1
|
Sanko V, Şenocak A, Yeşilot S, Tümay SO. The fabrication of a hybrid fluorescent nanosensing system and its practical applications via film kits for the selective determination of mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124677. [PMID: 38908110 DOI: 10.1016/j.saa.2024.124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Heavy metal ions especially mercury exposure have severe toxic effects on living organisms and human health. Therefore, easy, accessible, and accurate determination strategies for the selective specification of mercury ions are essential for numerous disciplines. In the presented paper, new hybrid fluorescent iron oxide nanoparticles labeled with carbazole and triazole units (CT-IONP) were prepared via surface modification for the spectrofluorimetric determination of Hg2+ in environmental samples. The structure of the new sensing system is characterized via various spectroscopic, thermal, and microscopic techniques. Under optimized conditions, the hybrid system is not only used in fully water media but also highly fluorescent which led to the "turn-off" response towards Hg2+ ion in the presence of various competitive species. The presented sensing system was successfully used for the determination of Hg2+ ions in the wide linear working range (0.02-10.00 µmol.L-1) at nanomolar levels, where the limit of detection and quantification were calculated as 7.38 and 22.14 nmol.L-1. Importantly, the practical application of hybrid material was applied by CT-IONP embedded polycaprolactone (PCL) polymer film kits. The bluish color of fabricated film kits was instantly and dramatically turned colorless-dark patterns after the addition of Hg2+ ions, which resulted in convenient and rapid film test kits for selective detection.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Türkiye.; METU MEMS Center, Ankara 06520, Türkiye
| | - Ahmet Şenocak
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Serkan Yeşilot
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25100, Türkiye.
| |
Collapse
|
2
|
Wang B, You X, Li Z, Jie G, Jie G. Dual-mode electrochemiluminescence sensing and phone imaging assays based on bipolar electrode for kanamycin detection. Anal Chim Acta 2024; 1320:343015. [PMID: 39142786 DOI: 10.1016/j.aca.2024.343015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Excessive use of antibiotics will enter the water environment and soil through the biological chain, and then transfer to the human body through food, resulting in drug resistance, kidney toxicity and other health problems, so it is urgent to develop highly sensitive detection methods of antibiotics. Here, we designed a dual-mode sensor platform based on closed bipolar electrode (cBPE) electroluminescence (ECL) and mobile phone imaging to detect kanamycin in seawater. The prepared CN-NV-550 displayed extremely intense ECL signal, allowing for convenient mobile phone imaging. The cBPE was combined with DNA cycle amplification technology to prevent the mutual interference between target and the luminescent material, and realized the amplification of signal. In the presence of target Kana, Co3O4 was introduced to the cBPE anode by DNA cycle amplification product, and accelerated the oxidation rate of uric acid (UA). Thus, the electroluminescence response of CN-NV-550 on cBPE cathode was much improved due to the charge balance of the cBPE, achieving both ECL detection and mobile phone imaging assay of Kana, which much improved the accuracy and efficiency of assay. The limit of detection (LOD) in this work is 0.23 pM, and LOD for mobile phone imaging is 0.39 pM. This study integrate ECL imaging visualization of CN-NV-550 and high electrocatalytic activity of Co3O4 into cBPE-ECL detection, providing a new perspective for antibiotic analysis, and has great potential for practical applications, especially in Marine environmental pollution monitoring.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xubin You
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhikang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guitao Jie
- Haemal Internal Medicine, Linyi Central Hospital, Yishui County, Linyi, Shandong, 276400, PR China.
| |
Collapse
|
3
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Jin P, Wan P, Zhang C, Li X, Wang Y, Luo J, Li K. Analyte-perturbed balance between reducibility and fluorescence of Ti 3C 2 MXene quantum dots for label-free, dual-mode detection of silver ions. Anal Chim Acta 2024; 1303:342517. [PMID: 38609276 DOI: 10.1016/j.aca.2024.342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND As an emerging and attractive low-dimensional functional materials, Ti3C2 MXene quantum dots (QDs) enlarge the toolbox of fluorescence sensing. However, monochromatic fluorescence, which only provide one single signal, is often beset by challenges such as false-positive readouts and limitations in selectivity. Consequently, to improve the sensing accuracy by means of cross-verified dual-signal authentication, the endeavor to engineer dual-mode nanoprobes based on Ti3C2 QDs, incorporating both the capability of fluorescence and an alternative sensing mechanism, emerges as a compelling avenue. RESULTS Here, based on the alterations in colorimetric and fluorescent signals of Ti3C2 QDs with the addition of Ag+, we propose a dual-mode sensor obviating the necessity for nanoprobe labeling. Owing to the decent reducibility of Ti3C2 QDs, Ag+ is adsorbed and reduced, resulting in the generation of plasmonic Ag nanoparticles (NPs), which simultaneously trigger colorimetric responses of the solution and enhance the fluorescent emission of Ti3C2 QDs. The confluence of colorimetry and fluorometry within this strategy optimally harnesses the modulating role of the acquired Ag NPs on the reducing capability and fluorescence characteristics of Ti3C2 QDs. The equilibrium imparts versatility and promising prospects to this analyte-triggered label-free method, which enables a remarkable specificity and an excellent detecting limit (0.45 μM) for Ag+. SIGNIFICANCE The balance between reducibility and fluorescence of Ti3C2 QDs for dual-mode detection is inventively demonstrated. With the exemplification of a direct influence of both features of the nanoprobe via the introduction of analytes, this study opens the feasibility of the analyte-perturbed felicitous equilibrium, which endows label-free methods with versatility and promising prospects. This design may evoke more biosensing strategies with the function of double-signal mutual verification.
Collapse
Affiliation(s)
- Peng Jin
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, 471023, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Pingping Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunyan Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianxin Luo
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
5
|
Zhang R, Yang J, Cao Y, Zhang Q, Xie C, Xiong W, Luo X, He Y. Efficient 2D MOFs nanozyme combining with magnetic SERS substrate for ultrasensitive detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124062. [PMID: 38401506 DOI: 10.1016/j.saa.2024.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Biomimetic inorganic nanoenzyme is a kind of nanomaterial with long-term stability, easy preparation and low cost, which could instead of natural biological enzyme. Metal-organic framework (MOFs) as effectively nanoenzyme was attracted more attention for the adjustability and large specific surface area. This design is based on the catalase-like catalytic activity of 2D metal-organic frameworks (MOFs) and the high sensitivity of surface enhanced Raman spectroscopy (SERS) biosensors to construct a novel SERS biosensor capable of efficiently detecting mercury (Hg2+). In this study, 2D MOFs nanozyme was instead of 3D structure with more effecient catalytic site, which can catalyze o-Phenylenediamine (OPD) to OPDox with the assistance of H2O2. Besides, a magnetic composite nanomaterial Fe3O4@Ag@OPD was prepared as a signal carrier. In the presence of Hg2+, T-Hg2+-T base pairs were used to connect the two materials to realize Raman signal change. Based on this principle, the SERS sensor can realize the sensitive detection of Hg2+, the detection range is 1.0 × 10-12 ∼ 1.0 × 10-2 mol‧L-1, and the detection limit is 1.36 × 10-13 mol‧L-1. This method greatly improves the reliability of SERS sensor for detecting the target, and provides a new idea for detecting metal ions in the environment.
Collapse
Affiliation(s)
- Runzi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Jia Yang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Yongguo Cao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Qianyan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Chenfeng Xie
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Wanyi Xiong
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| |
Collapse
|
6
|
Saleem M, Hussain A, Khan SU, Haider S, Lee KH, Park SH. Symmetrical Ligand's Fabricated Porous Silicon Surface Based Photoluminescence Sensor for Metal Detection and Entrapment. J Fluoresc 2024:10.1007/s10895-024-03697-7. [PMID: 38625572 DOI: 10.1007/s10895-024-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
This study was based on the development of surface-based photoluminescence sensor for metal detection, quantification, and sample purification employing the solid sensory chip having the capability of metal entrapment. The Co(II), Cu(II) and Hg(II) sensitive fluorescence sensor (TP) was first synthesized and characterized its sensing abilities towards tested metal ions by using fluorescence spectral investigation while the synthesis and complexation of the receptor was confirmed by the chromogenic, optical, spectroscopic and spectrometric analysis. Under optical investigation, the ligand solution exhibited substantial chromogenic changes as well as spectral variations upon reacting with copper, cobalt, and mercuric ions, while these behaviors were not seen for the rest of tested metallic ions i.e., Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+, and Al3+. These colorimetric alterations and spectral shifting could potentially be employed to detect and quantify these specific metal ions. After the establishment of the ligand's selective complexation ability towards selected metals, it was fabricated over the substituted porous silicon surface (FPS) keeping in view of the development of surface-based photoluminescence sensor (TP-FPS) for the selected metal sensation and entrapment to purify the sample just be putting off the metal entrapped sensory solid chip. Surface characterization and ligand fabrication was inspected by plan and cross sectional electron microscopic investigations, vibrational and electronic spectral analysis. The sensitivity of the ligand (TP) in the solution phase metal discrimination was determined by employing the fluorescence titration analysis of the ligand solution after progressive induction of Co2+, Cu2+, and Hg2+, which afford the detection limit values of 2.14 × 10- 8, 3.47 × 10- 8 and 3.13 × 10- 3, respectively. Concurrently, photoluminescence titration of the surface fabricated sensor (TP-FPS) revealed detection limit values of 3.14 × 10- 9, 7.43 × 10- 9, and 8.21 × 10- 4, respectively, for the selected metal ions.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, Riyadh, 11421, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh, 11421, Saudi Arabia
| | - Ki Hwan Lee
- Kongju National University, Gongju, Chungnam, 314-701, Republic of Korea
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Saleem M, Hussain A, Rauf M, Khan SU, Haider S, Hanif M, Rafiq M, Park SH. Ratiometric Fluorescence and Chromogenic Probe for Trace Detection of Selected Transition Metals. J Fluoresc 2024:10.1007/s10895-024-03648-2. [PMID: 38457078 DOI: 10.1007/s10895-024-03648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The design and development of a fluorescence sensor aimed at detecting and quantifying trace amounts of toxic transition metal ions within environmental, biological, and aquatic samples has garnered significant attention from diagnostic and testing laboratories, driven by the imperative to mitigate the health risks associated with these contaminants. In this context, we present the utilization of a heterocyclic symmetrical Schiff Base derivative for the purpose of fluorogenic and chromogenic detection of Co2+, Cu2+ and Hg2+ ions. The characterization of the ligand involved a comprehensive array of techniques, including physical assessments, optical analyses, NMR, FT-IR, and mass spectrometric examinations. The mechanism of ligand-metal complexation was elucidated through the utilization of photophysical parameters and FT-IR spectroscopic analysis, both before and after the interaction between the ligand and the metal salt solution. The pronounced alterations observed in absorption and fluorescence spectra, along with the distinctive chromogenic changes, following treatment with Co2+, Cu2+ and Hg2+, affirm the successful formation of complexes between the ligands and the treated metal ions. Notably, the receptor's complexation response exhibited selectivity towards Co(II), Cu(II), and Hg(II), with no observed chromogenic changes, spectral variations, or band shifts for the various tested metal ions, including Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+ and Al3+. This absence of interaction between these metal ions and the ligand could be attributed to their compact or inadequately conducive conduction bands for complexation with the ligand's structural composition. To quantify the sensor's efficacy, fluorescence titration spectra were employed to determine the detection limits for Co2+, Cu2+ and Hg2+, yielding values of 2.92 × 10-8, 8.91 × 10-8, and 4.39 × 10-3 M, respectively. The Benesi-Hildebrand plots provided association constant values for the ligand-cobalt, ligand-copper, and ligand-mercury complexes as 0.74, 2.52, and 13.89 M-1, respectively.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Thal University Bhakkar, Bhakkar, Pakistan.
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Muhammad Rauf
- School of Chemistry and Chemical Engineering, Shanxi University, Shanxi, China
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, 11421, Riyadh, Saudi Arabia
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub campus layyah, Faisalabad, 31200, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Huang R, Li M, Qu Z, Liu Y, Lu X, Li R, Zou L. Label-free fluorescence detection of mercury ions based on thymine-mercury-thymine structure and CRISPR-Cas12a. Food Res Int 2024; 180:114058. [PMID: 38395579 DOI: 10.1016/j.foodres.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
In this work, we developed a novel label-free fluorescent sensor for the highly sensitive detection of mercury ions (Hg2+) based on the coordination chemistry of thymine-Hg2+-thymine (T-Hg2+-T) structures and the properties of CRISPR-Cas12a systems. Most notably, two T-rich sequences (a blocker and an activator) were designed to form stable double-stranded structures in the presence of Hg2+ via the T-Hg2+-T base pairing. The formation of T-T mismatched double-stranded DNA between the blocker and the activator prevented the cleavage of G-rich sequences by Cas12a, allowing them to fold into G-quadruplex-thioflavin T complexes, resulting in significantly enhanced fluorescence. Under the optimized conditions, the developed sensor showed an excellent response for Hg2+ detection in the linear range of 0.05 to 200 nM with a detection limit of 23 pM. Moreover, this fluorescent sensor exhibited excellent selectivity and was successfully used for the detection of Hg2+ in real samples of Zhujiang river water and tangerine peel, demonstrating its potential in environmental monitoring and food safety applications.
Collapse
Affiliation(s)
- Ruoying Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zenglin Qu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoxing Lu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ruimin Li
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, PR China.
| |
Collapse
|
9
|
Yan X, Wang F, Du H, Huo X, Zhang R, Zhou T, Wang X, Zhang G, Zhang Z. The switch of the DNA tetrahedral tweezers controlled by mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123614. [PMID: 37939581 DOI: 10.1016/j.saa.2023.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
In this paper, the one-pot method is used to make the four DNA strands complement each other to construct the basic framework for DNA tetrahedral tweezers. To regulate the opening and closing of DNA tetrahedral tweezers, DNA strands with a high amount of T-base sequences is partially complementary to the tetrahedral framework. Hg2+ can form T-Hg-T hairpin structures with T-base. When DNA tetrahedral tweezers encounter Hg2+, the T-Hg-T structure is formed to shorten the connecting chain, and the tightening force causes the DNA tweezers to change from an open state to a closed state. Conversely, changes in fluorescence intensity due to the structure change can be used to detect the presence of Hg2+.
Collapse
Affiliation(s)
- Xiaoyan Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xiaobing Huo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
10
|
Zhu L, Liu W, Tong F, Zhang S, Xu Y, Hu Y, Zheng M, Zhou Y, Zhang Z, Li X, Liu Y. A bimetallic organic framework based fluorescent aptamer probe for the detection of zearalenone in cereals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123628. [PMID: 37950933 DOI: 10.1016/j.saa.2023.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
In this work, a bimetallic organic framework (Cu/UiO-66) based "turn on" fluorescent aptamer probe was designed for the high-efficiency detection of zearalenone (ZEN). In the probe, the 6-carboxyfluorescein-labeled aptamer (FAM-Apt) was used as the recognition element, and the electrostatic interaction, coordination effect, and photoinduced electron transfer effect between FAM-Apt and Cu/UiO-66 caused fluorescence quenching. When ZEN existed, FAM-Apt recognized ZEN specifically, causing FAM-Apt to separate from the surface of Cu/UiO-66 and recovery of fluorescence. Under the optimal conditions, the probe had a linear detection range of 0.5 ng/mL-60 ng/mL, and the detection limit was 0.048 ng/mL. The application potential of the probe was verified by real detection of various cereals and their products, with a standard recovery from 83.67 %-106.8 %. The development of this efficient, rapid, and sensitive ZEN detection method provides a new platform for the quality control of cereals and their products.
Collapse
Affiliation(s)
- Lu Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Tong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaoxian Zhang
- Key Laboratory of Agri-food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Jaison AMC, Vasudevan D, Ponmudi K, George A, Varghese A. One Pot Hydrothermal Synthesis and Application of Bright-yellow-emissive Carbon Quantum Dots in Hg 2+ Detection. J Fluoresc 2023; 33:2281-2294. [PMID: 37017893 DOI: 10.1007/s10895-023-03233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
Carbon quantum dots (CQD) have drawn great interest worldwide for their extensive application as sensors due to their extraordinary physical and chemical characteristics, good biocompatibility, and high fluorescence in nature. Here, we demonstrate a technique for detecting mercury (Hg2+) ion using a fluorescent CQD probe. Ecology is concerned about the accumulation of heavy metal ions in water samples due to their harmful effects on human health. Sensitive identification and removal of metal ions from water samples are required to reduce heavy metals' risk. To find out Mercury in the water sample, carbon quantum dots were used and synthesized by 5-dimethyl amino methyl furfuryl alcohol and o-phenylene diamine through the hydrothermal technique. The synthesized CQD shows yellow emission when exposed to UV irradiation. Mercury ion was used to quench carbon quantum dots, and it was found that the detection limit was 5.2 nM with a linear range of 15-100 µM. The synthesized carbon quantum dots were demonstrated to efficiently detect Mercury ions in real water samples.
Collapse
Affiliation(s)
| | - Devipriya Vasudevan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Keerthana Ponmudi
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Ashlay George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
12
|
Lin Y, Ye S, Tian J, Leng A, Deng Y, Zhang J, Zheng C. Paper-assisted ratiometric fluorescent sensors for on-site sensing of sulfide based on the target-induced inner filter effect. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132201. [PMID: 37544178 DOI: 10.1016/j.jhazmat.2023.132201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Dissolved sulfide tends to species transformation and loss upon leaving the matrix, thus the development of a practical on-site determination of sulfide is crucial for environmental monitoring and human health. In this work, a novel paper-based ratiometric fluorescence sensor was developed for the field analysis of sulfide, which system was constructed by the inner filter effect (IFE) of CdS quantum dots (QDs) toward carbon dots (C-dots). Instead of an aqueous phase system, the conversion of sulfide to its hydride would induce the in-situ formation of CdS QDs on the paper, which acted as an energy acceptor to quench the emission of C-dots, leading to a variation of ratiometric fluorescence from blue to yellow with the increasing concentration of sulfide. Moreover, we proposed a smartphone-based fluorescence capture device integrated with a programmed Python program, accomplishing both color recognition and accurate detection of sulfide. Under the optimal condition, this ratiometric fluorescence sensor allowed for the on-site analysis of sulfide with a limit of detection of 0.05 μM. The accuracy of the sensor was validated via the successful field analysis of environmental water samples with satisfactory recoveries. Compared to other fluorescence methods used for sulfide analysis, this developed system retains the advantages of label-free, low-cost, ease of operation, and miniaturization, showing great potential for the measurement of sulfide on-site, as well as environmental monitoring.
Collapse
Affiliation(s)
- Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Simin Ye
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jinxiao Tian
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Anqin Leng
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
13
|
Kaur R, Rana S, Kaur R, Jyoti, Kaur N, Singh B. Bio-mimetic selectivity in Hg 2+ sensing developed via electro-copolymerized PEDOT and benzothiazole-Au nanoparticles composite. Mikrochim Acta 2023; 190:396. [PMID: 37715841 DOI: 10.1007/s00604-023-05972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/27/2023] [Indexed: 09/18/2023]
Abstract
To eliminate the potential health risks of mercury, development of stable and selective mercury sensor with high sensitivity is the need of the hour. To address this, a novel PEDOT-AA-BTZ-Au-based Hg2+ selective, hybrid electrochemical sensor has been designed by following a simple protocol for electrode fabrication. The electrode was designed by carefully optimizing the onset oxidation potential of supramolecule 2-(anthracen-9-yl)benzo[d]thiazole (AA-BTZ) and conducting polymer poly-(3,4-ethylenedioxythiophene) (PEDOT), using copolymerization approach followed by dropcasting of gold nanoparticles (AuNPs). The designed electrode offered synergistic effects thus augmenting the electrical conductivity and adsorption capacity as depicted by its porous surface morphology. The highly sensitive analytical signal was generated by sulphur pockets present in AA-BTZ and PEDOT conducting framework. This is further complemented by the selectivity offered by the soft interactions between AuNPs and Hg2+ resulting in a low detection limit of 0.60 nM. The prepared system was further utilized for sensing Hg2+ ion in real systems including lake water and cosmetic samples. Low interference from other ions and better reproducibility further established the suitability of the designed transducer system for future on-site sensing.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Shweta Rana
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India.
| | - Ranjeet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jyoti
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
| | - Bhupender Singh
- Department of Chemistry, Panjab Univeristy, Chandigarh, 160014, India
- Department of Chemistry, Pandit Neki Ram Sharma Government College Rohtak, Rohtak, Haryana, 124001, India
| |
Collapse
|
14
|
Zhang Y, Zhu Y, Zeng T, Qiao L, Zhang M, Song K, Yin N, Tao Y, Zhao Y, Zhang C, Zhang Y. Self-powered photoelectrochemical aptasensor based on hollow tubular g-C 3N 4/Bi/BiVO 4 for tobramycin detection. Anal Chim Acta 2023; 1250:340951. [PMID: 36898823 DOI: 10.1016/j.aca.2023.340951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
A highly sensitive photoelectrochemical aptasensor based on phosphorus-doped hollow tubular g-C3N4/Bi/BiVO4 (PT-C3N4/Bi/BiVO4) for tobramycin (TOB) detecting was developed. This aptasensor is a self-powered sensing system which could generate the electrical output under visible light irradiation with no external voltage supply. Based on the surface plasmon resonance (SPR) effect and unique hollow tubular structure of PT-C3N4/Bi/BiVO4, the PEC aptasensor exhibited an enhanced photocurrent and favorably specific response to TOB. Under the optimized conditions, the sensitive aptasensor presented a wider linearity to TOB in the range of 0.01-50 ng mL-1 with a low detection limit of 4.27 pg mL-1. This sensor also displayed a satisfying photoelectrochemical performance with optimistic selectivity and stability. In addition, the proposed aptasensor was successfully applied to the detection of TOB in river water and milk samples.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Tianjing Zeng
- Hunan Ecological and Environmental Monitoring Center, Changsha, Hunan, 410001, China
| | - Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingjuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Kexin Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Nian Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| |
Collapse
|
15
|
Zheng X, Shi Z, Fu C, Ji Y, Chi B, Ai F, Yan X. A novel fluorescent nanoprobe based on potassium permanganate-functionalized Ti 3C 2 QDs for the unique "turn-on" dual detection of Cr 3+ and Hg 2+ ions. Mikrochim Acta 2023; 190:153. [PMID: 36961633 DOI: 10.1007/s00604-023-05710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/19/2023] [Indexed: 03/25/2023]
Abstract
Titanium carbide quantum dots (Ti3C2 QDs) were synthesized by ammonia-assisted hydrothermal method. We also synthesized potassium permanganate (KMnO4)-functionalized Ti3C2 QDs (Mn-QDs) by modifying Ti3C2 nanosheets with KMnO4 and then cutting the functional nanosheets into Mn-QDs. The Ti3C2 QDs and Mn-QDs were characterized by fluorescence spectroscopy (FL), Fourier transform infrared spectroscopy (FTIR), UV-vis spectrophotometry (UV-vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Furthermore, the modified Mn-QDs have strong luminescence ability and good dispersion stability, which can be used for Cr3+ and Hg2+ double ion detection with enhanced fluorescence specificity. Cr3+/Hg2+ and negatively charged Mn-QDs are bound together by electrostatic interactions. Meanwhile, the surface of Mn-QDs is rich in functional groups, which interacts with Cr3+/Hg2+ to modify the surface traps, leading to defect passivation and exhibiting photoluminescence enhancement. For the dynamic quenching produced by the interaction of Mn-QDs with Hg2+ within 50 μM, it may be caused by the complex formation of Hg2+ trapped by the amino group on the surface of Mn-QDs. The detection limits for Cr3+ and Hg2+ were 0.80 μM and 0.16 μM, respectively. The recoveries of Cr3+ and Hg2+ ions in real water samples were 93.79-105.10% and 93.91-102.05%, respectively, by standard addition recovery test. In this work, the application of Mn-QDs in Cr3+ and Hg2+ ion detection was researched, which opens a new way for its application in the field of detecting heavy metal ions.
Collapse
Affiliation(s)
- Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Chaojun Fu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yuanlin Ji
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Fanrong Ai
- Bio 3D Printing Laboratory, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiluan Yan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
- College of Pharmacy, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
16
|
Jiang W, Yang Z, Tong F, Zhang S, Zhu L, Wang L, Huang L, Liu K, Zheng M, Zhou Y, Hou R, Liu Y. Two birds with one stone: An enzyme-regulated ratiometric fluorescent and photothermal dual-mode probe for organophosphorus pesticide detection. Biosens Bioelectron 2023; 224:115074. [PMID: 36638562 DOI: 10.1016/j.bios.2023.115074] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
In this study, based on the oxidase activity and photothermal effect of manganese dioxide nanosheets (MnO2 NSs), with thiamine (TH) as the fluorescence response signal and tris (2,2'-bipyridyl) ruthenium (II) hexahydrate as the reference signal, an enzyme-regulated ratiometric fluorescence and photothermal dual-mode probe was constructed for the quantitative detection of organophosphorus pesticide (OPs) residues. OPs reduced the production of the reductive product thiocholine by inhibiting the activity of acetylcholinesterase, thereby regulating the residual amount of MnO2 NSs. With the increase of OPs concentration, the color of the probe solution gradually transitioned from red to blue, and the temperature gradually increased. Using dichlorvos and chlorpyrifos as pesticide models, the developed probes exhibited sensitive responses to OPs in a wide linear range of 0.1-8000 ng/mL. The detection limits of dichlorvos and chlorpyrifos in fluorescence mode were 1.13 × 10-3 ng/mL and 0.86 ng/mL, respectively. The corresponding detection limits in photothermal mode were 1.01 ng/mL and 1.02 ng/mL, respectively. The proposed probe displayed excellent anti-interference and reliability in the analysis of OPs residues in real samples. The dual-mode probe with self-verification function is expected to provide more accurate and robust detection results than the single-mode probe, and has a wider application prospect.
Collapse
Affiliation(s)
- Wanqi Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lu Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lunjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yingnan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
17
|
Che H, Nie Y, Tian X, Li Y. New method for morphological identification and simultaneous quantification of multiple tetracyclines by a white fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129956. [PMID: 36108497 DOI: 10.1016/j.jhazmat.2022.129956] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The threat of tetracycline antibiotics to the environment and human health is attracting widespread attention. The development of morphological analysis and quantitative techniques of multiple tetracyclines is of great significance for the evaluation of biochemical toxicity, wide-spectrum antibacterial property and degradation cycle between different tetracyclines. In this study, the white fluorescent Eu/Tb@CDs was synthesized and applied successfully to the identification and detection of the most widely used tetracycline antibiotics (tetracycline (TC), oxytetracycline (OC), chlortetracycline (CC) and doxycycline (DC)) with detection limits all below 1 nM. For the actual water samples with coexistence of the above 4 tetracyclines, their simultaneous morphology identification and accurate quantitative detection can also be realized through simple spectrometric measurement. In addition, the selective and competitive experiments have been carried out on the pollutants widely present in water, and the results have also confirmed that other pollutants could not interfere with the detection of the above 4 tetracyclines. It is undeniable that this work will conveniently and visually reveal the existence information and geographical distribution characteristics of different tetracycline antibiotics in the environment and their action mechanism on organisms.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
18
|
Hu L, Cui J, Wang Y, Jia J. An ultrasensitive electrochemical biosensor for bisphenol A based on aptamer-modified MrGO@AuNPs and ssDNA-functionalized AuNP@MBs synergistic amplification. CHEMOSPHERE 2023; 311:137154. [PMID: 36351468 DOI: 10.1016/j.chemosphere.2022.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a harmful endocrine disruptor, sensitive and rapid quantification of BPA is highly desirable. In this work, a novel synergistic signal-amplifying electrochemical biosensor was developed for BPA detection by using a recognition probe (RP) constructed by BPA aptamer modified gold nanoparticles-loaded magnetic reduced graphene oxide (Aptamer-MrGO@AuNPs), and a signal probe (SP) constructed by BPA aptamer-complementary single-stranded DNA (ssDNA) functionalized methylene blue (MB)-loaded gold nanoparticle (ssDNA-AuNP@MBs). The RP and SP can self-assemble to form a stable RP-SP complex through complementary base pairing. The current intensity of the biosensor correlates with the number of RP-SP complexes. In the presence of BPA, the BPA aptamer can capture BPA with high selectivity and affinity, form an RP-BPA complex and dissociate the RP-SP complex to release SP, resulting in a decrease in the current signal intensity of the biosensor. A single AuNP could be loaded with multiple BPA aptamers and MBs, which improves the recognition efficiency and enhances the signal intensity. Due to the magnetic properties of MrGO@AuNPs, the magnetic separation and adsorption of RP or RP-SP complex is very convenient, enabling all reaction processes to be carried out in solution, which not only improves the mass transfer efficiency, but also simplifies the operation. Under optimal conditions, the developed biosensor had a detection limit as low as 0.141 pg/mL and had been successfully applied to the detection of real environmental water samples. Therefore, the synergistic signal amplification strategy of RP and SP has potential value in the detection of trace pollutants in the water environment.
Collapse
Affiliation(s)
- Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Yalin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
19
|
Qiao L, Zhao Y, Zhang Y, Zhang M, Tao Y, Xiao Y, Zeng X, Zhang Y, Zhu Y. Designing a Stable g-C 3N 4/BiVO 4-Based Photoelectrochemical Aptasensor for Tetracycline Determination. TOXICS 2022; 11:17. [PMID: 36668743 PMCID: PMC9865260 DOI: 10.3390/toxics11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The excessive consumption of tetracycline (TC) could bring a series of unpredictable health and ecological risks. Therefore, it is crucial to develop convenient and effective detection technology for TC. Herein, a "signal on" photoelectrochemical (PEC) aptasensor was constructed for the stable detection of TC. Specifically, the g-C3N4/BiVO4 were used to promote the migration of photo-generated charges to an enhanced photocurrent response. TC aptamer probes were stably fixed on the g-C3N4/BiVO4/FTO electrode as a recognition element via covalent bonding interaction. In the presence of TC, the aptamer probes could directly recognize and capture TC. Subsequently, TC was oxidized by the photogenerated holes of g-C3N4/BiVO4, causing an enhanced photocurrent. The "signal on" PEC aptasensor displayed a distinguished detection performance toward TC in terms of a wide linear range from 0.1 to 500 nM with a low detection limit of 0.06 nM, and possessed high stability, great selectivity, and good application prospects.
Collapse
Affiliation(s)
- Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yuanyuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Mingjuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xinxia Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
20
|
Yang L, Zhang Z, Zhang R, Du H, Zhou T, Wang X, Wang F. A “ turn on” fluorescent sensor for Hg2+ detection based on rolling circle amplification with DNA origami-assisted signal amplification strategy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Chauhan S, Dahiya D, Sharma V, Khan N, Chaurasia D, Nadda AK, Varjani S, Pandey A, Bhargava PC. Advances from conventional to real time detection of heavy metal(loid)s for water monitoring: An overview of biosensing applications. CHEMOSPHERE 2022; 307:136124. [PMID: 35995194 DOI: 10.1016/j.chemosphere.2022.136124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the industrial sector has expedited the accumulation of heavy metal(loid)s in the environment at hazardous levels. The elements such as arsenic, lead, mercury, cadmium and chromium are lethal in terms of toxicity with severe health impacts. With issues like water scarcity, limitations in wastewater treatment, and costs pertaining to detection in environmental matrices; their rapid and selective detection for reuse of effluents is of the utmost priority. Biosensors are the futuristic tool for the accurate qualitative and quantitative analysis of a specific analyte and integrate biotechnology, microelectronics and nanotechnology to fabricate a miniaturized device without compromising the sensitivity, specificity and accuracy. The characteristic features of supporting matrix largely affect the biosensing ability of the device and incorporation of highly sensitive and durable metal organic frameworks (MOFs) are reported to enhance the efficiency of advanced biosensors. Electrochemical biosensors are among the most widely developed biosensors for the detection of heavy metal(loids), while direct electron transfer approach from the recognition element to the electrode has been found to decrease the chances of interference. This review provides an insight into the recent progress in biosensor technologies for the detection of prevalent heavy metal(loid)s; using advanced support systems such as functional metal-based nanomaterials, carbon nanotubes, quantum dots, screen printed electrodes, glass beads etc. The review also delves critically in comparison of various techno-economic studies and the latest advances in biosensor technology.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh Tadepalligudem, 534101, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, 226029, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| |
Collapse
|
22
|
Mohagheghpour E, Farzin L, Ghoorchian A, Sadjadi S, Abdouss M. Selective detection of manganese(II) ions based on the fluorescence turn-on response via histidine functionalized carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121409. [PMID: 35617832 DOI: 10.1016/j.saa.2022.121409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Herein, water-soluble emissive carbon quantum dots (His-CQDs) were synthesized from pyrolysis of sodium citrate in the presence of histidine under hydrothermal conditions. The as-synthesized His-CQDs were characterized using Fourier transform infrared (FT-IR), fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques. The obtained His-CQDs display a strong emission peak at 534 nm when excited at 476 nm with a high quantum yield (61.8 %). The as-synthesized His-CQDs were applied as a new platform for highly selective determination of Mn(II) based on the fluorescence "turn-on" response with a limit of detection of 1.85 µg L-1 (at 3σ) and a linear range of 3.50-35.5 µg L-1 in aqueous solution. The sensing mechanism of the His-CQDs probe for the detection of Mn(II) was studied via density functional theory (DFT), FT-IR, and EDTA complexation methodology. In addition, His-CQDs were successfully applied to determine the accurate amounts of Mn(II) in whole blood control material. More importantly, the integrating such an efficient sensor with point-of-care technology can enable portable, easy-to-use, and rapid sensing systems for better biological and clinical applications.
Collapse
Affiliation(s)
- Elham Mohagheghpour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Arash Ghoorchian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sodeh Sadjadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Rational design of a water-soluble TICT-AIEE-active fluorescent probe for mercury ion detection. Anal Chim Acta 2022; 1230:340337. [DOI: 10.1016/j.aca.2022.340337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
|
24
|
Xiong J, Chen J, Han Y, Ge Y, Liu S, Ma J, Liu S, Luo J, Xu Z, Tong X. Thiophene-functionalized heteronuclear uranium organic framework for selective detection and adsorption towards Mercury (II). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Liu W, Wang Y, Sheng F, Wan B, Tang G, Xu S. A nucleic acid dye-enhanced electrochemical biosensor for the label-free detection of Hg 2+ based on a gold nanoparticle-modified disposable screen-printed electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3451-3457. [PMID: 36000503 DOI: 10.1039/d2ay00548d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, a nucleic acid dye-enhanced electrochemical biosensor based on a screen-printed carbon electrode (SPCE) modified with Au nanoparticles (AuNPs) was designed for the detection of Hg2+ in water. AuNPs were modified on the surface of the disposable SPCE through the electrodeposition of HAuCl4. Subsequently, thiolated DNA probes were immobilized on the AuNP-modified electrode surface by Au-S reaction. After Hg2+ was bound with a DNA probe by thymine (T)-Hg2+-thymine (T) mismatch, the DNA probe was folded into a hairpin structure where positively charged GelRed molecules were embedded into the double-stranded part of the hairpin. Thus, the current of [Fe(CN)6]3-/4- increased significantly on account of the decreased electrostatic repulsion at the electrode surface. Under the optimized experimental conditions, the peak current of [Fe(CN)6]3-/4- exhibited a good linear relationship with lgCHg2+ in the concentration of Hg2+ linear range of 0.1 nM to 500 nM, and the limit of detection (S/N = 3) was calculated as 0.04 nM. The electrochemical sensor also exhibited excellent selectivity for Hg2+ in the presence of nine interfering ions, including Na+, Fe3+, Ni2+, Mg2+, Co2+, Pb2+, K+, Al3+ and Cu2+. Meanwhile, the developed electrochemical sensor was tested in the analysis of Hg2+ in tap water and river water samples, and the recoveries ranged from 81.0 to 114%. Therefore, this nucleic acid dye-enhanced electrochemical biosensor provided the advantages of simplicity, sensitivity, and specificity and is expected to be an alternative for Hg2+ detection in actual environmental samples.
Collapse
Affiliation(s)
- Wei Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Yunqi Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Fangfang Sheng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Bing Wan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Gangxu Tang
- College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Shuxia Xu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, P. R. China
| |
Collapse
|
26
|
Zhang L, Liu J, Gao M, Han L, Liu X, Xing X. Fluorescent Determination of Mercury(II) and Glutathione with Binding to Thymine–Guanine Base Pairs. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Liyuan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Jinxiao Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Mengying Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| | - Li Han
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Xueguo Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
27
|
Dual signal-based electrochemical aptasensor for simultaneous detection of Lead(II) and Mercury(II) in environmental water samples. Biosens Bioelectron 2022; 209:114280. [DOI: 10.1016/j.bios.2022.114280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
|
28
|
A "bottle-around-ship" method to encapsulated carbon nitride and CdTe quantum dots in ZIF-8 as the dual emission fluorescent probe for detection of mercury (II) ion. ANAL SCI 2022; 38:1305-1312. [PMID: 35838911 DOI: 10.1007/s44211-022-00159-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/26/2022] [Indexed: 11/01/2022]
Abstract
A facile and efficient "bottle-around-ship" approach for preparing the ratiometric fluorescent probe has been developed by encapsulating the red-colored fluorescence CdTe quantum dots (QDs) and blue-colored fluorescence graphitic carbon nitride quantum dots (g-CNQDs) into the zeolitic imidazolate metal-organic frameworks (ZIF-8) in one step. At a single excitation of 360 nm, the obtained probe ZIF-8@g-CNQD/CdTe shows the dual-emission peaked at 450 and 633 nm, respectively. The red emission of CdTe QDs is selectively quenched by the Hg2+, whereas the blue fluorescence of g-CNQDs as an internal reference is insensitive, resulting in an apparent color transformation from pink to blue for special recognition of Hg2+. By this approach, the relative fluorescence intensity ratio (F633/F450) decreased linearly with increasing Hg2+ concentration in the 0.2-3.5 μM range with a low limit of detection (LOD) of ~ 46 nM. Therefore, we demonstrate that this "bottle-around-ship" process provides a new strategy for the construction of ratiometric fluorescent Hg2+ probes with good simplicity, high efficiency, and excellent stabilities. Moreover, the obtained Hg2+ fluorescent probe shows good results in the detection of actual samples.
Collapse
|
29
|
Gadiyaram S, Sharma N, Enoch IVMV, Jose DA. Multi analyte sensing of amphiphilic tridentate bis(benzimidazolyl)pyridine incorporated in liposomes and potential application in enzyme assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2357-2367. [PMID: 35647931 DOI: 10.1039/d2ay00486k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A liposome based nanosensor Lipo-1 for efficient detection of copper, cyanide (CN-) and ATP in a pure aqueous medium has been described. Lipo-1 shows a fluorescence ON-OFF response with copper. However, Lipo-1.Cu (Lipo-1 and copper ensemble) was used for the OFF-ON detection of ATP with nM and CN- with μM detection levels, lower than the WHO permissible level for safe drinking. Lipo-1 has better and enhanced binding properties over the counter organic amphiphilic compound Bzimpy-LC, which is not soluble in water. The significant changes in the emission spectra in the presence of Cu2+, CN- and ATP ions, as variable inputs, are used to construct INHIBIT and OR logic operations in a nano-scale environment. The fluorescent detection of CN- ions with Lipo-1.Cu was used to develop an enzyme assay for β-glucosidase using amygdalin as the substrate. β-Glucosidase enzymatic activity was monitored by the emission OFF-ON signal of the probe Lipo-1.Cu by CN- detection. This approach could be an efficient method for developing a fluorescence-based β-glucosidase enzyme assay. A switch ON luminescence response, low detection limit, fast response, 100% aqueous solution, biocompatibility, multi-analyte detection, and improved sensitivity and selectivity of Bzimpy-LC in lipid bilayer membranes are the main features of the nanoprobe Lipo-1. These properties give it a clear advantage for analytical applications.
Collapse
Affiliation(s)
- Srushti Gadiyaram
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India.
| | - Nancy Sharma
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India.
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore 641114, Tamil Nadu, India
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
30
|
Guo X, Deng XC, Zhang YQ, Luo Q, Zhu XK, Song Y, Song EQ. Fe2+/Fe3+ Conversation-Mediated Magnetic Relaxation Switching for Detecting Staphylococcus Aureus in Blood and Abscess via Liposome Assisted Amplification. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Zhang Y, Tian X, Zhang Z, Tang N, Ding Y, Wang Y, Li D. Boronate affinity-based template-immobilization surface imprinted quantum dots as fluorescent nanosensors for selective and sensitive detection of myricetin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121023. [PMID: 35182922 DOI: 10.1016/j.saa.2022.121023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In order to prepare a kind of efficient fluorescence sensors for determination of cis-diol-containing flavonoids, novel imprinted quantum dots for myricetin (Myr) were prepared based on boronate affinity-based template-immobilization surface imprinting. The obtained boronate affinity-based surface imprinted silica (imprinted APBA-functionalized CdTe QDs) was used as recognition elements. The quantum dots were used as signal-transduction materials. Under the optimum conditions, according to fluorescence quenching of imprinted APBA-functionalized CdTe QDs by Myr, the imprinting factor (IF) for Myr was evaluated to be 7.88. The result indicated that the boronate affinity functionalized quantum dots coated with imprinted silica were successfully prepared. The prepared imprinted APBA-functionalized CdTe QDs exhibited good sensitivity and selectivity for Myr. The fluorescence intensity was inversely proportional to the concentration of Myr in the 0.30-40 μM concentration range. And its detection limit was obtained to be 0.08 μM. Using the fluorescence sensors, the detection of Myr in real samples was successfully carried out, and the concentration of Myr in green tea and apple juice samples was evaluated to be 2.26 mg/g and 0.73 mg/g, respectively. The recoveries for the spiked green tea and apple juice samples were 95.2-105.0% and 91.5-111.0%, respectively. This study also provides an efficient fluorescent detection method for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| |
Collapse
|
32
|
Wu G, Dou X, Li D, Xu S, Zhang J, Ding Z, Xie J. Recent Progress of Fluorescence Sensors for Histamine in Foods. BIOSENSORS 2022; 12:161. [PMID: 35323431 PMCID: PMC8945960 DOI: 10.3390/bios12030161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 05/03/2023]
Abstract
Biological amines are organic nitrogen compounds that can be produced by the decomposition of spoiled food. As an important biological amine, histamine has played an important role in food safety. Many methods have been used to detect histamine in foods. Compared with traditional analysis methods, fluorescence sensors as an adaptable detection tool for histamine in foods have the advantages of low cost, convenience, less operation, high sensitivity, and good visibility. In terms of food safety, fluorescence sensors have shown great utilization potential. In this review, we will introduce the applications and development of fluorescence sensors in food safety based on various types of materials. The performance and effectiveness of the fluorescence sensors are discussed in detail regarding their structure, luminescence mechanism, and recognition mechanism. This review may contribute to the exploration of the application of fluorescence sensors in food-related work.
Collapse
Affiliation(s)
- Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Shihan Xu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (S.X.); (J.Z.)
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (G.W.); (X.D.); (D.L.)
| |
Collapse
|
33
|
Giurlani W, Vizza M, Leonardi AA, Lo Faro MJ, Irrera A, Innocenti M. Optimization and Characterization of Electrodeposited Cadmium Selenide on Monocrystalline Silicon. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:610. [PMID: 35214938 PMCID: PMC8875289 DOI: 10.3390/nano12040610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
In this work, the optimal conditions for the electrodeposition of a CdSe film on n-Si were demonstrated. The structural and optical properties of the bare films and after annealing were studied. In particular, the crystallinity and photoluminescence of the samples were evaluated, and after annealing at 400 °C under a nitrogen atmosphere, a PL increase by almost an order of magnitude was observed. This paper opens the route towards the use of electrochemical deposition as a cost-effective and easy fabrication approach that can be used to integrate other interesting materials in the silicon-manufacturing processes for the realization of optoelectronic devices.
Collapse
Affiliation(s)
- Walter Giurlani
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (W.G.); (M.V.)
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti 9, 50121 Firenze, Italy
| | - Martina Vizza
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (W.G.); (M.V.)
| | - Antonio Alessio Leonardi
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (A.A.L.); (M.J.L.F.); (A.I.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V.le F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Dipartimento di Fisica ed Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Maria Josè Lo Faro
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (A.A.L.); (M.J.L.F.); (A.I.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V.le F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Dipartimento di Fisica ed Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Alessia Irrera
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy; (A.A.L.); (M.J.L.F.); (A.I.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V.le F. Stagno D’Alcontres 37, 98158 Messina, Italy
| | - Massimo Innocenti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; (W.G.); (M.V.)
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti 9, 50121 Firenze, Italy
- CNR-ICCOM, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
34
|
Rahimi F, Anbia M. Nitrogen-rich silicon quantum dots: facile synthesis and application as a fluorescent "on-off-on" probe for sensitive detection of Hg 2+ and cyanide ions. LUMINESCENCE 2022; 37:598-609. [PMID: 35037385 DOI: 10.1002/bio.4195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The sensitive and reliable detection of Hg2+ and CN- as harsh environmental contaminants are of great importance. In view of this, a novel "on-off-on" fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detecting Hg2+ and CN- ions in aqueous media. NR-SiQDs were synthesized by a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with L-asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photo- and pH-stability. The fluorescence emission was effectively quenched by Hg2+ (turn off) due to the formation of a non-fluorescent stable NR-SiQDs/Hg2+ complex while after the addition of cyanide ions (CN- ), Hg2+ ions can be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn on) due to the formation of highly stable [Hg (CN)4 ]2- species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN- , respectively. Finally, the NR-SiQDs based fluorescence probe was utilized to detect Hg2+ and CN- ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Narmak, Tehran16846, Iran
| |
Collapse
|
35
|
Umapathi R, Park B, Sonwal S, Rani GM, Cho Y, Huh YS. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Lv Z, Chen Z, Feng S, Wang D, Liu H. A sulfur-containing fluorescent hybrid porous polymer for selective detection and adsorption of Hg 2+ ions. Polym Chem 2022. [DOI: 10.1039/d2py00077f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-function material, that is, a sulfur-containing fluorescent hybrid porous polymer, has been simply prepared and utilized to simultaneously detect and capture Hg2+ with high efficiency and selectivity.
Collapse
Affiliation(s)
- Zhuo Lv
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zixu Chen
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengyu Feng
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dengxu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Hongzhi Liu
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
37
|
Organosilanes: Synthesis and modification to magnetic silica nanoparticles for recognition of Hg (II) ions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Li L, Zhao W, Zhang J, Luo L, Liu X, Li X, You T, Zhao C. Label-free Hg(II) electrochemiluminescence sensor based on silica nanoparticles doped with a self-enhanced Ru(bpy) 32+-carbon nitride quantum dot luminophore. J Colloid Interface Sci 2021; 608:1151-1161. [PMID: 34735851 DOI: 10.1016/j.jcis.2021.10.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
Herein, a label-free, self-enhanced electrochemiluminescence (ECL) sensing strategy for divalent mercury (Hg(II)) detection was presented. First, a novel self-enhanced ECL luminophore was prepared by combining the ECL reagent tris(2, 2'-bipyridyl) dichlororuthenium(II) hexahydrate (Ru(bpy)32+) and its co-reactant carbon nitride quantum dots (CNQDs) via electrostatic interactions. In contrast to traditional ECL systems where the emitter and its co-reactant underwent an intermolecular reaction, the self-enhanced ECL system exhibited a shortened electron-transfer distance and enhanced luminous efficiency because the electrons transferred from CNQDs to oxidized Ru(bpy)32+ via an intramolecular pathway. Furthermore, the as-prepared self-enhanced ECL material was encapsulated in silica (SiO2) nanoparticles to generate a Ru-QDs@SiO2 luminophore. Based on the different affinity of Ru-QDs@SiO2 nanoparticles for single-stranded DNA (ssDNA) and Hg(II)-triggered double-stranded DNA (dsDNA), a label-free ECL biosensor for Hg(II) detection was developed as follows: in the absence of Hg(II), ssDNA was adsorbed on Ru-QDs@SiO2 surface via hydrogen bond, electrostatic, and hydrophobic interaction. Thus, quenched ECL signal was observed. On the contrary, in the presence of Hg(II), stable dsDNA was formed and carried the ssDNA separating from Ru-QDs@SiO2 surface, resulting in most of Ru-QDs@SiO2 existing in their free state. Therefore, a recovered ECL intensity was obtained. On this basis, Hg(II) was measured by the proposed method in the range of 0.1 nM-10 μM, with a detection limit of 33 pM. Finally, Hg(II) spiked in water samples was measured to evaluate the practicality of the fabricated biosensor.
Collapse
Affiliation(s)
- Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wanlin Zhao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiayi Zhang
- Qingdao Hengxing University of Science and Technology, Qingdao, Shandong 266100, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chunjiang Zhao
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China.
| |
Collapse
|
39
|
Sang F, Yin S, Pan J, Zhang Z. Ultrasensitive colorimetric strategy for Hg 2+ detection based on T-Hg 2+-T configuration and target recycling amplification. Anal Bioanal Chem 2021; 413:7001-7007. [PMID: 34532763 DOI: 10.1007/s00216-021-03657-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
A novelty aptasensor for ultrasensitive detection of Hg2+ is developed, exploiting the combination of plasmonic properties of gold nanoparticles (AuNPs) and exonuclease III (Exo III)-assisted target recycling for signal amplification. In the presence of Hg2+, a DNA duplex can be formed due to the strong coordination of Hg2+ and T bases of single-stranded DNA (ssDNA) probe. Exo III digests the DNA duplex from the 3' to 5' direction, resulting in the releasing of Hg2+. Then, the released Hg2+ binds with another ssDNA probe through T-Hg2+-T coordination. After Exo III-assisted Hg2+ cycles, numerous ssDNA probes are exhausted, which promotes poly(diallyldimethylammonium chloride) (PDDA)-induced AuNP aggregation, leading to an obvious color change and aggregation-induced plasmon red shift of AuNPs (from 520 to 610 nm). Therefore, this biosensor is ultrasensitive, which is applicable to the detection of trace level of Hg2+ with a linear range from 5 pM to 0.6 nM and an ultralow detection limit of 0.2 pM. Furthermore, it enables visual detection of Hg2+ as low as 50 pM by the naked eye. More importantly, the assay can be applied to the reliable determination of spiked Hg2+ in sea water samples with good recovery.
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
| | - Suyao Yin
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Jianxin Pan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Zhizhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| |
Collapse
|
40
|
Chai Q, Wan Y, Zou Y, Zhu T, Li N, Chen J, Lai G. Ultrasensitive and turn-on homogeneous Hg 2+ sensing based on a target-triggered isothermal cycling reaction and dsDNA-templated copper nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3521-3526. [PMID: 34278388 DOI: 10.1039/d1ay00880c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, an ultrasensitive and turn-on sensor for homogeneous Hg2+ detection has been constructed based on a target-triggered isothermal cycling reaction and rapid label-free signal output with dsDNA-templated copper nanoparticles (CuNPs). As the key component of the sensor, a hairpin DNA without any labels was designed to contain different functional sequence segments and to resist digestion by exonuclease due to the protruding 3'-terminus. In the presence of Hg2+, the formation of a T-Hg2+-T structure turned the protruding 3'-terminus of the hairpin DNA to a blunt end that could be efficiently digested by Exo III, accompanied by Hg2+ release, followed by another digestion cycle. Hence, the Hg2+-triggered isothermal cycling reaction accumulated numerous dsDNA templates that facilitated fluorescent CuNP generation and finally output an amplified signal used to identify the target. This protocol is capable of Hg2+ sensing in a concentration range of 5 orders of magnitude with a detection limit down to 3.9 pM. The as-constructed sensor also revealed high selectivity, as well as satisfactory results in recovery experiments of Hg2+ detection in real water samples.
Collapse
Affiliation(s)
- Qingli Chai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yuqi Wan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yanyun Zou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Ting Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Ningxing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
41
|
Li Q, Zhang T, Chen J, Ji W, Wei Y. In situ synthesis of fluorescent polydopamine polymer dots based on Fenton reaction for a multi-sensing platform. J Mater Chem B 2021; 9:5503-5513. [PMID: 34132319 DOI: 10.1039/d1tb00764e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of fluorescent nanosensors has attracted extensive research interest owing to their superior optoelectronic properties. However, current fluorescent nanoprobes generally involve complicated synthesis processes, background signal disturbance, and limited analyte detection. In this work, a facile and time-saving synthetic strategy for the preparation of green emitting polydopamine polymer dots (PDA-PDs) from dopamine via Fenton reaction at room temperature was proposed for the first time. The obtained PDA-PDs possessed excellent luminescence properties, with a long-wavelength emission of 522 nm, a large Stokes shift of 142 nm, and good photostability against ionic strength and UV irradiation. The formation mechanism of fluorescent PDA-PDs is as follows: in the presence of Fe2+ and H2O2, dopamine could rapidly undergo oxidation to its quinone derivatives and further polymerize to synthesize the fluorescent PDA-PDs with the acceleration of hydroxyl radicals produced from the Fenton reaction. Thus, a versatile turn-on fluorescence sensing method was developed for the detection of multi-analytes (including Fe2+, dopamine, H2O2, and glucose) based on monitoring the intrinsic fluorescence signal of the in situ formation of PDA-PDs. This sensing method could be efficiently applied for the detection of Fe2+, dopamine, and glucose in real human serum samples. Moreover, a three-input AND molecular logic gate based on this sensing platform was designed with the fluorescence signal of PDA-PDs as the gate. Finally, the proposed PDA-PDs could have immense broad prospects in nanomaterials and biosensors.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China.
| | - Taoyi Zhang
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Jing Chen
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Wenxi Ji
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
42
|
Chen J, Chen X, Wang P, Liu S, Chi Z. Aggregation-induced emission luminogen@manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125306. [PMID: 33588332 DOI: 10.1016/j.jhazmat.2021.125306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues have gathered considerable attention because of their significant threat to society development and healthy life. Developing a sensitive and practical OPs sensor is highly urgent, whereas remains a huge challenge. To this end, we fabricated a high-performance fluorescence paper analytical device (PAD) for apparatus-free and visual sensing of OPs based on aggregation-induced emission (AIE) luminogen's bright emission in aggregated state, unique response of MnO2 to thiol compounds, and difference of MnO2 and Mn2+ in quenching fluorescence. AIE nanoparticles PTDNPs-0.10 and MnO2 respectively acted as core and shell to prepare PTDNPs@MnO2, which possessed high stability and were dripped on cellulose paper's surface to fabricate AIE-PAD. The sensing mechanism is that OPs-treated acetylcholinesterase (AChE) prevents the formation of thiocholine, thereby minimizing the reduction of MnO2 into Mn2+ and changing the output signal. As a result, equipment-free and visual sensing of OPs was acquired with limit of detection of 1.60 ng/mL. This work justifies the feasibility of applying core-shell material to develop high-performance sensor and substituting complex/expensive solution-phase sensor with PAD, providing a new avenue to bring OPs analysis out of the lab and into the world.
Collapse
Affiliation(s)
- Jianling Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
43
|
Yao Y, Wang D, Hu J, Yang X. Tumor-targeting inorganic nanomaterials synthesized by living cells. NANOSCALE ADVANCES 2021; 3:2975-2994. [PMID: 36133644 PMCID: PMC9419506 DOI: 10.1039/d1na00155h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 05/09/2023]
Abstract
Inorganic nanomaterials (NMs) have shown potential application in tumor-targeting theranostics, owing to their unique physicochemical properties. Some living cells in nature can absorb surrounding ions in the environment and then convert them into nanomaterials after a series of intracellular/extracellular biochemical reactions. Inspired by that, a variety of living cells have been used as biofactories to produce metallic/metallic alloy NMs, metalloid NMs, oxide NMs and chalcogenide NMs, which are usually automatically capped with biomolecules originating from the living cells, benefitting their tumor-targeting applications. In this review, we summarize the biosynthesis of inorganic nanomaterials in different types of living cells including bacteria, fungi, plant cells and animal cells, accompanied by their application in tumor-targeting theranostics. The mechanisms involving inorganic-ion bioreduction and detoxification as well as biomineralization are emphasized. Based on the mechanisms, we describe the size and morphology control of the products via the modulation of precursor ion concentration, pH, temperature, and incubation time, as well as cell metabolism by a genetic engineering strategy. The strengths and weaknesses of these biosynthetic processes are compared in terms of the controllability, scalability and cooperativity during applications. Future research in this area will add to the diversity of available inorganic nanomaterials as well as their quality and biosafety.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
44
|
Wang H, Song D, Zhou Y, Liu J, Zhu A, Long F. Fluorescence enhancement of CdSe/ZnS quantum dots induced by mercury ions and its applications to the on-site sensitive detection of mercury ions. Mikrochim Acta 2021; 188:215. [PMID: 34052914 DOI: 10.1007/s00604-021-04871-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022]
Abstract
The significant fluorescence enhancement of CdSe/ZnS quantum dots (QDs) induced by Hg2+ was observed for the first time based on a CdSe/ZnS QD-modified fiber nanoprobe. The fluorescence enhancement mechanism contributed to the Zn-to-Hg cation exchange in the ZnS shell, which allowed to form a HgxZn1-xS/CdSe heterojunction and increase the separation of electrons and holes and reduce the recombination rate. High concentrations of Hg2+ accelerated the generation of the fluorescence signal and lead to higher fluorescence intensity. The maximum fluorescence intensity increased more than eight times when Hg2+ concentration was 1 µM. The characteristic time (θc), i.e., the rising time to achieve the maximum fluorescence intensity, was linearly dependent on initial concentration of Hg2+ solution in accordance with our proposed theory. When the evanescent wave optofluidic fluorescence platform was used, the linear detection range and detection limit of Hg2+ were 5.0-1000 nM and 0.80 nM, respectively. The fiber nanoprobe can be applied to the rapid, sensitive, and accurate on-site detection of Hg2+ in real water samples without significant matrix effect. Our work paves a novel way to develop a simple and reliable nanoprobe for mercuric pollution control, and achieve the high quantum efficiency of QDs by limiting the diffusion of Hg2+ in the ZnS shell.
Collapse
Affiliation(s)
- Hongliang Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yue Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiayuan Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China. .,Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
45
|
Singh Tanwar LK, Sharma S, Ghosh KK. Spectroscopic detection of Hg2+ in water samples using fluorescent carbon quantum dots as sensing probe. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-183967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mercury (Hg2+) is remarked as toxic and hazardous element to global environment. Here, carbon quantum dots (CQDs) were synthesized by simple microwave assisted technique for Hg2+ detection in water samples via. fluorescence quenching and FT-IR spectroscopic approach. The morphology and chemical structure of synthesized CQDs was investigated by TEM, FT-IR, 13C-NMR, fluorescence and UV-vis spectroscopic technique. The resultant CQDs bears spherical morphology with an average size of 2–4 nm. The binding parameters, as Stern-Volmer quenching constant (Ksv) and binding constant for CQDs-Hg system was investigated by fluorescence method, whereas UV-vis techniques was employed for determination of thermodynamic parameters, as Gibb’s free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) at three different temperature (295, 298 and 305 K). Moreover, selectivity assay for Hg2+ detection has been studied in presence of other metal ions by FT-IR as well as fluorescence spectroscopy. Analytical assay was also successfully applied for Hg2+ in spiked water samples collected from different areas of Chhattisgarh, with 98–99 recovery %. The detection of Hg2+ has been demonstrated in the range of 0 to 5.0μM with 3.25 nM detection limit. The present method is found to be simple, highly sensitive and selective for sensing of Hg2+ in aquatic environmental samples using CQDs as sensing probe.
Collapse
Affiliation(s)
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India
| |
Collapse
|
46
|
Saenchoopa A, Boonta W, Talodthaisong C, Srichaiyapol O, Patramanon R, Kulchat S. Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119433. [PMID: 33465574 DOI: 10.1016/j.saa.2021.119433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In this work, we report the synthesis of silver nanoparticles (AgNPs) via a wet-chemical reduction procedure using citrate (Cit) and γ-aminobutyric acid (GABA) as stabilizers. The formation of GABA-Cit@AgNPs was confirmed by UV-vis spectroscopy with a surface plasmon resonance band at 393 nm clearly confirming the formation of silver nanoparticles. AgNPs were characterized using UV-vis spectroscopy, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential. The as-prepared AgNPs can be used for the detection of hazardous mercury ions (Hg2+) in water by colorimetric method with a limit of detection (LOD) and limit of quantitation (LOQ) of 2.37 μM and 3.99 μM, respectively. The linear working range for Hg2+ detection is 5-35 μM and the sensor probe was applied to investigate Hg2+ in real drinking water samples with satisfied results. Rapid response to Hg2+ is also observed when the nanoparticles are composited within hydrogels. Moreover, GABA-Cit@AgNPs shows antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The fast and sensitive response of the proposed Hg2+ sensor, together with its antibacterial activities, makes GABA-Cit@AgNPs potentially applicable for the development of cheap, portable, colorimetric sensors in fieldwork.
Collapse
Affiliation(s)
- Apichart Saenchoopa
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wissuta Boonta
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
47
|
Yang X, Zhang M, Chen Z, Bu Y, Gao X, Sui Y, Yu Y. Sodium Alginate Micelle-Encapsulating Zinc Phthalocyanine Dye-Sensitized Photoelectrochemical Biosensor with CdS as the Photoelectric Material for Hg 2+ Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16828-16836. [PMID: 33784812 DOI: 10.1021/acsami.1c00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple and selective photoelectrochemical (PEC) biosensor was constructed for Hg2+ detection based on zinc phthalocyanine (ZnPc) dye-sensitized CdS using alginate not only as a carrier but also as a binder. First, CdS as a photoactive material was in situ modified on the electrode surface using a rapid and simple electrodeposition to obtain an initial photocurrent signal. Second, ZnPc was loaded in the amphiphilic alginate micelle and then was coated onto the CdS film surface via alginate as the binder. The photocurrent was subsequently enhanced due to the favorable dye sensitization effect of ZnPc to CdS. Finally, the thymine-rich probe DNA was immobilized on the modified ITO surface via coupling reaction between the carbonyl groups of the amphiphilic polymer and the amino groups of the probe DNA. In the presence of Hg2+, the thymine-Hg2+-thymine (T-Hg2+-T) structure was formed due to the specific bond of Hg2+ with thymine, resulting in the decrease of photocurrent due to the increase of steric hindrance on the modified electrode surface. The proposed PEC biosensor for Hg2+ detection possessed a wide linear range from 10 pM to 1.0 μM with a detection limit of 5.7 pM. This biosensor provides a promising platform for detecting other biomolecules of interest.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengjie Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zixuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuwei Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xue Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yongkun Sui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yueqin Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
48
|
Yu Y, Sheng W, Liu C, Gao N, Tian B, Zhu H, Jia P, Li Z, Zhang X, Wang K, Li X, Zhu B. A simple sensitive ratiometric fluorescent probe for the detection of mercury ions in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119279. [PMID: 33341742 DOI: 10.1016/j.saa.2020.119279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Mercury, as a highly toxic heavy metal, can cause very serious harm to human health and even death in severe cases. Therefore, we synthesized a novel ratiometric fluorescent probe for detecting mercury ions, with mercaptoethanol as the recognition receptor. Probe CMER could determine mercury ions in 0-1.6 μM and the detection limit is 7.6 nM. Moreover, CMER manifested a fast response for Hg2+ (within 5 s) and simultaneously observed that the color changed from light yellow to orange by naked eye. In addition to these preeminent spectral properties, the probe also had satisfactory bioimaging results in RAW 264.7 macrophage cells and zebrafish.
Collapse
Affiliation(s)
- Yamin Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Na Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Bin Tian
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Pan Jia
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Zilu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
49
|
Research Progress of Electrochemical Detection of Heavy Metal Ions. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60083-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Cao HY, Lu B, Cheng L, Xu BX, Wang M, Xu W, Cui HF. A double signal amplification-based homogeneous electrochemical sensor built on catalytic hairpin assembly and bisferrocene markers. Anal Biochem 2021; 632:114140. [PMID: 33610535 DOI: 10.1016/j.ab.2021.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/23/2022]
Abstract
A facile, sensitive and unmodified Hg2+ homogeneous electrochemical sensor based on bisferrocene signal markers and catalytic hairpin self-assembly (CHA) was built on a gold disk electrode. Three hairpin probes were designed, in which thiol was labeled at both ends of the hairpin probe 1(HP1), while bisferrocene, a redox signal marker, was labeled at both ends of the hairpin probe 2(HP2) and hairpin probe 3(HP3). Due to the Hg2+ mediated thymine-Hg (II)-thymine (T-Hg2+-T) structure, when Hg2+ is introduced, the T-Hg2+-T that occurred between the probe DNA and helper DNA could open the hairpin structure of probe DNA and form a rigid DNA triangles structure by CHA. Simultaneously, four bisferrocene signal markers also reached the surface of the electrode and built potential-assisted Au-S self-assembly to achieve signal amplification. Under the optimized condition, the sensor can achieve good electrochemical response Hg2+detection, and the detection limit is as low as 0.6 pM. furthermore, this sensor has high selectivity for Hg2+ detection.
Collapse
Affiliation(s)
- Hai Yong Cao
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Bo Lu
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Lin Cheng
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Bin Xiang Xu
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Mei Wang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Wei Xu
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Han Feng Cui
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China.
| |
Collapse
|