1
|
Hagenah LM, Yeo T, Schindler KA, Jeon JH, Bloxham TS, Small-Saunders JL, Mok S, Fidock DA. Plasmodium falciparum African PfCRT Mutant Isoforms Conducive to Piperaquine Resistance are Infrequent and Impart a Major Fitness Cost. J Infect Dis 2024:jiae617. [PMID: 39661643 DOI: 10.1093/infdis/jiae617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Piperaquine, used in combination with dihydroartemisinin, has been identified as a promising partner drug for uncomplicated treatment and chemoprevention of Plasmodium falciparum malaria in Africa. In light of the earlier spread of piperaquine resistance in Southeast Asia, mediated primarily by mutations in the drug efflux transporter PfCRT, we have explored whether PfCRT mutations would represent a probable path to piperaquine resistance becoming established in Africa. METHODS We edited PfCRT mutations known to mediate piperaquine resistance in Southeast Asia into P. falciparum asexual blood stage parasites expressing three prevalent African mutant PfCRT haplotypes. Gene-edited clones were profiled in antimalarial concentration-response and competitive fitness assays. RESULTS pfcrt-edited parasites expressing the contemporary Southeast Asian T93S or I218F mutations added to the GB4 and Cam783 haplotypes common in Africa did not mediate piperaquine resistance, with partial survival only at low drug concentrations. In contrast, parasites expressing these mutations on the rare PfCRT FCB haplotype, observed mostly in North-East Africa, acquired a moderate level of piperaquine resistance. Dd2GB4, Dd2Cam783, and Dd2FCB lines edited to express the T93S or I218F mutations showed increased susceptibility to chloroquine. Piperaquine-resistant African PfCRT isoforms conferred a substantial fitness cost, manifesting as reduced asexual blood stage parasite growth rates. CONCLUSIONS These findings suggest that piperaquine-resistant PfCRT mutations that emerged in Southeast Asia mediate resistance only in a limited subset of African PfCRT haplotypes, with fitness costs that we suspect would likely preclude dissemination in high-transmission malaria-endemic African regions.
Collapse
Affiliation(s)
- Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jin H Jeon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Talia S Bloxham
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Ferreira LT, Cassiano GC, Alvarez LCS, Okombo J, Calit J, Fontinha D, Gil-Iturbe E, Coyle R, Andrade CH, Sunnerhagen P, Bargieri DY, Prudêncio M, Quick M, Cravo PV, Lee MCS, Fidock DA, Costa FTM. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog 2024; 20:e1012627. [PMID: 39471233 PMCID: PMC11521309 DOI: 10.1371/journal.ppat.1012627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium's life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs' MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets, School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence, Institute of Informatics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, Area Neuroscience – Molecular Therapeutics, New York, New York, United States of America
| | - Pedro V. Cravo
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Bague D, Wang R, Hodge D, Mikati MO, Roma JS, Boshoff HI, Dailey AL, Girma M, Couch RD, Odom John AR, Dowd CS. Inhibition of DXR in the MEP pathway with lipophilic N-alkoxyaryl FR900098 analogs. RSC Med Chem 2024; 15:2422-2439. [PMID: 39026652 PMCID: PMC11253873 DOI: 10.1039/d3md00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 μM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low μM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.
Collapse
Affiliation(s)
- Darean Bague
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Ruiqin Wang
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Dana Hodge
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Marwa O Mikati
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Jose S Roma
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Allyson L Dailey
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Misgina Girma
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| |
Collapse
|
4
|
Hagenah LM, Dhingra SK, Small-Saunders JL, Qahash T, Willems A, Schindler KA, Rangel GW, Gil-Iturbe E, Kim J, Akhundova E, Yeo T, Okombo J, Mancia F, Quick M, Roepe PD, Llinás M, Fidock DA. Additional PfCRT mutations driven by selective pressure for improved fitness can result in the loss of piperaquine resistance and altered Plasmodium falciparum physiology. mBio 2024; 15:e0183223. [PMID: 38059639 PMCID: PMC10790694 DOI: 10.1128/mbio.01832-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.
Collapse
Affiliation(s)
- Laura M. Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Tarrick Qahash
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andreas Willems
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Kyra A. Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel W. Rangel
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Emiliya Akhundova
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
- Area Neuroscience - Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Ansbro MR, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Fairhurst RM, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. SCIENCE ADVANCES 2023; 9:eadi2364. [PMID: 37939186 PMCID: PMC10631731 DOI: 10.1126/sciadv.adi2364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance in vitro and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping using 34 recombinant haplotypes, and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Davin Hong
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leila S. Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E. Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan R. Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543338. [PMID: 37398288 PMCID: PMC10312498 DOI: 10.1101/2023.06.02.543338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Davin Hong
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Melanie J Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Kurt E Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Satish K Dhingra
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Jessica L Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Anna Y Burkhard
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
| | - Kate J Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
7
|
Gomez GM, D’Arrigo G, Sanchez CP, Berger F, Wade RC, Lanzer M. PfCRT mutations conferring piperaquine resistance in falciparum malaria shape the kinetics of quinoline drug binding and transport. PLoS Pathog 2023; 19:e1011436. [PMID: 37285379 PMCID: PMC10281575 DOI: 10.1371/journal.ppat.1011436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/20/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
The chloroquine resistance transporter (PfCRT) confers resistance to a wide range of quinoline and quinoline-like antimalarial drugs in Plasmodium falciparum, with local drug histories driving its evolution and, hence, the drug transport specificities. For example, the change in prescription practice from chloroquine (CQ) to piperaquine (PPQ) in Southeast Asia has resulted in PfCRT variants that carry an additional mutation, leading to PPQ resistance and, concomitantly, to CQ re-sensitization. How this additional amino acid substitution guides such opposing changes in drug susceptibility is largely unclear. Here, we show by detailed kinetic analyses that both the CQ- and the PPQ-resistance conferring PfCRT variants can bind and transport both drugs. Surprisingly, the kinetic profiles revealed subtle yet significant differences, defining a threshold for in vivo CQ and PPQ resistance. Competition kinetics, together with docking and molecular dynamics simulations, show that the PfCRT variant from the Southeast Asian P. falciparum strain Dd2 can accept simultaneously both CQ and PPQ at distinct but allosterically interacting sites. Furthermore, combining existing mutations associated with PPQ resistance created a PfCRT isoform with unprecedented non-Michaelis-Menten kinetics and superior transport efficiency for both CQ and PPQ. Our study provides additional insights into the organization of the substrate binding cavity of PfCRT and, in addition, reveals perspectives for PfCRT variants with equal transport efficiencies for both PPQ and CQ.
Collapse
Affiliation(s)
- Guillermo M. Gomez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Giulia D’Arrigo
- Molecular and Cellular Modelling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| | - Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Fiona Berger
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modelling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
8
|
Willems A, Kalaw A, Ecer A, Kotwal A, Roepe LD, Roepe PD. Structures of Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) Isoforms and Their Interactions with Chloroquine. Biochemistry 2023; 62:1093-1110. [PMID: 36800498 PMCID: PMC10950298 DOI: 10.1021/acs.biochem.2c00669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Using a recently elucidated atomic-resolution cryogenic electron microscopy (cryo-EM) structure for the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein 7G8 isoform as template [Kim, J.; Nature 2019, 576, 315-320], we use Monte Carlo molecular dynamics (MC/MD) simulations of PfCRT embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane to solve energy-minimized structures for 7G8 PfCRT and two additional PfCRT isoforms that harbor 5 or 7 amino acid substitutions relative to 7G8 PfCRT. Guided by drug binding previously defined using chloroquine (CQ) photoaffinity probe labeling, we also use MC/MD energy minimization to elucidate likely CQ binding geometries for the three membrane-embedded isoforms. We inventory salt bridges and hydrogen bonds in these structures and summarize how the limited changes in primary sequence subtly perturb local PfCRT isoform structure. In addition, we use the "AlphaFold" artificial intelligence AlphaFold2 (AF2) algorithm to solve for domain structure that was not resolved in the previously reported 7G8 PfCRT cryo-EM structure, and perform MC/MD energy minimization for the membrane-embedded AF2 structures of all three PfCRT isoforms. We compare energy-minimized structures generated using cryo-EM vs AF2 templates. The results suggest how amino acid substitutions in drug resistance-associated isoforms of PfCRT influence PfCRT structure and CQ transport.
Collapse
Affiliation(s)
| | | | - Ayse Ecer
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Amitesh Kotwal
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | | | - Paul D. Roepe
- Departments of Chemistry
and Biochemistry and Cellular and Molecular Biology, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
9
|
Okombo J, Mok S, Qahash T, Yeo T, Bath J, Orchard LM, Owens E, Koo I, Albert I, Llinás M, Fidock DA. Piperaquine-resistant PfCRT mutations differentially impact drug transport, hemoglobin catabolism and parasite physiology in Plasmodium falciparum asexual blood stages. PLoS Pathog 2022; 18:e1010926. [PMID: 36306287 PMCID: PMC9645663 DOI: 10.1371/journal.ppat.1010926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Edward Owens
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
10
|
Murithi JM, Deni I, Pasaje CFA, Okombo J, Bridgford JL, Gnädig NF, Edwards RL, Yeo T, Mok S, Burkhard AY, Coburn-Flynn O, Istvan ES, Sakata-Kato T, Gomez-Lorenzo MG, Cowell AN, Wicht KJ, Le Manach C, Kalantarov GF, Dey S, Duffey M, Laleu B, Lukens AK, Ottilie S, Vanaerschot M, Trakht IN, Gamo FJ, Wirth DF, Goldberg DE, Odom John AR, Chibale K, Winzeler EA, Niles JC, Fidock DA. The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chem Biol 2022; 29:824-839.e6. [PMID: 34233174 PMCID: PMC8727639 DOI: 10.1016/j.chembiol.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.
Collapse
Affiliation(s)
- James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel L. Edwards
- Division of Infectious Diseases, Allergy and Immunology, Center for Vaccine Development, St. Louis University, St. Louis, MO 63104, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eva S. Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - Annie N. Cowell
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kathryn J. Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gavreel F. Kalantarov
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maëlle Duffey
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ilya N. Trakht
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francisco-Javier Gamo
- Global Health Pharma Research Unit, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kelly Chibale
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth A. Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author
| |
Collapse
|
11
|
Small-Saunders JL, Hagenah LM, Wicht KJ, Dhingra SK, Deni I, Kim J, Vendome J, Gil-Iturbe E, Roepe PD, Mehta M, Mancia F, Quick M, Eppstein MJ, Fidock DA. Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathog 2022; 18:e1010278. [PMID: 35130315 PMCID: PMC8853508 DOI: 10.1371/journal.ppat.1010278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy. The recent emergence of Plasmodium falciparum parasite resistance to the antimalarial drug piperaquine (PPQ) has contributed to frequent treatment failures across Southeast Asia, originating in Cambodia. Here, we show that earlier reports of PPQ resistance in Yunnan Province, China could be explained by the unique China C variant of the P. falciparum chloroquine resistance transporter PfCRT. Gene-edited parasites show a loss of fitness and parasite resensitization to the chemically related former first-line antimalarial chloroquine, while acquiring PPQ resistance via drug efflux. Molecular features of drug resistance were examined using biochemical assays to measure mutant PfCRT-mediated drug transport and molecular dynamics simulations with the recently solved PfCRT structure to assess changes in the central drug-binding cavity. We also describe a new computational model that incorporates parasite mutation rates, fitness costs, antimalarial susceptibilities, and drug pharmacological profiles to predict how infections with parasite strains expressing distinct PfCRT variants can evolve and be selected in response to different drug pressures and regimens. Simulations predict that a three-day regimen of PPQ plus chloroquine would be fully effective at preventing recrudescence of drug-resistant infections.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Jeremie Vendome
- Schrödinger, Inc., New York, New York, United States of America
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, Washington, DC, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Monica Mehta
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Center for Molecular Recognition, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Margaret J Eppstein
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, United States of America
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Translational Global Infectious Diseases Research Center, University of Vermont, Burlington, Vermont, United States of America
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
12
|
Abid M, Singh S, Egan TJ, Joshi MC. Structural activity relationship of metallo-aminoquines as a next generation antimalarials. Curr Top Med Chem 2022; 22:436-472. [PMID: 34986771 DOI: 10.2174/1568026622666220105103751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Apicomplexian parasite of the genus Plasmodium is the causative agent of malaria, one of the most devastating, furious and common infectious disease throughout the world. According to the latest World malaria report, there were 229 million cases of malaria in 2019 majorly consisting of children under 5 years of age. Some of known analogues viz. quinine, quinoline-containing compounds have been used for last century in the clinical treatment of malaria. Past few decades have witnessed the emergence of multi-drug resistance (MDR) strains of Plasmodium species to existing antimalarials pressing the need for new drug candidates. For the past few decades bioorganometallic approach to malaria therapy has been introduced which led to the discovery of noval metalcontaining aminoquinolines analogues viz. ferroquine (FQ or 1), Ruthenoquine (RQ or 2) and other related potent metal-analogues. It observed that some metal containing analogues (Fe-, Rh-, Ru-, Re-, Au-, Zn-, Cr-, Pd-, Sn-, Cd-, Ir-, Co-, Cu-, and Mn-aminoquines) were more potent; however, some were equally potent as Chloroquine (CQ) and 1. This is probably due to the intertion of metals in the CQ via various approaches, which might be a very attractive strategy to develop a SAR of novel metal containing antimalarials. Thus, this review aims to summarize the SAR of metal containing aminoquines towards the discovery of potent antimalarial hybrids to provide an insight for rational designs of more effective and less toxic metal containing amoniquines.
Collapse
Affiliation(s)
- Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi-110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehroli Road, New Delhi-110067, India
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town-7700, South Africa
| | - Mukesh C Joshi
- Dept. of Chemistry, Motilal Nehru College, University of Delhi, Benito Juarez marg, South Campus, New Delhi-110021. India
| |
Collapse
|
13
|
Marfurt J, Wirjanata G, Prayoga P, Chalfein F, Leonardo L, Sebayang BF, Apriyanti D, Sihombing MAEM, Trianty L, Suwanarusk R, Brockman A, Piera KA, Luo I, Rumaseb A, MacHunter B, Auburn S, Anstey NM, Kenangalem E, Noviyanti R, Russell B, Poespoprodjo JR, Price RN. Longitudinal ex vivo and molecular trends of chloroquine and piperaquine activity against Plasmodium falciparum and P. vivax before and after introduction of artemisinin-based combination therapy in Papua, Indonesia. Int J Parasitol Drugs Drug Resist 2021; 17:46-56. [PMID: 34193398 PMCID: PMC8358472 DOI: 10.1016/j.ijpddr.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/13/2023]
Abstract
Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.
Collapse
Affiliation(s)
- Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia.
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Pak Prayoga
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Ferryanto Chalfein
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Leo Leonardo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Boni F Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Dwi Apriyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Maic A E M Sihombing
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Rossarin Suwanarusk
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Alan Brockman
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Irene Luo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Barbara MacHunter
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Bruce Russell
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Jeanne R Poespoprodjo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; Paediatric Research Office, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Hassett MR, Roepe PD. In vitro growth competition experiments that suggest consequences of the substandard artemisinin epidemic that may be accelerating drug resistance in P. falciparum malaria. PLoS One 2021; 16:e0248057. [PMID: 33690638 PMCID: PMC7942984 DOI: 10.1371/journal.pone.0248057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Over the past decade, artemisinin (ART)-combination therapies (ACTs) have shown declining efficacy within Southeast Asia (SEA). These resistance-like phenomena manifest as a delayed clearance phenotype (DCP) in some patients treated with ACTs. ACTs are currently the recommended treatment for P. falciparum infections by the World Health Organization (WHO), and they are our last line of defense to effectively treat all strains of malaria. Acceleration of antimicrobial resistance (AMR) is often theorized to be exacerbated by the use of subtherapeutic dosages of drugs ("substandard" drug), which for ACTs has been well documented over the last decade. Troublingly, in 2017, the WHO estimated that nearly 1 in 10 medical products tested in low- and middle-income countries failed to meet quality standards. We have developed a tissue culture-based approach for testing possible connections between substandard treatment and the spread of ACT resistant blood stage forms of P. falciparum. Via sequencing of pfk13, a molecular marker that is predictive for ART resistance (ARTR), we monitor competition of sensitive vs resistant strains over time and under various conditions and define conditions that favor emergence of ARTR parasites. Our findings help to define the conditions under which substandard drug treatments might favor the proliferation of mutant PfK13-mediated drug resistant strains over drug sensitive.
Collapse
Affiliation(s)
- Matthew R. Hassett
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
| | - Paul D. Roepe
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
- * E-mail:
| |
Collapse
|