1
|
Fan W, Li Z, Liu L, Wang Y, Chen K, Li L, Wang Z, Yang L. An integrated 3-M workflow for accelerated annotation of natural products: Flavonoids in Daemonorops draco as a case study. Talanta 2025; 282:126921. [PMID: 39368333 DOI: 10.1016/j.talanta.2024.126921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Efficient annotation and dereplication of metabolites, particularly those from resource-endangered plants lacking reference standards, is crucial for natural products development. Advanced techniques like high resolution mass spectrometry (LC-HRMS) have significantly enhanced metabolite characterization. However, challenges such as redundant spectral data, limited reference databases, and inferior dereplication capacity hinder its broad applicability. In this study, we propose an integrated annotation strategy utilizing various computational tools, including mass defect filters (MDF), molecular fingerprints, and molecular networks (3-M strategy). We demonstrate this approach using Daemonorops draco (D. draco), a renowned yet resource-endangered natural product rich in functional flavonoids. By applying pre-defined flavonoids MDF windows, the MS1 peaks reduced by 85 % (from 10,043 to 1,585) in positive mode. Subsequent de novo molecular formula annotation and molecular fingerprint-based structure elucidation were automatically performed using the SIRIUS machine learning platform. Additionally, two complementary cluster tools were incorporated, including feature-based molecular network (FBMN) and t-distributed stochastic neighbor embedding (t-SNE) molecular network, to efficiently dereplicate metabolites and discover novel flavonoids in D. draco. Totally, 108 flavonoids (containing flavones, flavanes, flavanones, chalcones, chalcanes, dihydrochalcones, anthocyanins, homoisoflavanes, homoisoflavanones, and isoflavones), 18 flavone derivatives, and 54 flavone oligomers were identified. Among them, 25 compounds were firstly reported in D. draco. This 3-M workflow shed light on the composition of D. draco and validate the effectiveness of our approach, which facilitated the rapid annotation and screening of subclass metabolites in complex natural products.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziwei Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaixian Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Xu S, Zhu Z, Gu TJ, Wang Z, Delafield DG, Rigby MJ, Lu G, Ma M, Liu PK, Puglielli L, Li L. sn-Position-Resolved Quantification of Aminophospholipids by Isotopic N, N-Dimethyl Leucine Labeling and High-Resolution Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:20098-20106. [PMID: 39630147 DOI: 10.1021/acs.analchem.4c05107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Aminophospholipids (APLs), composed of phosphatidylethanolamines (PEs) and phosphatidylserines (PSs), are vital components of mammalian cell membranes and lipoproteins, participating in both homeostasis and cellular signaling. Their structural changes, including the permutation of fatty acid connectivity (sn-positions), due to dysfunctional metabolic processes have been linked to many diseases. However, the accurate quantification of APLs with unambiguous fatty acyl assignment through routine label-free LC-MS/MS lipidomic analysis remains a major challenge. In this study, we explore the functionalization of the free primary amine groups of APLs using amine-reactive isotopic N,N-dimethyl leucine (iDiLeu) and employ high-resolution ion mobility MS (IM-MS) to develop a novel method for sensitive discernment and accurate quantification of APL sn-isomers. With high-resolution demultiplexing (HRdm) providing IM resolving power >200, labeled sn-isomeric pairs of APLs (ΔCCS ≈ 1%) demonstrate excellent, near baseline separation. In addition to greatly enhanced sensitivity, 5-plex iDiLeu labeling enables the construction of an internal 4-point calibration curve and therefore absolute quantification of APL sn-isomers in a single run. This strategy enabled precise annotation and quantification of 239 APLs including 60 pairs of sn-isomers in the mouse cortex. Additionally, we were able to find ratio changes in multiple APL sn-isomer pairs between wild type and APP/PS1 Alzheimer's disease (AD) model mice at different ages, indicating their strong correlation to AD progression. This strategy could provide universal utility in unraveling the alteration of APL sn-isomers, which have long been considered as the "dark matter" of traditional lipidomic analyses, leading to more precise elucidation of molecular mechanisms of various diseases.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Peng-Kai Liu
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
3
|
Kartowikromo KY, Pizzo JS, Rutz T, Love ZE, Simmons AM, Ojeda AS, da Silva ALBR, Rodrigues C, Hamid AM. Identification and Structural Elucidation of Acylsugars in Tomato Leaves Using Liquid Chromatography-Ion Mobility-Tandem Mass Spectrometry (LC-IM-MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39680654 DOI: 10.1021/jasms.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Leaves of tomato plants contain various glandular trichomes that produce a wide range of metabolic products including acylsugars, which may serve as a defense mechanism against various insect pests. Acylsugars exhibit significant structural diversity, differing in their sugar cores, acylated positions, and type of acyl chains. This work demonstrated a comprehensive approach using multidimensional separation techniques, specifically liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS), for structural characterization, and the discrimination of different tomato plants (one cultivar and five accessions) was demonstrated using tomato leaf extracts; six genotypes from five species of Solanum were represented. As a result, we identified 16 acylsugars through their molecular formulas and annotations using LC and MS analyses. The incorporation of ion mobility (IM) analysis revealed an additional 9 isomeric forms, resulting in a comprehensive total of 25 isomeric acylsugars identified. Furthermore, the experimental collision cross section (CCSexp) values agreed reasonably well with the corresponding predicted values (CCSpred), with an overall estimated error of less than 2%. These findings pave the way for research into how the different structural isomers of acylsugars might influence the self-defense mechanism in plants. Moreover, this work demonstrated that the investigated cultivar and accessions of tomatoes can be distinguished from each other based on their metabolite profile, e.g., acylsugars, with principal component analysis (PCA) and linear discriminant analysis (LDA) statistical models, yielding a prediction rate of 98.3%.
Collapse
Affiliation(s)
- Kimberly Y Kartowikromo
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jessica S Pizzo
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Thiago Rutz
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Zachary E Love
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alvin M Simmons
- U.S. Vegetable Laboratory, USDA-ARS, Charleston, South Carolina 29414, United States
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, United States
| | - Andre L B R da Silva
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - Ahmed M Hamid
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
4
|
Deng L, May JC, McBee JK, Rosen A, Rorrer LC, Clingman R, Fico M, McLean JA, DeBord D. Rounded Turn SLIM Design for High-Resolution Ion Mobility Mass Spectrometry Analysis of Small Molecules. Anal Chem 2024. [PMID: 39661157 DOI: 10.1021/acs.analchem.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Various rounded turn designs in Structures for Lossless Ion Manipulation (SLIM) were explored via ion trajectory simulations. The optimized design was integrated into a SLIM ion mobility (IM) system coupled with a time-of-flight (TOF) mass spectrometer (MS) for further experimental investigation. The SLIM-TOF IM-MS system was assessed for IM resolution and ion transmission efficiency across a wide m/z range using various RF frequencies and buffer gas combinations. High ion transmission efficiency and high resolution ion mobility (HRIM) separation were achieved for Agilent tune mix ions through a ∼12.8 m serpentine separation path in both nitrogen and helium. In helium, ion transmission for low m/z ions was enhanced at higher RF trapping frequency, enabling the detection of ions with m/z below 50 and all 17 amino acids from a standard mixture. Lossless ion transmission was observed for glycine (m/z 76) in both passthrough and HRIM modes. HRIM resolution was benchmarked using L-isoleucine, L-leucine, and various other isobaric and isomeric metabolites with m/z values of 60-89. This work demonstrates a rounded turn SLIM design that enables HRIM measurements for small molecule analytes, with a particular focus on metabolomics, where IM offers a means to enhance the speed, robustness, and specificity of analytical workflows.
Collapse
Affiliation(s)
- Liulin Deng
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joshua K McBee
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Adam Rosen
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Leonard C Rorrer
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Ryan Clingman
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - Miriam Fico
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States
| |
Collapse
|
5
|
Belova L, Caballero-Casero N, Ballesteros A, Poma G, van Nuijs ALN, Covaci A. Trapped and drift-tube ion-mobility spectrometry for the analysis of environmental contaminants: Comparability of collision cross-section values and resolving power. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9901. [PMID: 39198935 DOI: 10.1002/rcm.9901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
RATIONALE Ion-mobility (IM)-derived collision cross-section (CCS) values can serve as a valuable additional identification parameter within suspect and non-target screening studies of environmental contaminants. However, these applications require to assess the reproducibility of CCS calculations between different IM set-ups. Especially for the comparison of trapped and drift-tube IM (TIMS/DTIM) derived CCS values, data for environmental applications is lacking. METHODS The presented study assessed the bias of TIMS derived CCSN2 (TIMSCCSN2) values of 48 environmental contaminants from three classes in comparison to a previously established DTIM database. Based on two sets of isomeric bisphenols, the resolving power of both systems was compared, addressing the instrumental settings which influence the resolution of TIMS measurements. RESULTS For 91% of the datapoints, bias between TIMSCCSN2 and DTCCSN2 values (latter set as reference) were < 2%, indicating a good inter-platform reproducibility. TIMS resolving power was dependent on the selected mobility window and ramping times whereby a resolution of up to 116 was achieved. Similar resolving power was observed for multiplexed DTIMS data if a high-resolution post-processing step was implemented. CONCLUSIONS These results provide valuable insights in CCSN2 reproducibility facilitating database transfer in future TIMS based studies. Knowledge on the influence of acquisition settings on robustness of TIMSCCSN2 calculations and resolving power can ease method development supporting efficient development and reliable identifications of emerging environmental contaminants.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Noelia Caballero-Casero
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Ana Ballesteros
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Varona M, Dobson DP, Napolitano JG, Thomas R, Ochoa JL, Russell DJ, Crittenden CM. High Resolution Ion Mobility Enables the Structural Characterization of Atropisomers of GDC-6036, a KRAS G12C Covalent Inhibitor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2586-2595. [PMID: 39051157 DOI: 10.1021/jasms.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
GDC-6036 is a covalent KRAS G12C inhibitor that demonstrates high potency and selectivity. Structurally, GDC-6036 consists of several motifs that make the analytical characterization of this molecule challenging, including a highly basic pyrrolidine motif bonded to a quinazoline ring via an ether bond and an atropisomeric carbon-carbon bond between functionalized pyridine and quinazoline groups. Structurally, the desired atropisomer was synthesized via an atroposelective Negishi coupling with very high yield. However, having a direct way to analyze and confirm the presence of the atropisomeric species remained challenging in routine analytical workflows. In this study, both variable temperature nuclear magnetic resonance (VT-NMR) and two different approaches of in-line ion mobility coupled to liquid chromatography mass spectrometry (LC-MS) workflows were evaluated for the characterization of GDC-6036 and its undesired atropisomer (Compound B) to support synthetic route development. Briefly, both VT-NMR and traveling wave ion mobility spectrometry (TWIMS) enabled by structures for lossless ion manipulation (SLIM) technology coupled to high resolution MS (HRMS) are able to elucidate the structures of the atropisomers in a complex mixture. Drift tube IMS (DTIMS) was also evaluated, but lacked the resolving power to demonstrate separation between the two species in a mixture, but did show slight differences in their arrival times when multiplexed and injected separately. The determined resolving power (Rp) by multiplexing the ions via DTIMS was 67.3 and 60.5 for GDC-6036 and Compound B, respectively, while the two peak resolving power (Rpp) was determined to be 0.41, indicating inadequate resolution between the two species. Alternatively, the SLIM-IM studies showed Rp of 103.8 and 99.4, with a Rpp of 2.64, indicating good separation between the atropisomers. Furthermore, the CCS/z for GDC-6036 and Compound B was determined to be 231.2 Å2/z and 235.0 Å2/z, respectively. Quantitative experiments demonstrate linearity (R2 >0.99) for both GDC-6036 and Compound B while maintaining separation via SLIM-IM. Spike recoveries of one atropisomer relative to the other yielded strong recoveries (98.7% to 102.5%) while maintaining reproducibility (<7% RSD). The study herein describes the analytical process for evaluating new technologies and strategies for implementation in routine biopharmaceutical characterization workflows.
Collapse
Affiliation(s)
- Marcelino Varona
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P Dobson
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - José G Napolitano
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rekha Thomas
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jessica L Ochoa
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David J Russell
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M Crittenden
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Koomen D, May JC, Mansueto AJ, Graham TR, McLean JA. An Untargeted Lipidomics Workflow Incorporating High-Resolution Demultiplexing (HRdm) Drift Tube Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2448-2457. [PMID: 39276100 PMCID: PMC11450926 DOI: 10.1021/jasms.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Global discovery lipidomics can provide comprehensive chemical information toward understanding the intricacies of metabolic lipid disorders such as dyslipidemia; however, the isomeric complexity of lipid species remains an analytical challenge. Orthogonal separation strategies, such as ion mobility (IM), can be inserted into liquid chromatography-mass spectrometry (LC-MS) untargeted lipidomic workflows for additional isomer separation and high-confidence annotation, and the emergence of high-resolution ion mobility (HRIM) strategies provides marked improvements to the resolving power (Rp > 200) that can differentiate small structural differences characteristic of isomers. One such HRIM strategy, high-resolution demultiplexing (HRdm), utilizes multiplexed drift tube ion mobility spectrometry (DTIMS) with post-acquisition algorithmic deconvolution to access high IM resolutions while retaining the measurement precision inherent to the drift tube technique; however, HRdm has yet to be utilized in untargeted studies. In this manuscript, a proof-of-concept study using ATP10D dysfunctional murine models was investigated to demonstrate the utility of HRdm-incorporated untargeted lipidomic analysis pipelines. Total lipid features were found to increase by 2.5-fold with HRdm compared to demultiplexed DTIMS as a consequence of more isomeric lipids being resolved. An example lipid, PC 36:5, was found to be significantly higher in dysfunctional ATP10D mice with two resolved peaks observed by HRdm that were absent in both the functional ATP10D mice and the standard demultiplexed DTIMS acquisition mode. The benefits of utilizing HRdm for discerning isomeric lipids in untargeted workflows have the potential to enhance our analytical understanding of lipids related to disease complexity and biologically relevant studies.
Collapse
Affiliation(s)
- David
C. Koomen
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C. May
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexander J. Mansueto
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Todd R. Graham
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
9
|
Williamson DL, Naylor CN, Nagy G. Sequencing Sialic Acid Positioning in Gangliosides by High-Resolution Cyclic Ion Mobility Separations Coupled with Multiple Collision-Induced Dissociation-Based Tandem Mass Spectrometry Strategies. Anal Chem 2024. [PMID: 39137259 DOI: 10.1021/acs.analchem.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gangliosides, a diverse class of glycosphingolipids, are highly abundant in neural tissue and have been implicated in numerous aging-related diseases. Their characterization with methods such as liquid chromatography-tandem mass spectrometry is often precluded by their structural complexity, isomeric heterogeneity, and lack of commercially available authentic standards. In this work, we coupled high-resolution cyclic ion mobility spectrometry with multiple collision-induced dissociation-based tandem mass spectrometry strategies to sequence the sialic acid positions in various ganglioside isomers. Initially, as a proof-of-concept demonstration, we were able to characterize the sialic acid positions in several GD1 and GT1 species. From there, we extended our approach to identify the location of N-glycolylneuraminic acid (NeuGc) residues in previously uncharacterized GD1 and GQ1 isomers. Our results highlight the potential of this presented methodology for the de novo characterization of gangliosides within complex biological matrices without the need for authentic standards.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Stow SM, Gibbons BC, Rorrer Iii LC, Royer L, Glaskin RS, Slysz GW, Kurulugama RT, Fjeldsted JC, DeBord D, Bilbao A. Exploring Ion Mobility Mass Spectrometry Data File Conversions to Leverage Existing Tools and Enable New Workflows. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1991-2001. [PMID: 39056469 DOI: 10.1021/jasms.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ion mobility (IM) is often combined with LC-MS experiments to provide an additional dimension of separation for complex sample analysis. While highly complex samples are better characterized by the full dimensionality of LC-IM-MS experiments to uncover new information, downstream data analysis workflows are often not equipped to properly mine the additional IM dimension. For many samples the data acquisition benefits of including IM separations are all that is necessary to uncover sample information and the full dimensionality of the data is not required for data analysis. Postacquisition reduction and adaptation of the dimensions of LC-IM-MS and IM-MS experiments into an LC-MS format opens the possibility to use a plethora of existing software tools. In this work, we developed data file conversion tools to reduce the complexity of IM data analysis. Three data file transformations are introduced in the PNNL PreProcessor software: (1) mapping the IM axis to the LC axis for IM-MS data, (2) converting the drift time vs m/z space to CCS/z vs m/z space, and (3) transforming All Ions IM/MS mobility aligned fragmentation data to a standard LC-MS DDA data file format. These new data file conversions are demonstrated with corresponding lipidomics and proteomics workflows that leverage existing LC-MS data analysis software to highlight the benefits of the data transformations.
Collapse
Affiliation(s)
- Sarah M Stow
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Bryson C Gibbons
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Lauren Royer
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | | | - Gordon W Slysz
- Agilent Technologies, Santa Clara, California 95051, United States
| | | | - John C Fjeldsted
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Daniel DeBord
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Aivett Bilbao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Valadbeigi Y, Causon T. Computational and Experimental IM-MS Determination of the Protonated Structures of Antimalarial Drugs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1930-1939. [PMID: 39041666 PMCID: PMC11311536 DOI: 10.1021/jasms.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
A combination of ion mobility-mass spectrometry (IM-MS) measurements and computational methods were used to study structural and physicochemical properties of a range of quinoline-based drugs: amodiaquine (AQ), cinchonine (CIN), chloroquine (CQ), mefloquine (MQ), pamaquine (PQ), primaquine (PR), quinacrine (QR), quinine (QN), and sitamaquine (SQ). In experimental studies, ionization of these compounds using atmospheric pressure chemical ionization (APCI) yields monoprotonated species in the gas phase while electrospray ionization (ESI) also produces diprotonated forms of AQ, CQ, and QR and also for PQ, SQ, and QN in the presence of formic acid as an additive. Comparison of the trajectory-method-calculated and experimental IM-derived collisional cross sections (CCSN2) were used to assign both the protonation sites and conformer geometry of all drugs considered with biases of 0.7-2.8% between calculated and experimental values. It was found that, in solution, AQ and QR are protonated at the ring nitrogen of the quinoline group, whereas the other drugs are protonated at the amine group of the alkyl chain. Finally, the conformers of [M + H]+ and [M + 2H]2+ assigned according to the lowest energies and CCSN2 calculations were used to calculate the pKa values of the antimalarial drugs and the relative abundance of these ions at different pH values that provided validation of the computational and experimental IM-MS results.
Collapse
Affiliation(s)
- Younes Valadbeigi
- Department
of Chemistry, Faculty of Science, Imam Khomeini
International University, Qazvin 34148-96818, Iran
| | - Tim Causon
- BOKU
University, Department of Chemistry, Institute
of Analytical Chemistry, Muthgasse 18, Vienna 1190, Austria
| |
Collapse
|
12
|
Xu S, Zhu Z, Delafield DG, Rigby MJ, Lu G, Braun M, Puglielli L, Li L. Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer's disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics. Nat Commun 2024; 15:6252. [PMID: 39048572 PMCID: PMC11269705 DOI: 10.1038/s41467-024-50299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Megan Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin- Madison, Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Xia C, Mernie E, Zaia J, Costello CE, Lin C. Accurate Collisional Cross Section Measurement by Multipass Cyclic Ion Mobility Spectrometry. Anal Chem 2024; 96:11959-11968. [PMID: 38990519 DOI: 10.1021/acs.analchem.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Ion mobility-mass spectrometry (IM-MS) is a powerful analytical tool for structural characterization. IM measurement provides collision cross section (CCS) values that facilitate analyte identification. While CCS values can be directly calculated from mobility measurements obtained using drift tube ion mobility spectrometry (DT-IMS), this method has limited mobility resolution due to the practical constraints on the length of the ion drift path. Consequently, DT-IMS cannot differentiate analytes with similar mobilities or resolve fine mobility features of individual ions. Cyclic IMS (cIMS) instruments leverage a cyclic path enabled by traveling wave ion mobility (TWIM) technology and offer increased mobility solution to address this challenge. While TWIM devices must first be calibrated to enable CCS measurements, current calibration strategies are primarily tailored for single-pass analyses. This preference is partly attributed to the challenges associated with multipass calibration methods, which require both calibrants and analytes to experience the same number of passes. Achieving this consistency can be complicated due to factors like peak splitting and diffusion, and may not be feasible for online IM-MS analyses. A recent report employed average ion velocities obtained from multiple measurements under different separation pathlengths as a path length-independent metric for CCS calibration. However, the ability to exploit this averaging approach is limited by observed variation in ion drift time/velocity in these measurements. In this study, we introduce a novel calibration strategy designed for multipass cIMS analyses, directly targeting the root cause for the path length- and mobility-dependent variations in ion drift time. With this method, we demonstrate that CCS values derived from multipass measurements closely align with those obtained from single-pass analyses, with an average deviation of 0.1%. We apply this method to characterize four isomeric trisaccharides. Our approach not only results in excellent agreement between our measured cIMSCCS values and the reported DTCCS values, with an average difference of only 0.5%, but also allows us to effectively identify subtle mobility characteristics of each compound and determine their respective CCS values. This level of detail and accuracy was previously unattainable using DT-IMS or single-pass cIMS measurements. We developed an algorithm for reconstructing arrival time distribution in cases where wrap-around has resulted in peak splitting. Collectively, the new calibration strategy and the reconstruction procedure maintain reproducibility and precision in CCS measurements while largely eliminating the need for meticulous selection of separation times. We expect that our method will empower researchers to harness the high mobility resolution offered by multipass cIMS analyses without compromising the accuracy of CCS measurement, making it appropriate for straightforward use across a wide range of applications.
Collapse
Affiliation(s)
- Chaoshuang Xia
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Elias Mernie
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Catherine E Costello
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Cheng Lin
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
14
|
Hollerbach AL, Lin VS, Ibrahim YM, Ewing RG, Metz TO, Rodda KE. Elucidating the Gas-Phase Behavior of Nitazene Analog Protomers Using Structures for Lossless Ion Manipulations Ion Mobility-Orbitrap Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1609-1621. [PMID: 38907730 DOI: 10.1021/jasms.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
2-Benzylbenzimidazoles, or "nitazenes", are a class of novel synthetic opioids (NSOs) that are increasingly being detected alongside fentanyl analogs and other opioids in drug overdose cases. Nitazenes can be 20× more potent than fentanyl but are not routinely tested for during postmortem or clinical toxicology drug screens; thus, their prevalence in drug overdose cases may be under-reported. Traditional analytical workflows utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) often require additional confirmation with authentic reference standards to identify a novel nitazene. However, additional analytical measurements with ion mobility spectrometry (IMS) may provide a path toward reference-free identification, which would greatly accelerate NSO identification rates in toxicology laboratories. Presented here are the first IMS and collision cross section (CCS) measurements on a set of fourteen nitazene analogs using a structures for lossless ion manipulations (SLIM)-orbitrap MS. All nitazenes exhibited two high intensity baseline-separated IMS distributions, which fentanyls and other drug and druglike compounds also exhibit. Incorporating water into the electrospray ionization (ESI) solution caused the intensities of the higher mobility IMS distributions to increase and the intensities of the lower mobility IMS distributions to decrease. Nitazenes lacking a nitro group at the R1 position exhibited the greatest shifts in signal intensities due to water. Furthermore, IMS-MS/MS experiments showed that the higher mobility IMS distributions of all nitazenes possessing a triethylamine group produced fragment ions with m/z 72, 100, and other low intensity fragments while the lower mobility IMS distributions only produced fragment ions with m/z 72 and 100. The IMS, solvent, and fragmentation studies provide experimental evidence that nitazenes potentially exhibit three gas-phase protomers. The cyclic IMS capability of SLIM was also employed to partially resolve four sets of structurally similar nitazene isomers (e.g., protonitazene/isotonitazene, butonitazene/isobutonitazene/secbutonitazene), showcasing the potential of using high-resolution IMS separations in MS-based workflows for reference-free identification of emerging nitazenes and other NSOs.
Collapse
Affiliation(s)
- Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vivian S Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Robert G Ewing
- Nuclear, Chemistry & Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kabrena E Rodda
- Nuclear, Chemistry & Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
Ross DH, Bhotika H, Zheng X, Smith RD, Burnum-Johnson KE, Bilbao A. Computational tools and algorithms for ion mobility spectrometry-mass spectrometry. Proteomics 2024; 24:e2200436. [PMID: 38438732 PMCID: PMC11632599 DOI: 10.1002/pmic.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.
Collapse
Affiliation(s)
- Dylan H. Ross
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Harsh Bhotika
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA 99354, USA
| | - Kristin E. Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| | - Aivett Bilbao
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
16
|
Kumari S, Causon T. CCSfind: A tool for chemically informed LC-IM-MS database building. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5040. [PMID: 38736147 DOI: 10.1002/jms.5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
In addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (K) and the IM-derived collision cross section (CCS). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (CCS distributions) as well as capturing of additional ion species (e.g., adducts) into the same compound entry. We introduce CCSfind, a new tool for building comprehensive databases from experimental IM-MS measurements of small molecules. CCSfind allows predicted ion species to be chosen for input chemical formulae, which are then targeted by CCSfind after parsing open source mzML input files to provide a unified set of results within a single data processing step. CCSfind can handle both chromatographically separated isomers and IM separation of isomeric ions (e.g., "protomers" or conformers of the same ion species) with simple user control over the output for new database entries in SQL format. Files of up to 1 GB can be processed in less than 2 min on a desktop computer with 32 GB RAM with computational time scaling linearly with the size of the input mzML file or the number of input molecular formulae. Results are manually reviewed, annotated with experimental settings, before committing the database where the full dataset can be retrieved.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Core Facility Bioinformatics, BOKU University, Vienna, Austria
| | - Tim Causon
- Department of Chemistry, Institute of Analytical Chemistry, BOKU University, Vienna, Austria
| |
Collapse
|
17
|
George AC, Schmitz I, Rouvière F, Alves S, Colsch B, Heinisch S, Afonso C, Fenaille F, Loutelier-Bourhis C. Interplatform comparison between three ion mobility techniques for human plasma lipid collision cross sections. Anal Chim Acta 2024; 1304:342535. [PMID: 38637036 DOI: 10.1016/j.aca.2024.342535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The implementation of ion mobility spectrometry (IMS) in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflows has become a valuable tool for improving compound annotation in metabolomics analyses by increasing peak capacity and by adding a new molecular descriptor, the collision cross section (CCS). Although some studies reported high repeatability and reproducibility of CCS determination and only few studies reported good interplatform agreement for small molecules, standardized protocols are still missing due to the lack of reference CCS values and reference materials. We present a comparison of CCS values of approximatively one hundred lipid species either commercially available or extracted from human plasma. We used three different commercial ion mobility technologies from different laboratories, drift tube IMS (DTIMS), travelling wave IMS (TWIMS) and trapped IMS (TIMS), to evaluate both instrument repeatability and interlaboratory reproducibility. We showed that CCS discrepancies of 0.3% (average) could occur depending on the data processing software tools. Moreover, eleven CCS calibrants were evaluated yielding mean RSD below 2% for eight calibrants, ESI Low concentration tuning mix (Tune Mix) showing the lowest RSD (< 0.5%) in both ion modes. Tune Mix calibrated CCS from the three different IMS instruments proved to be well correlated and highly reproducible (R2 > 0.995 and mean RSD ≤ 1%). More than 90% of the lipid CCS had deviations of less than 1%, demonstrating high comparability between techniques, and the possibility to use the CCS as molecular descriptor. We highlighted the need of standardized procedures for calibration, data acquisition, and data processing. This work demonstrates that using harmonized analytical conditions are required for interplatform reproducibility for CCS determination of human plasma lipids.
Collapse
Affiliation(s)
- Anaïs C George
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Florent Rouvière
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Sandra Alves
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Paris, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France.
| |
Collapse
|
18
|
Makey DM, Ruotolo BT. Liquid-phase separations coupled with ion mobility-mass spectrometry for next-generation biopharmaceutical analysis. Expert Rev Proteomics 2024; 21:259-270. [PMID: 38934922 PMCID: PMC11299228 DOI: 10.1080/14789450.2024.2373707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION The pharmaceutical industry continues to expand its search for innovative biotherapeutics. The comprehensive characterization of such therapeutics requires many analytical techniques to fully evaluate critical quality attributes, making analysis a bottleneck in discovery and development timelines. While thorough characterization is crucial for ensuring the safety and efficacy of biotherapeutics, there is a need to further streamline analytical characterization and expedite the overall timeline from discovery to market. AREAS COVERED This review focuses on recent developments in liquid-phase separations coupled with ion mobility-mass spectrometry (IM-MS) for the development and characterization of biotherapeutics. We cover uses of IM-MS to improve the characterization of monoclonal antibodies, antibody-drug conjugates, host cell proteins, glycans, and nucleic acids. This discussion is based on an extensive literature search using Web of Science, Google Scholar, and SciFinder. EXPERT OPINION IM-MS has the potential to enhance the depth and efficiency of biotherapeutic characterization by providing additional insights into conformational changes, post-translational modifications, and impurity profiles. The rapid timescale of IM-MS positions it well to enhance the information content of existing assays through its facile integration with standard liquid-phase separation techniques that are commonly used for biopharmaceutical analysis.
Collapse
Affiliation(s)
- Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
19
|
Aderorho R, Chouinard CD. Improved separation of fentanyl isomers using metal cation adducts and high-resolution ion mobility-mass spectrometry. Drug Test Anal 2024; 16:369-379. [PMID: 37491787 DOI: 10.1002/dta.3550] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Fentanyl is a potent synthetic opioid that has attracted significant attention due to its illegal production and distribution, resulting in misuse, overdose, and fatalities. Because numerous fentanyl analogs, including structural isomers, with different potency have been discovered in the field, there is a critical need to continue developing analytical methodologies capable of accurate identification in forensic and clinical laboratories. This study aimed to develop a rapid method for detecting and separating fentanyl isomers based on ion mobility-mass spectrometry (IM-MS), where IM separates gas-phase ions based on differences in their size, shape, and charge. Several strategies for improved differentiation were implemented, including using unconventional cation adducts (e.g., alkali and transition metals) and data post-processing by high-resolution demultiplexing. A collection of collision cross section (CCS) values for the various metal ion adducts was gathered, which can be used to improve confidence of identification in future samples. Notable examples, such as [M + Cu]+ and [M + Ag]+ adducts, contributed to significant improvement of resolution between isomers. Furthermore, the addition of high-resolution post-processing provided resolving power of >150, which constitutes a significant increase in comparison with the normal 50-60 obtained with low-resolution drift tube instruments. Collectively, these improved separation strategies allowed for confident detection and subsequent quantitative analysis. The optimized IM-MS method resulted in quantification of fentanyl in human urine with limits of detection and quantification of 13 pg/mL and 40 pg/mL, respectively.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
20
|
Reder GK, Bjurström EY, Brunnsåker D, Kronström F, Lasin P, Tiukova I, Savolainen OI, Dodds JN, May JC, Wikswo JP, McLean JA, King RD. AutonoMS: Automated Ion Mobility Metabolomic Fingerprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:542-550. [PMID: 38310603 PMCID: PMC10921458 DOI: 10.1021/jasms.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io.
Collapse
Affiliation(s)
- Gabriel K. Reder
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Department
of Applied Physics, SciLifeLab, KTH Royal
Institute of Technology, Solna 171 21, Sweden
| | - Erik Y. Bjurström
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Daniel Brunnsåker
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Filip Kronström
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Praphapan Lasin
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Ievgeniia Tiukova
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Otto I. Savolainen
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
- Institute
of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 702 11, Finland
| | - James N. Dodds
- Chemistry
Department, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jody C. May
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John P. Wikswo
- Vanderbilt
Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - John A. McLean
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ross D. King
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
- The Alan
Turing Institute, London NW1 2DB, U.K.
| |
Collapse
|
21
|
Jaag S, Valadbeigi Y, Causon T, Gross H, Lämmerhofer M. Three-Minute Enantioselective Amino Acid Analysis by Ultra-High-Performance Liquid Chromatography Drift Tube Ion Mobility-Mass Spectrometry Using a Chiral Core-Shell Tandem Column Approach. Anal Chem 2024; 96:2666-2675. [PMID: 38297457 PMCID: PMC10867800 DOI: 10.1021/acs.analchem.3c05426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.
Collapse
Affiliation(s)
- Simon
Jonas Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Younes Valadbeigi
- Department
of Chemistry, Faculty of Science, Imam Khomeini
International University, Nowrouzian, 3414896818 Qazvin, Iran
| | - Tim Causon
- University
of Natural Resources and Life Sciences, Vienna Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Harald Gross
- Pharmaceutical
Biology, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
22
|
Abdulbagi M, Di B, Li B. Resolving D-Amino Acid Containing Peptides Using Ion Mobility-Mass Spectrometry: Challenges and Recent Developments. Crit Rev Anal Chem 2023:1-10. [PMID: 37975700 DOI: 10.1080/10408347.2023.2282510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Peptides and proteins having D-amino acids in their sequences are now believed to be widespread among different living organisms. Their significance is attributed to the diverse functions of these molecules, such as having a certain pathological implication or enhancing biological activity. Indeed, some peptide molecules with D-amino acids in their structure have already found their way to clinical use such as the antibacterial gramicidin and the antidiabetic nateglinide. Ion mobility mass spectrometry (IM-MS) added an additional dimension of separation as it depends on ions mobility in the space, which is dependent on their shapes, and the shape depends on the orientation of atoms. Thus, D-amino acids containing peptides (DAACPs) will have different mobility and collision cross-section values than those with L-amino acids. Eventually, this will lead to baseline separation of the two peptides. Additionally, ion mobility can precisely locate the position of D-amino acids by analyzing the difference in the arrival times of the fragment ions. The importance of DAACPs, as well as the difficulties in discovering them, were addressed in this review. Similarly, we emphasized how recent developments in IM-MS have improved their detection and analysis. Consequently, the LC-IM-MS/MS platform appears to be promising in isomeric mixture analysis.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, China
| | - Bin Di
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Bo Li
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Neal SP, Hodges WN, Velosa DC, Aderorho R, Lucas SW, Chouinard CD. Improved analysis of derivatized steroid hormone isomers using ion mobility-mass spectrometry (IM-MS). Anal Bioanal Chem 2023; 415:6757-6769. [PMID: 37740752 DOI: 10.1007/s00216-023-04953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Over the last decade, applications of ion mobility-mass spectrometry (IM-MS) have exploded due primarily to the widespread commercialization of robust instrumentation from several vendors. Unfortunately, the modest resolving power of many of these platforms (~40-60) has precluded routine separation of constitutional and stereochemical isomers. While instrumentation advances have pushed resolving power to >150 in some cases, chemical approaches offer an alternative for increasing resolution with existing IM-MS instrumentation. Herein we explore the utility of two reactions, derivatization by Girard's reagents and 1,1-carbonyldiimidazole (CDI), for improving IM separation of steroid hormone isomers. These reactions are fast (≤30 min), simple (requiring only basic lab equipment/expertise), and low-cost. Notably, these reactions are structurally selective in that they target carbonyl and hydroxyl groups, respectively, which are found in all naturally occurring steroids. Many steroid hormone isomers differ only in the number, location, and/or stereochemistry of these functional groups, allowing these reactions to "amplify" subtle structural differences and improve IM resolution. Our results show that resolution was significantly improved amongst CDI-derivatized isomer groups of hydroxyprogesterone (two-peak resolution of Rpp = 1.10 between 21-OHP and 11B-OHP), deoxycortisone (Rpp = 1.47 between 11-DHC and 21-DOC), and desoximetasone (Rpp = 1.98 between desoximetasone and fluocortolone). Moreover, characteristic collision cross section (DTCCSN2) measurements can be used to increase confidence in the identification of these compounds in complex biological mixtures. To demonstrate the feasibility of analyzing the derivatized steroids in complex biological matrixes, the reactions were performed following steroid extraction from urine and yielded similar results. Additionally, we applied a software-based approach (high-resolution demultiplexing) that further improved the resolving power (>150). Overall, our results suggest that targeted derivatization reactions coupled with IM-MS can significantly improve the resolution of challenging isomer groups, allowing for more accurate and efficient analysis of complex mixtures.
Collapse
Affiliation(s)
- Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Walker N Hodges
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | | |
Collapse
|
24
|
Kirkwood-Donelson KI, Dodds JN, Schnetzer A, Hall N, Baker ES. Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses. SCIENCE ADVANCES 2023; 9:eadj7048. [PMID: 37878714 PMCID: PMC10599621 DOI: 10.1126/sciadv.adj7048] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Because of environmental and health concerns, legacy per- and polyfluoroalkyl substances (PFAS) have been voluntarily phased out, and thousands of emerging PFAS introduced as replacements. Traditional analytical methods target a limited number of mainly legacy PFAS; therefore, many species are not routinely assessed in the environment. Nontargeted approaches using high-resolution mass spectrometry methods have therefore been used to detect and characterize unknown PFAS. However, their ability to elucidate chemical structures relies on generation of informative fragments, and many low concentration species are not fragmented in typical data-dependent acquisition approaches. Here, a data-independent method leveraging ion mobility spectrometry (IMS) and size-dependent fragmentation was developed and applied to characterize aquatic passive samplers deployed near a North Carolina fluorochemical manufacturer. From the study, 11 PFAS structures for various per- and polyfluorinated ether sulfonic acids and multiheaded perfluorinated ether acids were elucidated in addition to 36 known PFAS. Eight of these species were previously unreported in environmental media, and three suspected species were validated.
Collapse
Affiliation(s)
| | - James N. Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Astrid Schnetzer
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC,, USA
| | - Nathan Hall
- Department of Marine, Earth, and Atmospheric Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Vos GM, Hooijschuur KC, Li Z, Fjeldsted J, Klein C, de Vries RP, Toraño JS, Boons GJ. Sialic acid O-acetylation patterns and glycosidic linkage type determination by ion mobility-mass spectrometry. Nat Commun 2023; 14:6795. [PMID: 37880209 PMCID: PMC10600165 DOI: 10.1038/s41467-023-42575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
O-acetylation is a common modification of sialic acids that has been implicated in a multitude of biological and disease processes. A lack of analytical methods that can determine exact structures of sialic acid variants is a hurdle to determine roles of distinct O-acetylated sialosides. Here, we describe a drift tube ion mobility-mass spectrometry approach that can elucidate exact O-acetylation patterns as well as glycosidic linkage types of sialosides isolated from complex biological samples. It is based on the use of a library of synthetic O-acetylated sialosides to establish intrinsic collision cross section (CCS) values of diagnostic fragment ions. The CCS values were used to characterize O-acetylated sialosides from mucins and N-linked glycans from biologicals as well as equine tracheal and nasal tissues. It uncovered contrasting sialic acid linkage types of acetylated and non-acetylated sialic acids and provided a rationale for sialic acid binding preferences of equine H7 influenza A viruses.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kevin C Hooijschuur
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Javier Sastre Toraño
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
26
|
Spiridon A, Oburger E, Valadbeigi Y, Kloimböck T, Stanetty C, Kratena N, Draskovits M, Causon T, Hann S. Surveying the mugineic acid family: Ion mobility - quadrupole time-of-flight mass spectrometry (IM-QTOFMS) characterization and tandem mass spectrometry (LC-ESI-MS/MS) quantification of all eight naturally occurring phytosiderophores. Anal Chim Acta 2023; 1278:341718. [PMID: 37709429 DOI: 10.1016/j.aca.2023.341718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Phytosiderophores (PS) are root exudates released by grass species (Poaceae) that play a pivotal role in iron (Fe) plant nutrition. A direct determination of PS in biological samples is of paramount importance in understanding micronutrient acquisition mediated by PS. To date, eight plant-born PS have been identified; however, no analytical procedure is currently available to quantify all eight PS simultaneously with high analytical confidence. With access to the full set of PS standards for the first time, we report comprehensive methods to both fully characterize (IM-QTOFMS) and quantify (LC-ESI-MS/MS) all eight naturally occurring PS belonging to the mugineic acid family. The quantitative method was fully validated, yielding linear results for all eight analytes, and no unwanted interferences with soil and plant matrices were observed. LOD and LOQ values determined for each PS were below 11 and 35 nmol L-1, respectively. The method's precision under reproducibility conditions (intra- and inter-day) of measurement was less than 2.5% RSD for all analytes. Additionally, all PS were annotated with high-resolution mass spectrometric fragment spectra and further characterized via drift tube ion mobility-mass spectrometry. The collision cross-sections obtained for primary ion species yielded a valuable database for future research focused on in-depth PS studies. The new quantitative method was applied to analyse root exudates from Fe-controlled and deficient barley, oat, rye, and sorghum plants. All eight PS, including mugineic acid (MA), 3"-hydroxymugineic acid (HMA), 3"-epi-hydroxymugineic acid (epi-HMA), hydroxyavenic acid (HAVA), deoxymugineic acid (DMA), 3"-hydroxydeoxymugineic acid (HDMA), 3"-epi-hydroxydeoxymugineic acid (epi-HDMA) and avenic acid (AVA) were for the first time successfully identified and quantified in root exudates of various graminaceous plants using a single analytical procedure. These newly developed methods can be applied to studies aimed at improving crop yield and micronutrient grain content for food consumption via plant-based biofortification.
Collapse
Affiliation(s)
- Andreea Spiridon
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad Lorenz-Strasse 24/I, 3430, Tulln an der Donau, Austria
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad Lorenz-Strasse 24/I, 3430, Tulln an der Donau, Austria
| | - Younes Valadbeigi
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Tobias Kloimböck
- University of Natural Resources and Life Sciences, Department of Forest and Soil Science, Institute of Soil Research, Konrad Lorenz-Strasse 24/I, 3430, Tulln an der Donau, Austria
| | - Christian Stanetty
- Vienna University of Technology (TU Wien), Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060, Vienna, Austria
| | - Nicolas Kratena
- Vienna University of Technology (TU Wien), Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060, Vienna, Austria
| | - Markus Draskovits
- Vienna University of Technology (TU Wien), Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060, Vienna, Austria
| | - Tim Causon
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
27
|
da Silva KM, Wölk M, Nepachalovich P, Iturrospe E, Covaci A, van Nuijs ALN, Fedorova M. Investigating the Potential of Drift Tube Ion Mobility for the Analysis of Oxidized Lipids. Anal Chem 2023; 95:13566-13574. [PMID: 37646365 DOI: 10.1021/acs.analchem.3c02213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Epilipids, a subset of the lipidome that comprises oxidized, nitrated, and halogenated lipid species, show important biochemical activity in the regulation of redox lipid metabolism by influencing cell fate decisions, including death, health, and aging. Due to the large chemical diversity, reversed-phase liquid chromatography-high-resolution mass spectrometry (RPLC-HRMS) methods have only a limited ability to separate numerous isobaric and isomeric epilipids. Ion mobility spectrometry (IMS) is a gas-phase separation technique that can be combined with LC-HRMS to improve the overall peak capacity of the analytical platform. Here, we illustrate the advantages and discuss the current limitations of implementing IMS in LC-HRMS workflows for the analysis of oxylipins and oxidized complex lipids. Using isomeric mixtures of oxylipins, we demonstrated that while deprotonated ions of eicosanoids were poorly resolved by IMS, sodium acetate and metal adducts (e.g., Li, Na, Ag, Ba, K) of structural isomers often showed ΔCCS% above 1.4% and base peak separation with high-resolution demultiplexing (HRDm). The knowledge of the IM migration order was also used as a proof of concept to help in the annotation of oxidized complex lipids using HRDm and all-ion fragmentation spectra. Additionally, we used a mixture of deuterium-labeled lipids for a routine system suitability test with the purpose of improving harmonization and interoperability of IMS data sets in (epi)lipidomics.
Collapse
Affiliation(s)
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Palina Nepachalovich
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Maria Fedorova
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
28
|
Valadbeigi Y, Causon T. Mechanism of formation and ion mobility separation of protomers and deprotomers of diaminobenzoic acids and aminophthalic acids. Phys Chem Chem Phys 2023. [PMID: 37490344 DOI: 10.1039/d3cp01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Aminobenzoic acids are well-established candidates for understanding the formation of isomeric ions in positive mode electrospray ionization as they yield both N- and O-protomers (prototropic isomers) at the amine and carbonyl sites, respectively. In the present work, a combination of ion mobility-mass spectrometry and density functional theory calculations to determine the protonation and deprotonation behaviour of four diamino benzoic acid and four aminophthalic acid isomers is presented. The additional COOH group on the ring of aminophthalic acids provides experimental evidence regarding the mechanism of intramolecular NH3+ → O proton transfer, which has been the subject of debate in recent years. To determine the proton acceptor O atom, ion mobility spectra of the fragments of protomers were used as a new method for the confidential assignment of the O-protomer structure, confirming only short-distance intramolecular NH3+ → O proton transfer. Additionally, the substitution pattern both influences the basicity of the protonation sites and enables these molecules to form internal hydrogen bonds with the protonated or deprotonated sites. The formation of the hydrogen bonds in the deprotonated aminophthalic acids changed the charge distribution and subsequently their ion mobility-derived collision cross sections in nitrogen (CCSN2) leading to separation of the four isomers studied. Finally, an interesting effect of the substitution pattern was observed as a synergistic electron-donating effect of the amine groups of 3,5-diaminobenzoic acid on enhancing the basicity of the carbon atom C2 of the ring and previously unreported formation of a C-protomer within aminobenzoic acid systems.
Collapse
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Tim Causon
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
29
|
Xia T, Zhou F, Zhang D, Jin X, Shi H, Yin H, Gong Y, Xia Y. Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry. Nat Commun 2023; 14:4263. [PMID: 37460558 DOI: 10.1038/s41467-023-40046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Feng Zhou
- Bytedance Technology Co., 201103, Shanghai, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, 100084, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Hengxue Shi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, 100084, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, 100034, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
30
|
Wedge A, Hoover M, Pettit-Bacovin T, Aderorho R, Efird E, Chouinard CD. Development of a Rapid, Targeted LC-IM-MS Method for Anabolic Steroids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37390334 DOI: 10.1021/jasms.3c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Anabolic steroids are of high biological interest due to their involvement in human development and disease progression. Additionally, they are banned in sport due to their performance-enhancing characteristics. Analytical challenges associated with their measurement stem from structural heterogeneity, poor ionization efficiency, and low natural abundance. Their importance in a variety of clinically relevant assays has prompted the consideration of integrating ion mobility spectrometry (IMS) into existing LC-MS assays, due primarily to its speed and structure-based separation capability. Herein we have optimized a rapid (2 min) targeted LC-IM-MS method for the detection and quantification of 40 anabolic steroids and their metabolites. First, a steroid-specific calibrant mixture was developed to cover the full range of retention time, mobility, and accurate mass. Importantly, this use of this calibrant mixture provided robust and reproducible measurements based on collision cross section (CCS) with interday reproducibility of <0.5%. Furthermore, the combined separation power of LC coupled to IM provided comprehensive differentiation of isomers/isobars within 6 different isobaric groups. Multiplexed IM acquisition also provided improved limits of detection, which were well below 1 ng/mL in almost all compounds measured. This method was also capable of steroid profiling, providing quantitative ratios (e.g., testosterone/epitestosterone, androsterone/etiocholanolone, etc.). Lastly, phase II steroid metabolites were probed in lieu of hydrolysis to demonstrate the ability to separate those analytes and provide information beyond total steroid concentration. This method has tremendous potential for rapid analysis of steroid profiles in human urine spanning a variety of applications from developmental disorders to doping in sport.
Collapse
Affiliation(s)
- Ashlee Wedge
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Makenna Hoover
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Terra Pettit-Bacovin
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | - Emmaleigh Efird
- Department of Chemistry, Clemson University, Clemson, South Carolina 29625, United States
| | | |
Collapse
|
31
|
Morel Y, Jones JW. Utilization of LC-MS/MS and Drift Tube Ion Mobility for Characterizing Intact Oxidized Arachidonate-Containing Glycerophosphatidylethanolamine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37369083 DOI: 10.1021/jasms.3c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Lipid peroxidation is a key component in the pathogenesis of numerous disease states, where the oxidative damage of lipids frequently leads to membrane dysfunction and subsequent cellular death. Glycerophosphoethanolamine (PE) is the second most abundant phospholipid found in cellular membranes and, when oxidized, has been identified as an executor of ferroptotic cell death. PE commonly exists in the plasmalogen form, where the presence of the vinyl ether bond and its enrichment in polyunsaturated fatty acids make it especially susceptible to oxidative degradation. This results in a multitude of oxidized products complicating identification and often requiring several analytical techniques for interpretation. In the present study, we outline an analytical approach for the structural characterization of intact oxidized products of arachidonate-containing diacyl and plasmalogen PE. Intact oxidized PE structures, including structural and positional isomers, were identified using complementary liquid chromatography techniques, drift tube ion mobility, and high-resolution tandem mass spectrometry. This work establishes a comprehensive method for the analysis of intact lipid peroxidation products and provides an important pathway to investigate how lipid peroxidation initially impacts glycerophospholipids and their role in redox biology.
Collapse
Affiliation(s)
- Yulemni Morel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
32
|
Kemperman RHJ, Chouinard CD, Yost RA. Characterization of Bile Acid Isomers and the Implementation of High-Resolution Demultiplexing with Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319333 DOI: 10.1021/jasms.3c00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bile acids (BAs) are a complex suite of clinically relevant metabolites that include many isomers. Liquid chromatography coupled to mass spectrometry (LC-MS) is an increasingly popular technique due to its high specificity and sensitivity; nonetheless, acquisition times are generally 10-20 min, and isomers are not always resolved. In this study, the application of ion mobility (IM) spectrometry coupled to MS was investigated to separate, characterize, and measure BAs. A subset of 16 BAs was studied, including three groups of isomers belonging to unconjugated, glycine-conjugated, and taurine-conjugated BA classes. A variety of strategies were explored to increase BA isomer separation such as changing the drift gas, measuring different ionic species (i.e., multimers and cationized species), and enhancing the instrumental resolving power. In general, Ar, N2, and CO2 provided the best peak shape, resolving power (Rp), and separation, especially CO2; He and SF6 were less preferable. Furthermore, measuring dimers versus monomers improved isomer separation due to enhanced gas-phase structural differences. A variety of cation adducts other than sodium were characterized. Mobility arrival times and isomer separation were affected by the choice of adduct, which was shown to be used to target certain BAs. Finally, a novel workflow that involves high-resolution demultiplexing in combination with dipivaloylmethane ion-neutral clusters was implemented to improve Rp dramatically. A maximum Rp increase was observed with lower IM field strengths to obtain longer drift times, increasing Rp from 52 to 187. A combination of these separation enhancement strategies demonstrates great potential for rapid BA analysis.
Collapse
Affiliation(s)
- Robin H J Kemperman
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| | | | - Richard A Yost
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| |
Collapse
|
33
|
Belova L, Poma G, Roggeman M, Jeong Y, Kim DH, Berghmans P, Peters J, Salamova A, van Nuijs ALN, Covaci A. Identification and characterization of quaternary ammonium compounds in Flemish indoor dust by ion-mobility high-resolution mass spectrometry. ENVIRONMENT INTERNATIONAL 2023; 177:108021. [PMID: 37307605 DOI: 10.1016/j.envint.2023.108021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Quaternary ammonium compounds (QACs) are a class of surfactants commonly used in disinfecting and cleaning products. Their use has substantially increased during the COVID-19 pandemic leading to increasing human exposure. QACs have been associated with hypersensitivity reactions and an increased risk of asthma. This study introduces the first identification, characterization and semi-quantification of QACs in European indoor dust using ion-mobility high-resolution mass spectrometry (IM-HRMS), including the acquisition of collision cross section values (DTCCSN2) for targeted and suspect QACs. A total of 46 indoor dust samples collected in Belgium were analyzed using target and suspect screening. Targeted QACs (n = 21) were detected with detection frequencies ranging between 4.2 and 100 %, while 15 QACs showed detection frequencies > 90 %. Semi-quantified concentrations of individual QACs showed a maximum of 32.23 µg/g with a median ∑QAC concentration of 13.05 µg/g and allowed the calculation of Estimated Daily Intakes for adults and toddlers. Most abundant QACs matched the patterns reported in indoor dust collected in the United States. Suspect screening allowed the identification of 17 additional QACs. A dialkyl dimethyl ammonium compound with mixed chain lengths (C16:C18) was characterized as a major QAC homologue with a maximum semi-quantified concentration of 24.90 µg/g. The high detection frequencies and structural variabilities observed call for more European studies on potential human exposure to these compounds. For all targeted QACs, drift tube IM-HRMS derived collision cross section values (DTCCSN2) are reported. Reference DTCCSN2 values allowed the characterization of CCS-m/z trendlines for each of the targeted QAC classes. Experimental CCS-m/z ratios of suspect QACs were compared with the CCS-m/z trendlines. The alignment between the two datasets served as an additional confirmation of the assigned suspect QACs. The use of the 4bit multiplexing acquisition mode with consecutive high-resolution demultiplexing confirmed the presence of isomers for two of the suspect QACs.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Yunsun Jeong
- Toxicological Centre, University of Antwerp, Antwerp, Belgium; Division for Environmental Health, Korea Environment Institute (KEI), Sicheong-daero 370, Sejong 30147, Republic of Korea
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Patrick Berghmans
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Jan Peters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
34
|
Olajide OE, Yi Y, Zheng J, Hamid AM. Strain-Level Discrimination of Bacteria by Liquid Chromatography and Paper Spray Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1125-1135. [PMID: 37249401 PMCID: PMC10407911 DOI: 10.1021/jasms.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Determining bacterial identity at the strain level is critical for public health to enable proper medical treatments and reduce antibiotic resistance. Herein, we used liquid chromatography, ion mobility, and tandem MS (LC-IM-MS/MS) to distinguish Escherichia coli (E. coli) strains. Numerical multivariate statistics (principal component analysis, followed by linear discriminant analysis) showed the capability of this method to perform strain-level discrimination with prediction rates of 96.1% and 100% utilizing the negative and positive ion information, respectively. The tandem MS and LC separation proved effective in discriminating diagnostic lipid isomers in the negative mode, while IM separation was more effective in resolving lipid conformational biomarkers in the positive ion mode. Because of the clinical importance of early detection for rapid medical intervention, a faster technique, paper spray (PS)-IM-MS/MS, was used to discriminate the E. coli strains. The achieved prediction rates of the analysis of E. coli strains by PS-IM-MS/MS were 62.5% and 73.5% in the negative and positive ion modes, respectively. The strategy of numerical data fusion of negative and positive ion data increased the classification rates of PS-IM-MS/MS to 80.5%. Lipid isomers and conformers were detected, which served as strain-indicating biomarkers. The two complementary multidimensional techniques revealed biochemical differences between the E. coli strains confirming the results obtained from comparative genomic analysis. Moreover, the results suggest that PS-IM-MS/MS is a rapid, highly selective, and sensitive method for discriminating bacterial strains in environmental and food samples.
Collapse
Affiliation(s)
- Orobola E. Olajide
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849, United States
| | - Yuyan Yi
- Department of Mathematics and Statistics, Auburn University, 221 Roosevelt Concourse, Auburn, AL 36849, United States
| | - Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, 221 Roosevelt Concourse, Auburn, AL 36849, United States
| | - Ahmed M. Hamid
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL 36849, United States
| |
Collapse
|
35
|
Naylor CN, Clowers BH, Schlottmann F, Solle N, Zimmermann S. Implementation of an Open-Source Multiplexing Ion Gate Control for High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37276587 DOI: 10.1021/jasms.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With ion mobility spectrometry increasingly used in mass spectrometry to enhance separation by increasing orthogonality, low ion throughput is a challenge for the drift-tube ion mobility experiment. The High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) is no exception and routinely uses duty cycles of less than 0.1%. Multiplexing techniques such as Fourier transform and Hadamard transform represent two of the most common approaches used in the literature to improve ion throughput for the IMS experiment; these techniques promise increased duty cycles of up to 50% and an increased signal-to-noise ratio (SNR). With no instrument modifications required, we present the implementation of Hadamard Transform on the HiKE-IMS using a low cost, high-speed (600 MHz), open source microcontroller, a Teensy 4.1. Compared to signal average mode, 7- to 10-bit pseudorandom binary sequences resulted in increased analyte signal by over a factor of 3. However, the maximum SNR gain of 10 did not approach the theoretical 2n-1 gain largely due to capacitive coupling of the ion gate modulation with the Faraday plate used as a detector. Even when utilizing an inverse Hadamard technique, capacitive coupling was not completely eliminated. Regardless, the benefits of multiplexing IMS coupled to mass spectrometers are well documented throughout literature, and this first effort serves as a proof of concept for multiplexing HiKE-IMS. Finally, the highly flexible Teensy used in this effort can be used to multiplex other devices or can be used for Fourier transform instead of Hadamard transform.
Collapse
Affiliation(s)
- Cameron N Naylor
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Florian Schlottmann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Nic Solle
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, 30167 Hannover Germany
| |
Collapse
|
36
|
Li X, Wang H, Jiang M, Ding M, Xu X, Xu B, Zou Y, Yu Y, Yang W. Collision Cross Section Prediction Based on Machine Learning. Molecules 2023; 28:molecules28104050. [PMID: 37241791 DOI: 10.3390/molecules28104050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.
Collapse
Affiliation(s)
- Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mengxiang Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuetong Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
37
|
Gurav AB, Webb IK. Charge Inversion Ion/Ion Reactions Coupled to Ion Mobility/Mass Spectrometry: Oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37167025 DOI: 10.1021/jasms.3c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Various ion mobility-based separation techniques and instruments have been recently developed to increase the operational resolution of ion mobility separations, especially of isomers and isobars. In addition to developments in instrumentation, different covalent and noncovalent derivatization techniques have helped achieve effective separations by magnifying minor differences in collision cross section. Among these methodologies is host-guest complex formation and, a new development presented herein, charge inversion ion-ion reactions coupled to ion mobility separations. We used these methods to enable formation of complexes between isomeric deprotonated oligosaccharides and alkaline earth metals (in solution) and alkaline earth metal-trisphenanthroline complexes (in vacuo), observing minor shifts in ion mobility arrival times for the charge inversion reaction products as well as unique mobility fingerprints indicative of separations of α/β anomers of disaccharides. For example, we have demonstrated separations between reducing disaccharides such as lactose and lactulose and nonreducing disaccharides. We also observed separations based on the pyranose/furanose configurations of the isomers. These results suggest the potential for ion/ion reactions to enable isomer separation of biomolecules from various compound classes using ion mobility-mass spectrometry (IM-MS).
Collapse
Affiliation(s)
- Ankita B Gurav
- Department of Chemistry and Chemical Biology, Indiana University─Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University─Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
38
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
39
|
West CP, Mesa Sanchez D, Morales AC, Hsu YJ, Ryan J, Darmody A, Slipchenko LV, Laskin J, Laskin A. Molecular and Structural Characterization of Isomeric Compounds in Atmospheric Organic Aerosol Using Ion Mobility-Mass Spectrometry. J Phys Chem A 2023; 127:1656-1674. [PMID: 36763810 DOI: 10.1021/acs.jpca.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.
Collapse
Affiliation(s)
- Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yun-Jung Hsu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson Ryan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Darmody
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Aeronautics and Aerospace Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
40
|
Valadbeigi Y, Causon T. Monitoring intramolecular proton transfer with ion mobility-mass spectrometry and in-source ion activation. Chem Commun (Camb) 2023; 59:1673-1676. [PMID: 36689277 DOI: 10.1039/d2cc05237g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here, we show how intramolecular proton transfer can be induced and monitored with the example of polycyclic aromatic amines using in-source ion-activation and ion mobility-mass spectrometry. Experiment and DFT calculations reveal that the protonation rate of C-atoms in aromatic rings is controlled by the energy barrier of intramolecular NH3+ → C proton transfer.
Collapse
Affiliation(s)
- Younes Valadbeigi
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| | - Tim Causon
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
41
|
Ren R, Yuan M, Li H, Chen DDY. Direct Identification of Disaccharide Structural Isomers Using Ambient Ionization Tandem Mass Spectrometry with In Situ Methylation. Anal Chem 2023; 95:2213-2220. [PMID: 36635092 DOI: 10.1021/acs.analchem.2c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Carbohydrates play critically important roles in energy supply and biological functions in living systems. However, it has been a great challenge to identify saccharides and distinguish their isomers because they have highly similar structures and many possible positions for glycosidic linkages. In this work, an ambient ionization tandem mass spectrometry method was developed to characterize disaccharide structural isomers with in situ methylation. The direct analysis in real time ion source can be used to facilitate the methylation reaction of disaccharides with tetramethylammonium hydroxide. The hydroxyl groups of disaccharides can be methylated instantaneously, and the products can be ionized at the same time. The methylated product ions from full scan mass spectrometry (MS) and tandem MS can be used to distinguish a variety of disaccharide structural isomers with different glycosidic linkages, compositions, and configurations. Characteristic marker ions were discovered, and they can be used for the assignment of linkage type and identification of specific isomeric forms. The method was used for the direct identification of disaccharide isomers from real commercial products such as honey, wine, and milk without complex sample pretreatment or chromatographic separation.
Collapse
Affiliation(s)
- Rongfan Ren
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Minghui Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
42
|
Liu L, Wang Z, Zhang Q, Mei Y, Li L, Liu H, Wang Z, Yang L. Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules. Anal Chem 2023; 95:134-151. [PMID: 36625109 DOI: 10.1021/acs.analchem.2c02866] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China.,Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
43
|
May JC, McLean JA. Integrating ion mobility into comprehensive multidimensional metabolomics workflows: critical considerations. Metabolomics 2022; 18:104. [PMID: 36472678 DOI: 10.1007/s11306-022-01961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ion mobility (IM) separation capabilities are now widely available to researchers through several commercial vendors and are now being adopted into many metabolomics workflows. The added peak capacity that ion mobility offers with minimal compromise to other analytical figures-of-merit has provided real benefits to sensitivity and structural selectivity and have allowed more specific metabolite annotations to be assigned in untargeted workflows. One of the greatest promises of contemporary IM-enabled instrumentation is the capability of operating multiple analytical dimensions inline with minimal sample volumes, which has the potential to address many grand challenges currently faced in the omics fields. However, comprehensive operation of multidimensional mass spectrometry comes with its own inherent challenges that, beyond operational complexity, may not be immediately obvious to practitioners of these techniques. AIM OF REVIEW In this review, we outline the strengths and considerations for incorporating IM analysis in metabolomics workflows and provide a critical but forward-looking perspective on the contemporary challenges and prospects associated with interpreting IM data into chemical knowledge. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline a strategy for unifying IM-derived collision cross section (CCS) measurements obtained from different IM techniques and discuss the emerging field of high resolution ion mobility (HRIM) that is poised to address many of the contemporary challenges associated with ion mobility metabolomics. Whereas the LC step limits the throughput of comprehensive LC-IM-MS, the higher peak capacity of HRIM can allow fast LC gradients or rapid sample cleanup via solid-phase extraction (SPE) to be utilized, significantly improving the sample throughput.
Collapse
Affiliation(s)
- Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
44
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Creydt M, Fischer M. Food metabolomics: Latest hardware-developments for nontargeted food authenticity and food safety testing. Electrophoresis 2022; 43:2334-2350. [PMID: 36104152 DOI: 10.1002/elps.202200126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022]
Abstract
The analytical requirements for food testing have increased significantly in recent years. On the one hand, because food fraud is becoming an ever-greater challenge worldwide, and on the other hand because food safety is often difficult to monitor due to the far-reaching trade chains. In addition, the expectations of consumers on the quality of food have increased, and they are demanding extensive information. Cutting-edge analytical methods are required to meet these demands. In this context, non-targeted metabolomics strategies using mass and nuclear magnetic resonance spectrometers (mass spectrometry [MS]) have proven to be very suitable. MS-based approaches are of particular importance as they provide a comparatively high analytical coverage of the metabolome. Accordingly, the efficiency to address even challenging issues is high. A variety of hardware developments, which are explained in this review, have contributed to these advances. In addition, the potential of future developments is highlighted, some of which are currently not yet commercially available or only used to a comparatively small extent but are expected to gain in importance in the coming years.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
46
|
Feuerstein ML, Hernández-Mesa M, Kiehne A, Le Bizec B, Hann S, Dervilly G, Causon T. Comparability of Steroid Collision Cross Sections Using Three Different IM-HRMS Technologies: An Interplatform Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1951-1959. [PMID: 36047677 PMCID: PMC9545150 DOI: 10.1021/jasms.2c00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Steroids play key roles in various biological processes and are characterized by many isomeric variants, which makes their unambiguous identification challenging. Ion mobility-mass spectrometry (IM-MS) has been proposed as a suitable platform for this application, particularly using collision cross section (CCS) databases obtained from different commercial IM-MS instruments. CCS is seen as an ideal additional identification parameter for steroids as long-term repeatability and interlaboratory reproducibility of this measurand are excellent and matrix effects are negligible. While excellent results were demonstrated for individual IM-MS technologies, a systematic comparison of CCS derived from all major commercial IM-MS technologies has not been performed. To address this gap, a comprehensive interlaboratory comparison of 142 CCS values derived from drift tube (DTIM-MS), traveling wave (TWIM-MS), and trapped ion mobility (TIM-MS) platforms using a set of 87 steroids was undertaken. Besides delivering three instrument-specific CCS databases, systematic comparisons revealed excellent interlaboratory performance for 95% of the ions with CCS biases within ±1% for TIM-MS and within ±2% for TWIM-MS with respect to DTIM-MS values. However, a small fraction of ions (<1.5%) showed larger biases of up to 7% indicating that differences in the ion conformation sampled on different instrument types need to be further investigated. Systematic differences between CCS derived from different IM-MS analyzers and implications on the applicability for nontargeted analysis are critically discussed. To the best of our knowledge, this is the most comprehensive interlaboratory study comparing CCS from three different IM-MS technologies for analysis of steroids and small molecules in general.
Collapse
Affiliation(s)
- Max L. Feuerstein
- Department
of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | | | - Andrea Kiehne
- Bruker
Daltonics GmbH & Co. KG, 28359 Bremen, Germany
| | | | - Stephan Hann
- Department
of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | | | - Tim Causon
- Department
of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
47
|
Butler KE, Baker ES. A High-Throughput Ion Mobility Spectrometry-Mass Spectrometry Screening Method for Opioid Profiling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1904-1913. [PMID: 36136315 PMCID: PMC9616473 DOI: 10.1021/jasms.2c00186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2017, the United States Department of Health and Human Services declared the widespread misuse and abuse of prescription and illicit opioids an epidemic. However, this epidemic dates back to the 1990s when opioids were extensively prescribed for pain management. Currently, opioids are still recommended for pain management, and given their abuse potential, rapid screening is imperative for patient treatment. Of particular importance is assessing pain management patient compliance, where evaluating drug use is crucial for preventing opioid abuse and potential overdoses. In this work, we utilized drift tube ion mobility spectrometry coupled with mass spectrometry (DTIMS-MS) to develop a rapid screening method for 33 target opioids and opioid urinary metabolites. Collision cross section values were determined for all target molecules using a flow-injection DTIMS-MS method, and clear differentiation of 27 out of the 33 opioids without prior chromatographic separation was observed when utilizing a high resolution demultiplexing screening approach. An automated solid phase extraction (SPE) platform was then coupled to DTIMS-MS for 10 s sample-to-sample analyses. This SPE-IMS-MS approach enabled the rapid screening of urine samples for opioids and presents a major improvement in sample throughput compared to traditional chromatographic analyses coupled with MS, which routinely take several minutes per sample. Overall, this vast reduction in analysis time facilitates a faster turn-around for patient samples, providing great benefits to clinical applications.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
48
|
Guo K, Zheng Y, Hu H, Liang J. Simulation study of inverse diffusion counterbalance method for super-resolution ion mobility spectrometry. Front Chem 2022; 10:1004615. [PMID: 36212072 PMCID: PMC9532550 DOI: 10.3389/fchem.2022.1004615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ion mobility spectrometer (IMS) is a powerful chemical composition analysis tool working at atmospheric pressure that can be used to separate complex samples and study molecular structures. Resolution is a key parameter for evaluating the performance of IMS. However, for the pulsed sampling technique used by drift tube IMS, there is an upper limit to the resolution due to the diffusion between ions and the drift gas. In this work, an inverse diffusion counterbalance method is proposed to break the resolution limit. The method is inspired by the stimulated emission depletion (STED). In optical microscopy systems, STED is used to break the optical diffraction limit by a ring of depleted light to counteract diffraction effects of the excited light. We modified this strategy and applied it to an IMS system for counteracting the diffusion effect of the pulsed ion packet. The method can increase the resolution up to 1.55 times through theoretical analysis, and the improvement is verified by simulations. The simulation results find that the initial width of the ion packet has an influence on the effectiveness of the method, and the narrower the initial width, the better the effect. The proposed inverse counterbalance strategy may also be applied to other spectral analysis instruments to break the resolution limit.
Collapse
|
49
|
Velosa DC, Dunham AJ, Rivera ME, Neal SP, Chouinard CD. Improved Ion Mobility Separation and Structural Characterization of Steroids using Derivatization Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1761-1771. [PMID: 35914213 DOI: 10.1021/jasms.2c00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
Collapse
Affiliation(s)
- Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Andrew J Dunham
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Marcus E Rivera
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| |
Collapse
|
50
|
Delvaux A, Rathahao-Paris E, Alves S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. MASS SPECTROMETRY REVIEWS 2022; 41:695-721. [PMID: 33492707 DOI: 10.1002/mas.21685] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metabolomics has become increasingly popular in recent years for many applications ranging from clinical diagnosis, human health to biotechnological questioning. Despite technological advances, metabolomic studies are still currently limited by the difficulty of identifying all metabolites, a class of compounds with great chemical diversity. Although lengthy chromatographic analyses are often used to obtain comprehensive data, many isobar and isomer metabolites still remain unresolved, which is a critical point for the compound identification. Currently, ion mobility spectrometry is being explored in metabolomics as a way to improve metabolome coverage, analysis throughput and isomer separation. In this review, all the steps of a typical workflow for untargeted metabolomics are discussed considering the use of an ion mobility instrument. An overview of metabolomics is first presented followed by a brief description of ion mobility instrumentation. The ion mobility potential for complex mixture analysis is discussed regarding its coupling with a mass spectrometer alone, providing gas-phase separation before mass analysis as well as its combination with different separation platforms (conventional hyphenation but also multidimensional ion mobility couplings), offering multidimensional separation. Various instrumental and analytical conditions for improving the ion mobility separation are also described. Finally, data mining, including software packages and visualization approaches, as well as the construction of ion mobility databases for the metabolite identification are examined.
Collapse
Affiliation(s)
- Aurélie Delvaux
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| | - Estelle Rathahao-Paris
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, 91191, France
| | - Sandra Alves
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, 75005, France
| |
Collapse
|