1
|
Jiang YQ, Wei YP, Liu XP, Chen JS, Mao CJ, Jin BK. Strong cathode electroluminescence biosensor based on CeO 2 functionalized PCN-222@Ag NPs for sensitive detection of p-Tau-181 protein. J Colloid Interface Sci 2024; 665:144-151. [PMID: 38520931 DOI: 10.1016/j.jcis.2024.03.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Electrochemiluminescence (ECL) biosensors provide a convenient and high sensitivity method for early disease diagnosis. However, creating luminophore arrays relying on powerful ECL signals remains a daunting task. Porphyrin-centered metal organic frameworks (MOFs) exhibit remarkable potential in ECL sensing applications. In this paper, based on a simple one-pot synthesis method, PCN-222@Ag NPs doped with CeO2 was synthesized to enhance the ECL performance. Due to the strong catalytic ability of CeO2, the ECL signal strength of the new material PCN-222@CeO2@Ag NPs is much higher than that of the PCN-222@Ag NPs and PCN-222. The luminous properties of PCN-222@CeO2@Ag NPs become more intense and stable due to the excellent electronic conductivity of Ag NPs. Based on the fact that CuS@PDA composite can quench the ECL signal of PCN-222@CeO2@Ag NPs, we constructed a novel sandwich ECL immune sensor for the detection of phosphorylated Tau 181 (p-Tau-181) protein. The ECL sensor has a great linear relationship with p-Tau-181 protein concentration, ranging from 1 pg/mL to 100 ng/mL. The detection limit is as low as 0.147 pg/mL. This work provides new ideas for developing sensitive ECL sensors for the p-Tau-181 protein, the marker of Alzheimer's disease.
Collapse
Affiliation(s)
- Yun-Qi Jiang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yu-Ping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
2
|
Chen G, Hu C, Dai W, Luo Z, Zang H, Sun S, Zhen S, Zhan L, Huang C, Li Y. Coreactant-Free Zirconium Metal-Organic Framework with Dual Emission for Ratiometric Electrochemiluminescence Detection of HIV DNA. Anal Chem 2024; 96:10102-10110. [PMID: 38831537 DOI: 10.1021/acs.analchem.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Owing to the limitations of dual-signal luminescent materials and coreactants, constructing a ratiometric electrochemiluminescence (ECL) biosensor based on a single luminophore is a huge challenge. This work developed an excellent zirconium metal-organic framework (MOF) Zr-TBAPY as a single ECL luminophore, which simultaneously exhibited cathodic and anodic ECL without any additional coreactants. First, Zr-TBAPY was successfully prepared by a solvothermal method with 1,3,6,8-tetra(4-carboxyphenyl)pyrene (TBAPY) as the organic ligand and Zr4+ cluster as the metal node. The exploration of ECL mechanisms confirmed that the cathodic ECL of Zr-TBAPY originated from the pathway of reactive oxygen species (ROS) as the cathodic coreactant, which is generated by dissolved oxygen (O2), while the anodic ECL stemmed from the pathway of generated Zr-TBAPY radical itself as the anodic coreactant. Besides, N,N-diethylethylenediamine (DEDA) was developed as a regulator to ECL signals, which quenched the cathodic ECL and enhanced the anodic ECL, and the specific mechanisms of its dual action were also investigated. DEDA can act as the anodic coreactant while consuming the cathodic coreactant ROS. Therefore, the coreactant-free ratiometric ECL biosensor was skillfully constructed by combining the regulatory role of DEDA with the signal amplification reaction of catalytic hairpin assembly (CHA). The ECL biosensor realized the ultrasensitive ratio detection of HIV DNA. The linear range was 1 fM to 100 pM, and the limit of detection (LOD) was as low as 550 aM. The outstanding characteristic of Zr-TBAPY provided new thoughts for the development of ECL materials and developed a new way of fabricating the coreactant-free and single-luminophore ratiometric ECL platform.
Collapse
Affiliation(s)
- Gaoxu Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Congyi Hu
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wenjie Dai
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zilan Luo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Zang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shiyi Sun
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
3
|
Lai H, Huang R, Weng X, Huang B, Yao J, Pian Y. Classification and applications of nanomaterials in vitro diagnosis. Heliyon 2024; 10:e32314. [PMID: 38868029 PMCID: PMC11168482 DOI: 10.1016/j.heliyon.2024.e32314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/19/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
With the rapid development of clinical diagnosis and treatment, many traditional and conventional in vitro diagnosis technologies are unable to meet the demands of clinical medicine development. In this situation, nanomaterials are rapidly developing and widely used in the field of in vitro diagnosis. Nanomaterials have distinct size-dependent physical or chemical properties, and their optical, magnetic, electrical, thermal, and biological properties can be modulated at the nanoscale by changing their size, shape, chemical composition, and surface functional groups, particularly because they have a larger specific surface area than macromaterials. They provide an amount of space to modify different molecules on their surface, allowing them to detect small substances, nucleic acids, proteins, and microorganisms. Combining nanomaterials with in vitro diagnosis is expected to result in lower detection limits, higher sensitivity, and stronger selectivity. In this review, we will discuss the classfication and properties of some common nanomaterials, as well as their applications in protein, nucleic acids, and other aspect detection and analysis for in vitro diagnosis, especially on aging-related nanodiagnostics. Finally, it is summarized with guidelines for in vitro diagnosis.
Collapse
Affiliation(s)
- Huiying Lai
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Rongfu Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Xin Weng
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Baoshan Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Jianfeng Yao
- Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, PR China
| | - Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China
| |
Collapse
|
4
|
Chai DD, Zhuo Y, Zhao ML, Li HL, Yuan R, Wei SP. Pyrenecarboxaldehyde@Graphene Oxide Acted as a Highly Efficient ECL Emitter and Target-Triggered the Recyclable Cascade System as an Amplifier for Ultrasensitive APE1 Activity Detection. ACS Sens 2024; 9:955-961. [PMID: 38251427 DOI: 10.1021/acssensors.3c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Herein, pyrenecarboxaldehyde@graphene oxide (Pyc@GO) sheets with highly efficient electrochemiluminescence (ECL) as emitters were prepared by a noncovalent combination to develop a neoteric ECL biosensing platform for the ultrasensitive assessment of human apurinic/apyrimidinic endonuclease1 (APE1) activity. Impressively, the pyrenecarboxaldehyde (Pyc) molecules were able to form stable polar functional groups on the surface of GO sheets through the noncovalent π-π stacking mechanism to prevent intermolecular restacking and simultaneously generate Pyc@GO sheets. Compared with the tightly packed PAH nanocrystals, the Pyc@GO sheets significantly reduced internal filtering effects and diminished nonactivated emitters to enhance ECL intensity and achieve strong ECL emission. Furthermore, the APE1-activated initiators could trigger the recyclable cascade amplified system based on the synergistic cross-activation between catalytic hairpin assembly (CHA) and DNAzyme, which improved the signal amplification and transduction ability. Consequently, the developed ECL platform for the detection of APE1 activity displayed exceptional sensitivity with a low detection limit of 4.6 × 10-9 U·mL-1 ranging from 10-8 to 10-2 U·mL-1. Therefore, the proposed strategy holds great promise for the future development of sensitive and reliable biosensing platforms for the detection of various biomarkers.
Collapse
Affiliation(s)
- Duo-Duo Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong-Ling Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Sha-Ping Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
5
|
Rabiee N, Ahmadi S, Rahimizadeh K, Chen S, Veedu RN. Metallic nanostructure-based aptasensors for robust detection of proteins. NANOSCALE ADVANCES 2024; 6:747-776. [PMID: 38298588 PMCID: PMC10825927 DOI: 10.1039/d3na00765k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024]
Abstract
There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.
Collapse
Affiliation(s)
- Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Perth WA 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| |
Collapse
|
6
|
Chen G, Dai W, Hu C, Zang H, Sun S, Zhen S, Zhan L, Huang C, Li Y. Ratiometric Electrochemiluminescence of Zirconium Metal-Organic Framework as a Single Luminophore for Sensitive Detection of HPV-16 DNA. Anal Chem 2024; 96:538-546. [PMID: 38102084 DOI: 10.1021/acs.analchem.3c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This study developed a new zirconium metal-organic framework (MOF) luminophore named Zr-DPA@TCPP with dual-emission electrochemiluminescence (ECL) characteristics at a resolved potential. First, Zr-DPA@TCPP with a core-shell structure was effectively synthesized through the self-assembly of 9,10-di(p-carboxyphenyl)anthracene (DPA) and 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) as the respective organic ligands and the Zr cluster as the metal node. The reasonable integration of the two organic ligands DPA and TCPP with ECL properties into a single monomer, Zr-DPA@TCPP, successfully exhibited synchronous anodic and cathodic ECL signals. Besides, due to the impressively unique property of ferrocene (Fc), which can quench the anodic ECL but cannot affect the cathodic ECL signal, the ratiometric ECL biosensor was cleverly designed by using the cathode signal as an internal reference. Thus, combined with DNA recycle amplification reactions, the ECL biosensor realized sensitive ratiometric detection of HPV-16 DNA with the linear range of 1 fM-100 pM and the limit of detection (LOD) of 596 aM. The distinctive dual-emission properties of Zr-DPA@TCPP provided a new idea for the development of ECL luminophores and opened up an innovative avenue of fabricating the ratiometric ECL platform.
Collapse
Affiliation(s)
- Gaoxu Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wenjie Dai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Congyi Hu
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Hao Zang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shiyi Sun
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Li R, Yang G, He Y, Zhao J, Yuan R, Chen S. Coreactant-free dual-emitting conjugated polymer for ratiometric electrochemiluminescence detection of SARS-CoV-2 RdRp gene. Biosens Bioelectron 2023; 237:115539. [PMID: 37487285 DOI: 10.1016/j.bios.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Constructing mono-luminophor-based electrochemiluminescence (ECL) ratio system is a great challenge due to the limitations of the luminescent species with dual-signal-output, luminescence efficiency and coreactant. This work developed carboxyl-functionalized poly[9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene]-alt-2,7-(9,9 dioctylfluorene)] nanoparticles(PFN NPs) as dual-emitting luminophors, which can synchronously output strong cathodic and anodic ECL signals without any exogenous coreactants. The inherent molecular structure enabled efficient intramolecular electron transfer between tertiary amine groups and backbone of PFN to generate strong cathodic and anodic ECL emission. Particularly, H+ in aqueous solution played an irreplaceable role for cathodic ECL emission. The silver nanoparticles (AgNPs) were developed as signal regulator because of their excellent hydrogen evolution reaction (HER) activity, which significantly quenched the cathodic signal while kept the anodic signal unchanged. The dual-emitting PFN NPs cleverly integrated signal regulator AgNPs and bicyclic strand displacement amplification (SDA) to construct a coreactant-free mono-luminophor-based ratiometric ECL sensing for SARS-CoV-2 RdRp gene assay. The strong dual-emitting of PFN NPs and excellent quenching effect of AgNPs on cathodic emission endowed the biosensor with a high detection sensitivity, and the detection limit was as low as 39 aM for RdRp gene. The unique dual-emitting properties of PFN NPs open up a new path to construct coreactant-free mono-luminophor-based ECL ratio platform, and excellent HER activity of AgNPs offers some new thoughts for realizing ECL signal changes.
Collapse
Affiliation(s)
- Rongfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
8
|
Wang S, Zhu S, Kang Z, Wang X, Deng Z, Hu K, Hu J, Liu X, Wang G, Zang G, Zhang Y. Particle Size-Controlled Oxygen Reduction and Evolution Reaction Nanocatalysts Regulate Ru(bpy) 32+'s Dual-potential Electrochemiluminescence for Sandwich Immunoassay. RESEARCH (WASHINGTON, D.C.) 2023; 6:0117. [PMID: 37287888 PMCID: PMC10243198 DOI: 10.34133/research.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Abstract
Multiple signal strategies remarkably improve the accuracy and efficiency of electrochemiluminescence (ECL) immunoassays, but the lack of potential-resolved luminophore pairs and chemical cross talk hinders their development. In this study, we synthesized a series of gold nanoparticles (AuNPs)/reduced graphene oxide (Au/rGO) composites as adjustable oxygen reduction reaction and oxygen evolution reaction catalysts to promote and modulate tris(2,2'-bipyridine) ruthenium(II) (Ru(bpy)32+)'s multisignal luminescence. With the increase in the diameter of AuNPs (3 to 30 nm), their ability to promote Ru(bpy)32+'s anodic ECL was first impaired and then strengthened, and cathodic ECL was first enhanced and then weakened. Au/rGOs with medium-small and medium-large AuNP diameters remarkably increased Ru(bpy)32+'s cathodic and anodic luminescence, respectively. Notably, the stimulation effects of Au/rGOs were superior to those of most existing Ru(bpy)32+ co-reactants. Moreover, we proposed a novel ratiometric immunosensor construction strategy using Ru(bpy)32+'s luminescence promoter rather than luminophores as tags of antibodies to achieve signal resolution. This method avoids signal cross talk between luminophores and their respective co-reactants, which achieved a good linear range of 10-7 to 10-1 ng/ml and a limit of detection of 0.33 fg/ml for detecting carcinoembryonic antigen. This study addresses the previous scarcity of the macromolecular co-reactants of Ru(bpy)32+, broadening its application in biomaterial detection. Furthermore, the systematic clarification of the detailed mechanisms for converting the potential-resolved luminescence of Ru(bpy)32+ could facilitate an in-depth understanding of the ECL process and should inspire new designs of Ru(bpy)32+ luminescence enhancers or applications of Au/rGOs to other luminophores. This work removes some impediments to the development of multisignal ECL biodetection systems and provides vitality into their widespread applications.
Collapse
Affiliation(s)
- Shijun Wang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Shu Zhu
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Ziqi Kang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zixin Deng
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Kun Hu
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Hu
- Department of Pathology,
Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002, China
| | - Xiancheng Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
- Department of Pathophysiology,
Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Zhang
- Institute of Life Science and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center,
Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
9
|
Gomez Cardoso A, Rahin Ahmed S, Keshavarz-Motamed Z, Srinivasan S, Reza Rajabzadeh A. Recent advancements of nanomodified electrodes - Towards point-of-care detection of cardiac biomarkers. Bioelectrochemistry 2023; 152:108440. [PMID: 37060706 DOI: 10.1016/j.bioelechem.2023.108440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
The increasing number of deaths from cardiovascular diseases has become a substantial concern in both developed and underdeveloped countries. Rapid and on-site monitoring of this disease is urgently important to control, prevent and make awareness of public health. Recently, a lot of focus has been placed on nanomaterials and modify these nanomaterials have been explored to detect cardiac biomarkers. By implementing biosensors that are modified with novel recognition elements and more stable nanomaterials, the use of electrochemistry for point-of-care devices is more realistic every day. This review focuses on the current state of nanomaterials conjugated biorecognition elements (enzyme integrated with nanomaterials, antibody conjugated nanomaterials and aptamer conjugated nanomaterials) for electrochemical cardiovascular disease detection. Specifically, a lot of attention has been given to the trends toward more stable biosensors that have increased the potential to be used as point-of-care devices for the detection of cardiac biomarkers due to their high stability and specificity. Moreover, the recent progress on biomolecule-free electrochemical nanosensors for cardiovascular disease detection has been considered. At last, the possibility and drawbacks of some of these techniques for point-of-care cardiac device development in the future have been discussed.
Collapse
Affiliation(s)
- Ana Gomez Cardoso
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Syed Rahin Ahmed
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Zahra Keshavarz-Motamed
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- Department of Mechanical Engineering, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada; W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
10
|
Wen R, Zhou C, Tian J, Lu J. Confined catalysis of MOF-818 nanozyme and colorimetric aptasensing for cardiac troponin I. Talanta 2023; 252:123830. [DOI: 10.1016/j.talanta.2022.123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
|
11
|
Lai J, Ding L, Fan C, Wei J, Qian J, Wang K. Zinc vacancy mediated electron-hole separation in ZnO nanorod arrays for high-sensitivity organic photoelectrochemical transistor aptasensor. Chem Commun (Camb) 2022; 59:75-78. [PMID: 36468236 DOI: 10.1039/d2cc05735b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A novel strong solvent coordination leaching method was developed to prepare surface zinc vacancies in ZnO nanorod arrays. Remarkably, the surface-zinc-vacancy-rich ZnO nanorod arrays exhibit high electron-hole separation efficiency and excellent photoelectrochemical performance for use as a promising candidate for the next generation of organic photoelectrochemical transistor aptasensors.
Collapse
Affiliation(s)
- Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
12
|
Huang Y, Zhang S, Chen Y, Dai H, Lin Y. Modular and Noncontact Wireless Detection Platform for Ovarian Cancer Markers: Electrochemiluminescent and Photoacoustic Dual-Signal Output Based on Multiresponse Carbon Nano-Onions. Anal Chem 2022; 94:13269-13277. [DOI: 10.1021/acs.analchem.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Hong Dai
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanyu Lin
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| |
Collapse
|
13
|
Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. BIOSENSORS 2022; 12:bios12090750. [PMID: 36140135 PMCID: PMC9496703 DOI: 10.3390/bios12090750] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Electrochemiluminescence (ECL) has received considerable attention as a powerful analytical technique for the sensitive and accurate detection of biological analytes owing to its high sensitivity and selectivity and wide dynamic range. To satisfy the growing demand for ultrasensitive analysis techniques with high efficiency and accuracy in complex real sample matrices, considerable efforts have been dedicated to developing ECL strategies to improve the sensitivity of bioanalysis. As one of the most effective approaches, diverse signal amplification strategies have been integrated with ECL biosensors to achieve desirable analytical performance. This review summarizes the recent advances in ECL biosensing based on various signal amplification strategies, including DNA-assisted amplification strategies, efficient ECL luminophores, surface-enhanced electrochemiluminescence, and ratiometric strategies. Sensitivity-enhancing strategies and bio-related applications are discussed in detail. Moreover, the future trends and challenges of ECL biosensors are discussed.
Collapse
|
14
|
Yang G, Zhang Y, Zhao J, He Y, Yuan R, Chen S. Dual-emitting Iridium nanorods combining dual-regulating coreaction accelerator Ag nanoparticles for electrochemiluminescence ratio determination of amyloid-β oligomers. Biosens Bioelectron 2022; 216:114629. [PMID: 36001932 DOI: 10.1016/j.bios.2022.114629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Iridium(III) complexes have been developed as eminent electrochemiluminescence (ECL) luminophores, but their current applications are only limited to anodic ECL emission because of weak cathodic ECL emission. This work explored poly(styrene-co-maleicanhydride) (PSMA) as functional reagent to modulate iridium(III) complexes to simultaneously emit bipolar ECL signals. The prepared iridium(III) nanorods (Ir NRs) were detected strong bipolar ECL emissions at +0.9 V and -2.0 V with N,N-diisopropylethylenediamine (DPEA) and persulfate (S2O82-) as coreactant, respectively. Meanwhile, Ag nanoparticles (Ag NPs) were developed as dual-regulating coreaction accelerator to boost the bipolar emissions of Ir NRs simultaneously. The dual-emitting Ir NRs coupled with dual-regulating coreaction accelerator Ag NPs facilitated the construction of mono-luminophore-based ECL ratio strategy for detecting amyloid-β oligomers (AβO). When the target AβO appeared, the Mg2+-dependent DNAzyme-powered biped walkers were unlocked to cleave single-stranded S1 immobilized on the surface of magnetic beads (MBs), resulting in the production of massive single-stranded ST. Then, the output ST cleaved hairpin H1 captured by Ir NRs modified electrode to produce numerous single strands, which could initiate the hybridization chain reaction (HCR) between Ag NPs-labeled H2 and Ag NPs-labeled H3 to introduce abundant Ag NPs onto the electrode surface. Due to the enhancement effect of Ag NPs on the bipolar ECL emissions from Ir NRs, the ECL ratio detection of AβO was achieved with the detection limit of 0.62 pM. The unique dual-emitting properties of Ir NRs coupled with dual-regulating effect of Ag NPs provided an interesting mono-luminophore-based ECL ratio sensing platform for biological analysis.
Collapse
Affiliation(s)
- Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanyuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
15
|
Lv X, Tan F, Miao T, Zhang J, Zhang Z, Cui B, Fang Y. Potential-Resolved Differential Electrochemiluminescence Immunosensor Based on Novel Designed IBPHF for Self-Correctable Detection of AFB1. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022; 10:biomedicines10051085. [PMID: 35625822 PMCID: PMC9138532 DOI: 10.3390/biomedicines10051085] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.
Collapse
|
17
|
Liu XM, Wang YL, Ren SW, Cao JT, Liu YM. H 2O 2-activated independently bidirectional regulation for a sensitive and accurate electrochemiluminescence ratiometric analysis. Analyst 2022; 147:2508-2514. [DOI: 10.1039/d2an00601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ECL ratiometric sensor was developed based on H2O2 activated independently bidirectional regulation strategy.
Collapse
Affiliation(s)
- Xiang-Mei Liu
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
18
|
In situ growth of TiO 2 nanowires on Ti 3C 2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens Bioelectron 2021; 194:113600. [PMID: 34481242 DOI: 10.1016/j.bios.2021.113600] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
A sensitive electrogenerated chemiluminescence (ECL) biosensor for glucose was developed based on in situ growth of TiO2 nanowires on Ti3C2 MXenes (TiO2-Ti3C2) as the nanoplatform. Via tuning the alkaline oxidation time, different amount of TiO2 nanowires can be found on MXenes. An ECL biosensor for glucose was constructed by covalent immobilization of glucose oxidase (GODx) on the glycine functional TiO2-Ti3C2 surface, with the ECL signal depending on the in-situ formation of H2O2 via the specifically catalysis of glucose by GODx, resulting in the apparent increase of ECL signal. The TiO2-Ti3C2 can also act as the catalyst for the oxidation of H2O2 into O2 to enhance the ECL of luminol. Based on this strategy, a highly sensitive ECL biosensor for glucose was obtained in wide concentration range of 20 nM-12 mM with a low detection limit of 1.2 nM (S/N = 3). The synergistic effects of large surface area, excellent conductivity, and high catalytic activity of the TiO2-Ti3C2 make the sensor highly sensitive toward glucose; the specific enzyme catalysis reaction promises excellent selectivity of the ECL sensor. The proposed biosensor has been employed to detect glucose in human serum, fruits, and sweat samples with excellent performance, providing a universal approach for glucose in various samples, which shows great prospect in clinical diagnostics and wearable sensors.
Collapse
|
19
|
Azzouz A, Hejji L, Sonne C, Kim KH, Kumar V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens Bioelectron 2021; 193:113617. [PMID: 34555756 DOI: 10.1016/j.bios.2021.113617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
As a major cause of deaths in developed countries, cardiovascular disease (CVD) has been a big burden for human health systems. Its early and rapid detection is crucial to efficiently apply appropriate on time therapy and to ultimately reduce the associated mortality rate. Aptamers, known as single-stranded DNA/RNA or oligonucleotides containing receptors and/or catalytic properties, have been widely employed in biodetection platforms due to their beneficial properties. Like antibodies, aptamers have served as artificial target receptors in affinity biosensors. Currently, advanced biosensors with improved sensitivity and specificity are fabricated by the synergistic combination of aptamers and diverse nanomaterials. Herein, we review the current development and applications of nanomaterial-based aptasensors for the recognition of CVD biomarkers with special emphasis on electrochemical and optical technologies. The performance of aptasensors has been assessed further in terms of key quality assurance metrics along with discussions on recent technologies developed for the amplification of signals with enhanced portability.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Christian Sonne
- Aarhus University, Arctic Research Centre Department of Bioscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 133-791, South Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| |
Collapse
|
20
|
Ma G, Wu P, Wu K, Deng A, Li J. A novel electrochemiluminescence immunoassay based on highly efficient resonance energy transfer for florfenicol detection. Talanta 2021; 235:122732. [PMID: 34517600 DOI: 10.1016/j.talanta.2021.122732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
A novel competitive mechanism electrochemiluminescence (ECL) immunoassay based on resonance energy transfer was used to detect florfenicol for the first time. In this work, CeO2@TiO2 nanocomposite, which was used as a donor, was prepared in sol-gel method and the effective band gap of TiO2 could be reduced by CeO2, which promoted the ECL emission of TiO2 and made the ECL performance of the donor more outstanding. The absorption spectrum of Cu2S and the ECL emission spectrum of the donor could be highly matched, which ensured the occurrence of electrochemiluminescence resonance energy transfer (ECL-RET). In addition, the snowflake-like structure of cuprous sulfide could load more antibodies. It is worth mentioning that as far as we know, there have been no reports of this material as an ECL receptor before. Furthermore, the ECL-RET system based on this has shown excellent performance in the detection of florfenicol. The proposed immunoassay showed satisfactory sensitivity with a wide linear range from 0.001 to 1000 ng mL-1 and a low detection limit (0.3 pg mL-1). Due to the remarkable quenching effect and simple assembly process, the immunoassay is of great practical significance and has reference value for the detection of florfenicol or other biological small molecules.
Collapse
Affiliation(s)
- Guoyu Ma
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Panpian Wu
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
21
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
22
|
Zhao J, He Y, Tan K, Yang J, Chen S, Yuan R. Novel Ratiometric Electrochemiluminescence Biosensor Based on BP-CdTe QDs with Dual Emission for Detecting MicroRNA-126. Anal Chem 2021; 93:12400-12408. [PMID: 34469691 DOI: 10.1021/acs.analchem.1c02408] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The electrochemiluminescence (ECL) ratiometric assay is usually based on two different ECL luminophores, and the choice of two suitable luminophores and shared co-reactant makes its construction challenging. The single-emitter-based ECL ratio mode could overcome the limitation of two luminophores and simplify the construction process, so it is an ideal choice. In this work, CdTe quantum dots (CdTe QDs) were modulated using black phosphorus (BP) nanosheet to simultaneously emit the cathodic and anodic ECL signals, and H2O2 and tripropylamine (TPrA) served as the cathodic and anodic co-reactants, respectively. MicroRNA-126 (miRNA-126) was selected as the template target to exploit the application of BP-CdTe QDs in the single-emitter-based ECL ratio detection. Through the target recycling triggering rolling-circle amplification (RCA) reaction, a large amount of glucose oxidase (GOx)-modified single strand 1 was introduced. GOx catalyzed glucose to produce H2O2 in situ, which acted as a dual-role moderator to quench the anodic ECL emission with TPrA as the co-reactant while enhancing the cathodic emission, thereby realizing the ratiometric detection of miRNA-126 with a low detection limit of 29 aM (S/N = 3). The dual-ECL-emitting BP-CdTe QDs with TPrA-H2O2 as dual co-reactant provide a superior ECL ratio platform involving enzyme catalytic reaction, expanding the application of single-emitter-based ratio sensing in the diverse biological analysis.
Collapse
Affiliation(s)
- Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
23
|
Xiao SY, Zhen SJ, Huang CZ, Li YF. Ultrasensitive ratiometric electrochemiluminescence for detecting atxA mRNA using luminol-encapsulated liposome as effectively amplified signal labels. Biosens Bioelectron 2021; 186:113263. [PMID: 33964795 DOI: 10.1016/j.bios.2021.113263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
It is an advantageous way to quickly identify the toxicity of Bacillus anthracis (B. anthracis) by detecting the transcription product of the atxA gene. Herein, a novel ultrasensitive ratiometric electrochemiluminescence (ECL) biosensor with competitive mechanism and double amplified signal ways was proposed for detecting the atxA mRNA. The K2S2O8 was used as cathodic emitter and silver metal-organic gels (AgMOG) was used as ECL enhancer. The AgMOG could accelerate the electro-catalytic reduction of S2O82- to SO4˙-, which reacted with dissolved oxygen, resulting in strong cathodic ECL. Meanwhile, luminol was encapsulated in liposome as anodic amplified signal labels and the luminol anion radical also reacted with dissolved oxygen to create the anodic ECL emission. We immobilized luminol-encapsulated liposomes on the surface of AgMOG through the hybridization of DNA and mRNA. This would provide a competitive mechanism involving dissolved oxygen between K2S2O8 and luminol. Benefiting from the competitive mechanism and amplified signal ways, this ratiometric biosensor achieved a wide linear relationship range from 10 to 300 fM with a low limit of detection (8.13 fM). Considering the accessible operation, favorable performance, and high universality of this strategy, this work may be used to analyze other mRNAs of bacteria.
Collapse
Affiliation(s)
- Si Yu Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
24
|
Nikolaou P, Valenti G, Paolucci F. Nano-structured materials for the electrochemiluminescence signal enhancement. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021; 191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Electroluminescence (ECL) has been used in extensive applications ranging from bioanalysis to clinical diagnosis owing to its simple device requirement, low background, high sensitivity, and wide dynamic range. Nucleic acid is a significant theme in ECL bioanalysis. The inherent versatile selective molecular recognition of nucleic acids and their programmable self-assembly make it desirable for the robust construction of nanostructures. Benefiting from their unique structures and physiochemical properties, ECL biosensing based on nucleic acids has experienced rapid growth. This review focuses on recent applications of nucleic acids in ECL sensing systems, particularly concerning the employment of nucleic acids as molecular recognition elements, signal amplification units, and sensing interface schemes. In the end, an outlook of nucleic acid-based ECL biosensing will be provided for future developments and directions. We envision that nucleic acids, which act as an essential component for both bioanalysis and clinical diagnosis, will provide a new thinking model and driving force for developing next-generation sensing systems.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Enhanced electrochemiluminescence ratiometric cytosensing based on surface plasmon resonance of Au nanoparticles and nanosucculent films. Biosens Bioelectron 2021; 189:113367. [PMID: 34091285 DOI: 10.1016/j.bios.2021.113367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
Ramos cells are human Burkitt's lymphoma cells, which are a kind of cancer cells to facilitate the monitoring of the relevant biological processes of cancers. Sensitive and accurate detection of Ramos cells using emerging ratiometric ECL biosensing technology shows increasing importance, however, the target analytes of current ratiometric ECL biosensors are mainly limited to DNA/RNA or proteins. In this study, we proposed a dual-potential ratiometric sensing strategy for the electrochemiluminescence detection of Ramos cells based on two types of electrochemiluminescence (ECL)-responding molecular. Au nanosucculent films (AuNFs) were electrodeposited on the fluorine doped tin oxide (FTO) electrode to increase the effective area of the electrode for more efficient assembly of DNA and effectively improving the conductivity of the sensing interfaces. In the presence of Ramos cells, aptamers capped with Au@luminol would conjugate with Ramos cells and then remove from AuNFs, accompanying the decrease of ECL signal from Au@luminol. Then, Au-DNA was captured and alternately hybridized with DNA-modified CdS nanocrystals (NCs) on the surface of AuNFs with the formation of a super reticulate structure. The reticulate structure not only raised another identified ECL signal from CdS NCs but also greatly promoted its ECL intensity from the surface plasmon resonance originating from Au NPs. The value of log (ECLCdS/ECLluminol) and the logarithm of the number of cells exhibit considerable linear relation ranging from 80 to 8 × 105 cells mL-1 with a low detection limit of 20 cells mL-1 (S/N = 3). The selectivity and specificity of this dual-potential ECL sensor showed good performance and indicated considerable promise in avoiding false-positive results in detection.
Collapse
|
27
|
Mahmoudpour M, Karimzadeh Z, Ebrahimi G, Hasanzadeh M, Ezzati Nazhad Dolatabadi J. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit Rev Anal Chem 2021; 52:1818-1845. [PMID: 33980072 DOI: 10.1080/10408347.2021.1919987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Owing to the high toxicity and large-scale use of pesticides, it is imperative to develop selective, sensitive, portable, and convenient sensors for rapid monitoring of pesticide. Therefore, the electrochemical detection platform offers a promising analytical approach since it is easy to operate, economical, efficient, and user-friendly. Meanwhile, with advances in functional nanomaterials and aptamer selection technologies, numerous sensitivity-enhancement techniques alongside a widespread range of smart nanomaterials have been merged to construct novel aptamer probes to use in the biosensing field. Hence, this study intends to highlight recent development and promising applications on the functional nanomaterials with aptamers for pesticides detection based on electrochemical strategies. We also reviewed the current novel aptamer-functionalized microdevices for the portability of pesticides sensors. Furthermore, the major challenges and future prospects in this field are also discussed to provide ideas for further research.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ebrahimi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Li Z, Wu S, Zou G. Highly potential-resolved anodic electrochemiluminescence multiplexing immunoassay with CuInS2@ZnS nanocrystals and [Ru(bpy)2(dcbpy)]2+ as emitters. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Fan Z, Yao B, Ding Y, Xie M, Zhao J, Zhang K, Huang W. Electrochemiluminescence aptasensor for Siglec-5 detection based on MoS 2@Au nanocomposites emitter and exonuclease III-powered DNA walker. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 334:129592. [PMID: 33584010 PMCID: PMC7869706 DOI: 10.1016/j.snb.2021.129592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/03/2023]
Abstract
Lectins are highly specific binding proteins for glycoproteins which widely exist in living organisms, playing a vital role in exploring the biological evolution process, such as cellular proliferation, differentiation, carcinogenesis and apoptosis. Therefore, the content monitoring of lectin becomes particularly significant and urgent in the bioanalytical application. In this work, we fabricated an aptasensor, majorly capitalizing the eminent affinity between sialic acid-binding immunoglobulin (Ig)-like lectin 5 (Siglec-5) and nucleic acids aptamer (K19), with nontoxic MoS2@Au nanocomposites as electrochemiluminescence (ECL) emitters based on exonuclease III (Exo III)-powered DNA walker for the bioassays of Siglec-5. The DNA track was constructed on the emitters' surface, providing a reliable platform for the DNA walker's autonomous move. In the assay, the primer DNA in the DNA duplex was replaced by Siglec-5 due to the aptamer interactions and repeatedly released to participate in the movement of the DNA walker, further triggering cascade signal amplification. Finally, our aptasensor indicates significant potential for assays of Siglec-5 with a detection limit of 8.9 pM.
Collapse
Affiliation(s)
- Zhenqiang Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bo Yao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Minhao Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| |
Collapse
|
30
|
Recent advances in electrochemiluminescence luminophores. Anal Bioanal Chem 2021; 414:131-146. [PMID: 33893832 DOI: 10.1007/s00216-021-03329-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Electrochemiluminescence (ECL) has continued to receive considerable attention in various applications, owing to its intrinsic advantages such as near-zero background response, wide dynamic range, high sensitivity, simple instrumentation, and low cost. The ECL luminophore is one of the most significant components during the light generation processes. Despite significant progress that has been made in the synthesis of new luminophores and their roles in resolving various challenges, there are few comprehensive summaries on ECL luminophores. In this review, we discuss some of the recent advances in organic, metal complexes, nanomaterials, metal oxides, and near-infrared ECL luminophores. We also emphasize their roles in tackling various challenges with illustrative examples that have been reported in the last few years. Finally, perspective and some unresolved challenges in ECL that can potentially be addressed by introducing new luminophores have also been discussed. Graphical abstract.
Collapse
|
31
|
Xu ZH, Gao H, Zhang N, Zhao W, Cheng YX, Xu JJ, Chen HY. Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium(III) Complex with High Electrochemiluminescence Efficiency. Anal Chem 2021; 93:1686-1692. [PMID: 33378161 DOI: 10.1021/acs.analchem.0c04284] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work developed a sensitive electrochemiluminescence (ECL) biosensor based on a cyclometalated iridium(III) complex ((bt)2Irbza), which was synthesized for the first time. Annihilation, reductive-oxidative, and oxidative-reductive ECL behaviors of (bt)2Irbza were investigated, respectively. The oxidative-reductive ECL intensity was the strongest compared with the other two, which showed 16.7 times relative ECL efficiency compared with commercial [Ru(bpy)3]2+ under the same experimental conditions. Therefore, an ECL biosensing system with (bt)2Irbza as the anodic luminophore was established for miRNA detection based on a closed bipolar electrode (BPE). Combined with both steric hindrance and catalytic effects induced by hemin/G-quadruplex in the cathodic reservoir of BPE that changed the Faraday current of the cathode and thus mediated the ECL intensity of (bt)2Irbza in the anode of BPE, the ECL sensor stated an ultrahigh sensitivity for microRNA (miRNA-122) analysis with a detection limit of 82 aM.
Collapse
Affiliation(s)
- Zhi-Hong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Xiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Yang XY, Bai YY, Huangfu YY, Guo WJ, Yang YJ, Pang DW, Zhang ZL. Ultrasensitive Electrochemiluminescence Biosensor Based on Closed Bipolar Electrode for Alkaline Phosphatase Detection in Single Liver Cancer Cell. Anal Chem 2020; 93:1757-1763. [DOI: 10.1021/acs.analchem.0c04517] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue-Yue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Jing Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
33
|
Yin XR, Yang P, Zhang HM, Zhu QJ, Yuan R, Li Y, Liang WB. Hydrophobic-Driven Electrochemiluminescence Enhancement via Target-Induced Self-Enrichment for Ultrasensitive Bioassay. Anal Chem 2020; 92:15120-15128. [DOI: 10.1021/acs.analchem.0c03394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao-Ru Yin
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng Yang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hao-Min Zhang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Quan-Jing Zhu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Ruo Yuan
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Wen-Bin Liang
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
34
|
Xiao SY, Li Y, Zhen SJ, Huang CZ, Li YF. Efficient peroxydisulfate electrochemiluminescence system based the novel silver metal-organic gel as an effective enhancer. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Du D, Shu J, Guo M, Haghighatbin MA, Yang D, Bian Z, Cui H. Potential-Resolved Differential Electrochemiluminescence Immunosensor for Cardiac Troponin I Based on MOF-5-Wrapped CdS Quantum Dot Nanoluminophores. Anal Chem 2020; 92:14113-14121. [DOI: 10.1021/acs.analchem.0c03131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dexin Du
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiangnan Shu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingquan Guo
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mohammad A. Haghighatbin
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Di Yang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Zhiping Bian
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
36
|
Wang J, Haghighatbin MA, Shen W, Mi L, Cui H. Metal Ion-Mediated Potential-Resolved Ratiometric Electrochemiluminescence Bioassay for Efficient Determination of miR-133a in Early Diagnosis of Acute Myocardial Infarction. Anal Chem 2020; 92:7062-7070. [DOI: 10.1021/acs.analchem.0c00377] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jue Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mohammad A. Haghighatbin
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen Shen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lan Mi
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
37
|
Ma X, Wang C, Wu F, Guan Y, Xu G. TiO2 Nanomaterials in Photoelectrochemical and Electrochemiluminescent Biosensing. Top Curr Chem (Cham) 2020; 378:28. [DOI: 10.1007/s41061-020-0291-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/14/2020] [Indexed: 01/04/2023]
|
38
|
Negahdary M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 2020; 152:112018. [PMID: 32056737 DOI: 10.1016/j.bios.2020.112018] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
Heart disease (especially myocardial infarction (MI)) and cancer are major causes of death. Recently, aptasensors with the applying of different nanostructures have been able to provide new windows for the early and inexpensive detection of these deadly diseases. Early, inexpensive, and accurate diagnosis by portable devices, especially aptasensors can increase the likelihood of survival as well as significantly reduce the cost of treatment. In this review, recent studies based on the designed aptasensors for the diagnosis of these diseases were collected, ordered, and reviewed. The biomarkers for the diagnosis of each disease were discussed separately. The primary constituent elements of these aptasensors including, analyte, aptamer sequence, type of nanostructure, diagnostic technique, analyte detection range, and limit of detection (LOD), were evaluated and compared.
Collapse
Affiliation(s)
- Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|