples.
Collapse
Affiliation(s)
- Sunjae Hwang
- Department of Mechanical Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Jungil Choi
- Department of Mechanical Engineering, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Cai D, Ouyang X, He H, Liu Y, Zou J, Chen Z, Wu B, Wu H, Liu D. Cascade filtration and droplet digital detection integrated microfluidic assay enables isolating culture-free phenotypic identification of carbapenem-resistant organisms. Biosens Bioelectron 2023; 220:114863. [DOI: 10.1016/j.bios.2022.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
8
|
Wang J, Hui P, Zhang X, Cai X, Lian J, Liu X, Lu X, Chen W. Rapid Antimicrobial Susceptibility Testing Based on a Bio-Inspired Chemiluminescence Sensor. Anal Chem 2022; 94:17240-17247. [PMID: 36459659 DOI: 10.1021/acs.analchem.2c04020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Indiscriminate usage of antibiotics has caused accelerating growth and global expansion of antimicrobial resistance. Therefore, rapid antimicrobial susceptibility testing (AST) for guiding antibiotic prescription and preventing the spread of antimicrobial resistance is in urgent need. Phenotypic AST is the clinical gold standard method; however, no phenotypic AST has realized a colony-to-answer at about 1 h by utilizing the chemiluminescence sensor to detect the enzyme expressed by bacteria. Inspired by the bubble formation in the mixture of Escherichia coli and H2O2, we demonstrate a strategy based on the chemiluminescence sensor for rapid AST. Compared with the gold standard methods, the values of AUC are 0.960 for E. coli and 0.950 for Staphylococcus aureus, close to 1, indicating superb diagnostic performance as an AST method. The whole process from colonies to answer is 55 min for E. coli and 70 min for S. aureus. The chemiluminescence readout is based on the common equipment in the laboratory of the hospital, which is conducive to follow-up clinical promotion. Our sensor promises great potential in rapid AST, facilitating antimicrobial stewardship.
Collapse
Affiliation(s)
- Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, P. R. China
| | - Ping Hui
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xinyu Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xiaoqing Cai
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Jie Lian
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen 518052, P. R. China
| | - Xiaolei Liu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xi Lu
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| |
Collapse
|
9
|
Label-free single-particle imaging approach for ultra-rapid detection of pathogenic bacteria in clinical samples. Proc Natl Acad Sci U S A 2022; 119:e2206990119. [PMID: 36161913 DOI: 10.1073/pnas.2206990119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid detection of pathogenic bacteria within a few minutes is the key to control infectious disease. However, rapid detection of pathogenic bacteria in clinical samples is quite a challenging task due to the complex matrix, as well as the low abundance of bacteria in real samples. Herein, we employ a label-free single-particle imaging approach to address this challenge. By tracking the scattering intensity variation of single particles in free solution, the morphological heterogeneity can be well identified with particle size smaller than the diffraction limit, facilitating the morphological identification of single bacteria from a complex matrix in a label-free manner. Furthermore, the manipulation of convection in free solution enables the rapid screening of low-abundance bacteria in a small field of view, which significantly improves the sensitivity of single-particle detection. As a proof of concept demonstration, we are able to differentiate the group B streptococci (GBS)-positive samples within 10 min from vaginal swabs without using any biological reagents. This is the most rapid and low-cost method to the best of our knowledge. We believe that such a single-particle imaging approach will find wider applications in clinical diagnosis and disease control due to its high sensitivity, rapidity, simplicity, and low cost.
Collapse
|
10
|
Accelerated antibiotic susceptibility testing of pseudomonas aeruginosa by monitoring extracellular electron transfer on a 3-D paper-based cell culture platform. Biosens Bioelectron 2022; 216:114604. [DOI: 10.1016/j.bios.2022.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
|
11
|
Iannuzo N, Haller YA, McBride M, Mehari S, Lainson JC, Diehnelt CW, Haydel SE. High-Throughput Screening Identifies Synthetic Peptides with Antibacterial Activity against Mycobacterium abscessus and Serum Stability. ACS OMEGA 2022; 7:23967-23977. [PMID: 35847280 PMCID: PMC9281306 DOI: 10.1021/acsomega.2c02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise in antibiotic resistance in bacteria has spawned new technological approaches for identifying novel antimicrobials with narrow specificity. Current antibiotic treatment regimens and antituberculosis drugs are not effective in treating Mycobacterium abscessus. Meanwhile, antimicrobial peptides are gaining prominence as alternative antimicrobials due to their specificity toward anionic bacterial membranes, rapid action, and limited development of resistance. To rapidly identify antimicrobial peptide candidates, our group has developed a high-density peptide microarray consisting of 125,000 random synthetic peptides screened for interaction with the mycobacterial cell surface of M. abscessus morphotypes. From the array screening, peptides positive for interaction were synthesized and their antimicrobial activity was validated. Overall, six peptides inhibited the M. abscessus smooth morphotype (IC50 = 1.7 μM for all peptides) and had reduced activity against the M. abscessus rough morphotype (IC50 range: 13-82 μM). Peptides ASU2056 and ASU2060 had minimum inhibitory concentration values of 32 and 8 μM, respectively, against the M. abscessus smooth morphotype. Additionally, ASU2060 (8 μM) was active against Escherichia coli, including multidrug-resistant E. coli clinical isolates, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. ASU2056 and ASU2060 exhibited no significant hemolytic activity at biologically relevant concentrations, further supporting these peptides as promising therapeutic candidates. Moreover, ASU2060 retained antibacterial activity after preincubation in human serum for 24 h. With antimicrobial resistance on the rise, methods such as those presented here will streamline the peptide discovery process for targeted antimicrobial peptides.
Collapse
Affiliation(s)
- Natalie Iannuzo
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yannik A. Haller
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Michelle McBride
- The
Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Sabrina Mehari
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - John C. Lainson
- The
Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, Arizona 85287, United States
| | - Chris W. Diehnelt
- The
Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, Arizona 85287, United States
| | - Shelley E. Haydel
- School
of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- The
Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
12
|
Diep TT, Bizley S, Edwards AD. 3D-Printed Dip Slides Miniaturize Bacterial Identification and Antibiotic Susceptibility Tests Allowing Direct Mastitis Sample Analysis. MICROMACHINES 2022; 13:mi13060941. [PMID: 35744555 PMCID: PMC9231150 DOI: 10.3390/mi13060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The early detection of antimicrobial resistance remains an essential step in the selection and optimization of antibiotic treatments. Phenotypic antibiotic susceptibility testing including the measurement of minimum inhibitory concentration (MIC) remains critical for surveillance and diagnostic testing. Limitations to current testing methods include bulky labware and laborious methods. Furthermore, the requirement of a single strain of bacteria to be isolated from samples prior to antibiotic susceptibility testing delays results. The mixture of bacteria present in a sample may also have an altered resistance profile to the individual strains, and so measuring the susceptibility of the mixtures of organisms found in some samples may be desirable. To enable simultaneous MIC and bacterial species detection in a simple and rapid miniaturized format, a 3D-printed frame was designed for a multi-sample millifluidic dip-slide device that combines panels of identification culture media with a range of antibiotics (Ampicillin, Amoxicillin, Amikacin, Ceftazidime, Cefotaxime, Ofloxacin, Oxytetracycline, Streptomycin, Gentamycin and Imipenem) diluted in Muëller-Hinton Agar. Our proof-of-concept evaluation confirmed that the direct detection of more than one bacterium parallel to measuring MIC in samples is possible, which is validated using reference strains E. coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 10145, and Staphylococcus aureus ATCC 12600 and with mastitis milk samples collected from Reading University Farm. When mixtures were tested, a MIC value was obtained that reflected the most resistant organism present (i.e., highest MIC), suggesting it may be possible to estimate a minimum effective antibiotic concentration for mixtures directly from samples containing multiple pathogens. We conclude that this simple miniaturized approach to the rapid simultaneous identification and antibiotic susceptibility testing may be suitable for directly testing agricultural samples, which is achieved through shrinking conventional tests into a simple "dip-and-incubate" device that can be 3D printed anywhere.
Collapse
|
13
|
Santos M, Mariz M, Tiago I, Martins J, Alarico S, Ferreira P. A review on urinary tract infections diagnostic methods: Laboratory-based and point-of-care approaches. J Pharm Biomed Anal 2022; 219:114889. [PMID: 35724611 DOI: 10.1016/j.jpba.2022.114889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/18/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide. This type of infections can be healthcare-associated or community-acquired and affects millions of people every year. Different diagnostic procedures are available to detect pathogens in urine and they can be divided into two main categories: laboratory-based and point-of-care (POC) detection techniques. Traditional methodologies are often time-consuming, thus, achieving a rapid and accurate identification of pathogens is a challenging feature that has been pursued by many research groups and companies operating in this area. The purpose of this review is to compare and highlight advantages and disadvantages of the traditional and currently most used detection methods, as well as the emerging POC approaches and the relevant advances in on-site detection of pathogens´ mechanisms, suitable to be adapted to UTI diagnosis. Lately, the commercially available UTI self-testing kits and devices are helping in the diagnosis of urinary infections as patients or care givers are able to perform the test, easily and comfortably at home and, upon the result, decide when to attend an appointment/Urgent Health Care Unit.
Collapse
Affiliation(s)
- Marta Santos
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Marcos Mariz
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Igor Tiago
- CFE, Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jimmy Martins
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Susana Alarico
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC, Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula Ferreira
- CIEPQPF, Chemical Engineering Department, University of Coimbra, 3030-790 Coimbra, Portugal; Department of Chemical and Biological Engineering, Coimbra Institute of Engineering, 3030-199 Coimbra, Portugal.
| |
Collapse
|
14
|
Sun L, Chen Y, Duan Y, Ma F. Electrogenerated Chemiluminescence Biosensor Based on Functionalized Two-Dimensional Metal-Organic Frameworks for Bacterial Detection and Antimicrobial Susceptibility Assays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38923-38930. [PMID: 34369161 DOI: 10.1021/acsami.1c11949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The emergence of antibiotic resistance has prompted the development of rapid antimicrobial susceptibility testing (AST) technologies to guide antibiotic prescription. A novel electrochemiluminescence (ECL) biosensor developed can quantitatively measure the binding between the lectin and lipopolysaccharide (LPS) on Gram-negative bacteria for bacterial determination and to characterize the antimicrobial activities of β-lactam and non-β-lactam antibiotics to normal and antibiotic-resistant bacteria. The biosensor utilizes ruthenium complex tagged concanavalin A (Ru-Con A) coated on NH2-MIL-53(Al) interface for LPS binding measurements. The decreased ECL signal obtained was directly proportional to increasing Escherichia coli (E. coli) BL21 concentrations. The sensitivity displayed logarithmic dependence in the range of (50-5.0) × 104 cells/mL, with a detection limit of 16 cells/mL. The minimum inhibitory concentration (MIC) values of antibiotics for normal E. coli BL21 were 0.02-0.2, 2-4, 0.002-0.02, and 0.2-1 mg/L for levofloxacin hydrochloride (LVX), tetracycline (TCY), imipenem (IPM), and cefpirome (CPO), respectively. The increased MIC values (8-16 and 4 mg/L for IMP and CPO, respectively) in New Delhi metallo-β-lactamase-1 expressing E. coli BL21 (NDM-1-E. coli BL21) indicated greater resistance to β-lactams in NDM-1-E. coli BL21 compared with normal E. coli BL21. Therefore, the changed ECL signal because of binding between LPS with the lectin has a relation with the type of antibiotic and bacterial strains, making the ECL biosensor promote clinical practicability and facilitate antibiotic stewardship.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yu Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yuhong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
15
|
He Y, Zhao H, Liu Y, Zhou H. Specific and rapid reverse assaying protocol for detection and antimicrobial susceptibility testing of Pseudomonas aeruginosa based on dual molecular recognition. Sci Rep 2021; 11:11101. [PMID: 34045567 PMCID: PMC8159986 DOI: 10.1038/s41598-021-90619-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
The worldwide emergence and spread of antimicrobial resistance is accelerated by irrational administration and use of empiric antibiotics. A key point to the crisis is a lack of rapid diagnostic protocols for antimicrobial susceptibility testing (AST), which is crucial for a timely and rational antibiotic prescription. Here, a recombinant bacteriophage tail fiber protein (TFP) was functionalized on magnetic particles to specifically capture Pseudomonas aeruginosa, while fluorescein isothiocyanate-labeled-magainin II was utilized as the indicator. For solving the magnetic particles' blocking effects, a reverse assaying protocol based on TFP recognition was developed to investigate the feasibility of detection and AST of P. aeruginosa. P. aeruginosa can be rapidly, sensitively and specifically detected within 1.5 h with a linear range of 1.0 × 102 to 1.0 × 106 colony forming units (CFU)⋅mL-1 and a detection limit of 3.3 × 10 CFU⋅mL-1. Subsequently, AST results, which were consistent with broth dilution results, can be obtained within 3.5 h. Due to the high specificity of the TFP, AST can actually be conducted without the need for bacterial isolation and identification. Based on the proof-of-principle work, the detection and AST of other pathogens can be extended by expressing the TFPs of their bacteriophages.
Collapse
Affiliation(s)
- Yong He
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Hang Zhao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yuanwen Liu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - He Zhou
- Zunyi Institute for Food and Drug Control, Zunyi, 563000, China.
| |
Collapse
|
16
|
Zhang F, Jiang J, McBride M, Zhou X, Yang Y, Mo M, Peterman J, Grys T, Haydel SE, Tao N, Wang S. Rapid Antimicrobial Susceptibility Testing on Clinical Urine Samples by Video-Based Object Scattering Intensity Detection. Anal Chem 2021; 93:7011-7021. [PMID: 33909404 DOI: 10.1021/acs.analchem.1c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To combat the ongoing public health threat of antibiotic-resistant infections, a technology that can quickly identify infecting bacterial pathogens and concurrently perform antimicrobial susceptibility testing (AST) in point-of-care settings is needed. Here, we develop a technology for point-of-care AST with a low-magnification solution scattering imaging system and a real-time video-based object scattering intensity detection method. The low magnification (1-2×) optics provides sufficient volume for direct imaging of bacteria in urine samples, avoiding the time-consuming process of culture-based bacterial isolation and enrichment. Scattering intensity from moving bacteria and particles in the sample is obtained by subtracting both spatial and temporal background from a short video. The time profile of scattering intensity is correlated with the bacterial growth rate and bacterial response to antibiotic exposure. Compared to the image-based bacterial tracking and counting method we previously developed, this simple image processing algorithm accommodates a wider range of bacterial concentrations, simplifies sample preparation, and greatly reduces the computational cost of signal processing. Furthermore, development of this simplified processing algorithm eases implementation of multiplexed detection and allows real-time signal readout, which are essential for point-of-care AST applications. To establish the method, 130 clinical urine samples were tested, and the results demonstrated an accuracy of ∼92% within 60-90 min for UTI diagnosis. Rapid AST of 55 positive clinical samples revealed 98% categorical agreement with both the clinical culture results and the on-site parallel AST validation results. This technology provides opportunities for prompt infection diagnosis and accurate antibiotic prescriptions in point-of-care settings.
Collapse
Affiliation(s)
- Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiapei Jiang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Biological and Health Systems Engineering, Tempe, Arizona 85287, United States
| | - Michelle McBride
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Biological and Health Systems Engineering, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Manni Mo
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Joseph Peterman
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Shelley E Haydel
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
17
|
Needs SH, Dönmez Sİ, Edwards AD. Direct microfluidic antibiotic resistance testing in urine with smartphone capture: significant variation in sample matrix interference between individual human urine samples. RSC Adv 2021; 11:38258-38263. [PMID: 35498063 PMCID: PMC9044048 DOI: 10.1039/d1ra06867a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
Direct antibiotic susceptibility tests for urinary tract infections should be assessed using a wide range of individual urine samples to identify matrix interference.
Collapse
|
18
|
Zhang F, Jiang J, McBride M, Yang Y, Mo M, Iriya R, Peterman J, Jing W, Grys T, Haydel SE, Tao N, Wang S. Direct Antimicrobial Susceptibility Testing on Clinical Urine Samples by Optical Tracking of Single Cell Division Events. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004148. [PMID: 33252191 PMCID: PMC7770081 DOI: 10.1002/smll.202004148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Indexed: 05/13/2023]
Abstract
With the increasing prevalence of antibiotic resistance, the need to develop antimicrobial susceptibility testing (AST) technologies is urgent. The current challenge has been to perform the antibiotic susceptibility testing in short time, directly with clinical samples, and with antibiotics over a broad dynamic range of clinically relevant concentrations. Here, a technology for point-of-care diagnosis of antimicrobial-resistant bacteria in urinary tract infections, by imaging the clinical urine samples directly with an innovative large volume solution scattering imaging (LVSi) system and analyzing the image sequences with a single-cell division tracking method is developed. The high sensitivity of single-cell division tracking associated with large volume imaging enables rapid antibiotic susceptibility testing directly on the clinical urine samples. The results demonstrate direct detection of bacterial infections in 60 clinical urine samples with a 60 min LVSi video, and digital AST of 30 positive clinical samples with 100% categorical agreement with both the clinical culture results and the on-site agar plating validation results. This technology provides opportunities for precise antibiotic prescription and proper treatment of the patient within a single clinic visit.
Collapse
Affiliation(s)
- Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Jiapei Jiang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Tempe, Arizona 85287, USA
| | - Michelle McBride
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Manni Mo
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Rafael Iriya
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Joseph Peterman
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwen Jing
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ 85054, USA
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| | - Shelley E. Haydel
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| |
Collapse
|
19
|
Zhang M, Hong W, Abutaleb NS, Li J, Dong P, Zong C, Wang P, Seleem MN, Cheng J. Rapid Determination of Antimicrobial Susceptibility by Stimulated Raman Scattering Imaging of D 2O Metabolic Incorporation in a Single Bacterium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001452. [PMID: 33042757 PMCID: PMC7539191 DOI: 10.1002/advs.202001452] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Indexed: 05/27/2023]
Abstract
Rapid antimicrobial susceptibility testing (AST) is urgently needed for treating infections with appropriate antibiotics and slowing down the emergence of antibiotic-resistant bacteria. Here, a phenotypic platform that rapidly produces AST results by femtosecond stimulated Raman scattering imaging of deuterium oxide (D2O) metabolism is reported. Metabolic incorporation of D2O into biomass in a single bacterium and the metabolic response to antibiotics are probed in as short as 10 min after culture in 70% D2O medium, the fastest among current technologies. Single-cell metabolism inactivation concentration (SC-MIC) is obtained in less than 2.5 h from colony to results. The SC-MIC results of 37 sets of bacterial isolate samples, which include 8 major bacterial species and 14 different antibiotics often encountered in clinic, are validated by standard minimal inhibitory concentration blindly measured via broth microdilution. Toward clinical translation, stimulated Raman scattering imaging of D2O metabolic incorporation and SC-MIC determination after 1 h antibiotic treatment and 30 min mixture of D2O and antibiotics incubation of bacteria in urine or whole blood is demonstrated.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
- Boston University Photonics CenterBostonMA02215USA
| | - Weili Hong
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| | - Nader S. Abutaleb
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIN47907USA
| | - Junjie Li
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
- Boston University Photonics CenterBostonMA02215USA
| | - Pu‐Ting Dong
- Boston University Photonics CenterBostonMA02215USA
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Cheng Zong
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
- Boston University Photonics CenterBostonMA02215USA
| | - Pu Wang
- Vibronix Inc.West LafayetteIN47906USA
| | - Mohamed N. Seleem
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIN47907USA
- Purdue Institute of InflammationImmunology, and Infectious DiseaseWest LafayetteIN47907USA
| | - Ji‐Xin Cheng
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
- Boston University Photonics CenterBostonMA02215USA
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Department of ChemistryBoston UniversityBostonMA02215USA
| |
Collapse
|
20
|
Zhang K, Qin S, Wu S, Liang Y, Li J. Microfluidic systems for rapid antibiotic susceptibility tests (ASTs) at the single-cell level. Chem Sci 2020; 11:6352-6361. [PMID: 34094102 PMCID: PMC8159419 DOI: 10.1039/d0sc01353f] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Infectious diseases caused by multidrug resistant (MDR) bacterial pathogens are impending threats to global health. Since delays in identifying drug resistance would significantly increase mortality, fast and accurate antibiotic susceptibility tests (ASTs) are critical for addressing the antibiotic resistance issue. However, the conventional methods for ASTs are always labor-intensive, imprecise, complex and slow (taking 2-3 days). To address these issues, some advanced microfluidic systems have been designed for rapid phenotypic and genotypic analysis of antibiotic resistance. This review highlights the recent development of microfluidics-based ASTs at the single-cell or single-molecule level for guiding antibiotic treatment decisions and predicting therapeutic outcomes.
Collapse
Affiliation(s)
- Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University Zhengzhou 450001 China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University Zhengzhou 450001 China
| | - Yan Liang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University Zhengzhou 450001 China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University Beijing 100084 China
| |
Collapse
|
21
|
Schoepp NG, Liaw EJ, Winnett A, Savela ES, Garner OB, Ismagilov RF. Differential DNA accessibility to polymerase enables 30-minute phenotypic β-lactam antibiotic susceptibility testing of carbapenem-resistant Enterobacteriaceae. PLoS Biol 2020; 18:e3000652. [PMID: 32191697 PMCID: PMC7081982 DOI: 10.1371/journal.pbio.3000652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
The rise in carbapenem-resistant Enterobacteriaceae (CRE) infections has created a global health emergency, underlining the critical need to develop faster diagnostics to treat swiftly and correctly. Although rapid pathogen-identification (ID) tests are being developed, gold-standard antibiotic susceptibility testing (AST) remains unacceptably slow (1-2 d), and innovative approaches for rapid phenotypic ASTs for CREs are urgently needed. Motivated by this need, in this manuscript we tested the hypothesis that upon treatment with β-lactam antibiotics, susceptible Enterobacteriaceae isolates would become sufficiently permeabilized, making some of their DNA accessible to added polymerase and primers. Further, we hypothesized that this accessible DNA would be detectable directly by isothermal amplification methods that do not fully lyse bacterial cells. We build on these results to develop the polymerase-accessibility AST (pol-aAST), a new phenotypic approach for β-lactams, the major antibiotic class for gram-negative infections. We test isolates of the 3 causative pathogens of CRE infections using ceftriaxone (CRO), ertapenem (ETP), and meropenem (MEM) and demonstrate agreement with gold-standard AST. Importantly, pol-aAST correctly categorized resistant isolates that are undetectable by current genotypic methods (negative for β-lactamase genes or lacking predictive genotypes). We also test contrived and clinical urine samples. We show that the pol-aAST can be performed in 30 min sample-to-answer using contrived urine samples and has the potential to be performed directly on clinical urine specimens.
Collapse
Affiliation(s)
- Nathan G. Schoepp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Eric J. Liaw
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Alexander Winnett
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Emily S. Savela
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Omai B. Garner
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, United States of America
| | - Rustem F. Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|