1
|
Li Z, Ouyang L, Lu Y, Peng Q, Qiao X, Wu Q, Zhang B, Liu B, Wan F, Qian W. Antibiotics suppress the expression of antimicrobial peptides and increase sensitivity of Cydia pomonella to granulosis virus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174612. [PMID: 38992382 DOI: 10.1016/j.scitotenv.2024.174612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Cydia pomonella granulovirus (CpGV) is a highly specific and environmentally friendly pathogenic virus successfully used as a biological insecticide against codling moth larvae. Continuous application of CpGV has led to high levels of resistance in codling moth, Cydia pomonella (C. pomonella). Nevertheless, the specific molecular mechanisms underlying the development of resistance in codling moths to CpGV have been rarely investigated. This study explored the potential antiviral immune roles of codling moth antimicrobial peptides (AMPs) against CpGV. A total of 11 AMP genes classified in cecropin, defensin, gloverin, and attacin subfamilies, were identified in the codling moth genome. The cecropin and gloverin subfamilies were found to be the ancestral genes of the AMP gene family. The expression of two AMP genes (CmGlo1 and CmAtt1) significantly increased following CpGV challenge, and CmGlo1 and CmAtt1 gene silencing resulted in a significant increase in CpGV replication in codling moth larvae. The hemolymph and fat body serve as major viral immune functional tissues in codling moth larvae. Moreover, zhongshengmycin significantly reduced the diversity and abundance of codling moth larvae gut microbiota, thereby suppressing the expression of CmAtt1 AMP gene. We also found that the combination of the virus with zhongshengmycin would enhance the insecticidal effects of CpGV. This study provides the first explanation of the molecular mechanisms driving CpGV immune function development in codling moths, approached from the perspective of the codling moth itself. Additionally, we introduced an alternative approach to combat codling moth in the field by combining antibiotics with biopesticides to amplify the insecticidal effects of the latter.
Collapse
Affiliation(s)
- Zaiyuan Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Lan Ouyang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yin Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute, Henan University, Shenzhen 518000, China.
| | - Qi Peng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Bin Zhang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
2
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
3
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
4
|
Mok CK, Ng YL, Ahidjo BA, Aw ZQ, Chen H, Wong YH, Lee RCH, Loe MWC, Liu J, Tan KS, Kaur P, Wang DY, Hao E, Hou X, Tan YW, Deng J, Chu JJH. Evaluation of In Vitro and In Vivo Antiviral Activities of Vitamin D for SARS-CoV-2 and Variants. Pharmaceutics 2023; 15:pharmaceutics15030925. [PMID: 36986786 PMCID: PMC10058714 DOI: 10.3390/pharmaceutics15030925] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The COVID-19 pandemic has brought about unprecedented medical and healthcare challenges worldwide. With the continual emergence and spread of new COVID-19 variants, four drug compound libraries were interrogated for their antiviral activities against SARS-CoV-2. Here, we show that the drug screen has resulted in 121 promising anti-SARS-CoV-2 compounds, of which seven were further shortlisted for hit validation: citicoline, pravastatin sodium, tenofovir alafenamide, imatinib mesylate, calcitriol, dexlansoprazole, and prochlorperazine dimaleate. In particular, the active form of vitamin D, calcitriol, exhibits strong potency against SARS-CoV-2 on cell-based assays and is shown to work by modulating the vitamin D receptor pathway to increase antimicrobial peptide cathelicidin expression. However, the weight, survival rate, physiological conditions, histological scoring, and virus titre between SARS-CoV-2 infected K18-hACE2 mice pre-treated or post-treated with calcitriol were negligible, indicating that the differential effects of calcitriol may be due to differences in vitamin D metabolism in mice and warrants future investigation using other animal models.
Collapse
Affiliation(s)
- Chee-Keng Mok
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yan Ling Ng
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bintou Ahmadou Ahidjo
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhen Qin Aw
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Huixin Chen
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Marcus Wing Choy Loe
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kai Sen Tan
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Parveen Kaur
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
- China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
- China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yong Wah Tan
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
- China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Correspondence: ; Tel.: +65-65163278
| |
Collapse
|
5
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
6
|
Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101533. [PMID: 36294968 PMCID: PMC9604716 DOI: 10.3390/life12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The goal of regenerative therapy is to restore the structure and function of the lost tissues in the fields of medicine and dentistry. However, there are some challenges in regeneration therapy such as the delivery of oxygen and nutrition, and the risk of infection in conditions such as periodontitis, osteomyelitis, etc. Leucine leucine-37 (LL-37) is a 37-residue, amphipathic, and helical peptide found only in humans and is expressed throughout the body. It has been shown to induce neovascularization and vascular endothelial growth factor (VEGF) expression. LL-37 also stimulates the migration and differentiation of mesenchymal stem cells (MSCs). Recent studies have shown that LL-37 plays an important role in the innate defense system through the elimination of pathogenic microbes and the modulation of the host immune response. LL-37 also manifests other functions such as promoting wound healing, angiogenesis, cell differentiation, and modulating apoptosis. This review summarizes the current studies on the structure, expression, and function of LL-37 and highlights the contributions of LL-37 to oral cavity, periodontium, and bone regeneration.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M. Zhong
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
7
|
Aslanli A, Domnin M, Stepanov N, Efremenko E. "Universal" Antimicrobial Combination of Bacitracin and His 6-OPH with Lactonase Activity, Acting against Various Bacterial and Yeast Cells. Int J Mol Sci 2022; 23:9400. [PMID: 36012663 PMCID: PMC9409362 DOI: 10.3390/ijms23169400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The effect of Bacitracin as an antibiotic acting against Gram-positive bacterial cells was evaluated in combination with hexahistidine-containing organophosphate hydrolase (His6-OPH), possessing lactonase activity against various N-acylhomoserine lactones produced by most Gram-negative bacteria as quorum-sensing molecules. The molecular docking technique was used to obtain in silico confirmation of possible interactions between molecules of His6-OPH and Bacitracin as well as the absence of a significant influence of such interactions on the enzymatic catalysis. The in vitro experiments showed a sufficient catalytic efficiency of action of the His6-OPH/Bacitracin combination as compared to the native enzyme. The notable improvement (up to 3.3 times) of antibacterial efficiency of Bacitracin was revealed in relation to Gram-negative bacteria when it was used in combination with His6-OPH. For the first time, the action of the Bacitracin with and without His6-OPH was shown to be effective against various yeast strains, and the presence of the enzyme increased the antibiotic effect up to 8.5 times. To estimate the role of the enzyme in the success of His6-OPH/Bacitracin with yeast, in silico experiments (molecular docking) with various fungous lactone-containing molecules were undertaken, and the opportunity of their enzymatic hydrolysis by His6-OPH was revealed in the presence and absence of Bacitracin.
Collapse
Affiliation(s)
| | | | | | - Elena Efremenko
- Chemical Faculty, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
8
|
Glasgow AMA, Greene CM. Epithelial damage in the cystic fibrosis lung: the role of host and microbial factors. Expert Rev Respir Med 2022; 16:737-748. [PMID: 35833354 DOI: 10.1080/17476348.2022.2100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The airway epithelium is a key system within the lung. It acts as a physical barrier to inhaled factors, and can actively remove unwanted microbes and particles from the lung via the mucociliary escalator. On a physiological level, it senses the presence of pathogens and initiates innate immune responses to combat their effects. Hydration of the airways is also controlled by the epithelium. Within the cystic fibrosis (CF) lung, these properties are suboptimal and contribute to the pulmonary manifestations of CF. AREAS COVERED In this review, we discuss how various host and microbial factors can contribute to airway epithelium dysfunction in the CF lung focusing on mechanisms relating to the mucociliary escalator and protease expression and function. We also explore how alterations in microRNA expression can impact the behavior of the airway epithelium. EXPERT OPINION Notwithstanding the unprecedented benefits that CFTR modulator drugs now provide to the health of CF sufferers, it will be important to delve more deeply into additional mechanisms underpinning CF lung disease such as those illustrated here in an attempt to counteract these aberrant processes and further enhance quality of life for people with CF.
Collapse
Affiliation(s)
- Arlene M A Glasgow
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland (RCSI), Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland (RCSI), Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Ben Hur D, Kapach G, Wani NA, Kiper E, Ashkenazi M, Smollan G, Keller N, Efrati O, Shai Y. Antimicrobial Peptides against Multidrug-Resistant Pseudomonas aeruginosa Biofilm from Cystic Fibrosis Patients. J Med Chem 2022; 65:9050-9062. [PMID: 35759644 PMCID: PMC9289885 DOI: 10.1021/acs.jmedchem.2c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Lung
infection is the leading cause of morbidity and mortality
in cystic fibrosis (CF) patients and is mainly dominated by Pseudomonas aeruginosa. Treatment of CF-associated lung
infections is problematic because the drugs are vulnerable to multidrug-resistant
pathogens, many of which are major biofilm producers like P. aeruginosa. Antimicrobial peptides (AMPs) are essential
components in all life forms and exhibit antimicrobial activity. Here
we investigated a series of AMPs (d,l-K6L9), each composed of six lysines and nine leucines but
differing in their sequence composed of l- and d-amino acids. The d,l-K6L9 peptides showed antimicrobial and antibiofilm activities against
P. aeruginosa from CF patients. Furthermore, the
data revealed that the d,l-K6L9 peptides are stable and resistant to degradation by CF sputum proteases
and maintain their activity in a CF sputum environment. Additionally,
the d,l-K6L9 peptides do not
induce bacterial resistance. Overall, these findings should assist
in the future development of alternative treatments against resistant
bacterial biofilms.
Collapse
Affiliation(s)
- Daniel Ben Hur
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gal Kapach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Ashkenazi
- Pediatric Pulmonary Institute and National CF Center, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gill Smollan
- Microbiology Laboratories, Edmond and Lili Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ariel University, Ramat Gan 52621, Israel
| | - Natan Keller
- The Department of Health Management, Ariel University, Ariel 40700, Israel.,Microbiology Laboratories, Edmond and Lili Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ariel University, Ramat Gan 52621, Israel
| | - Ori Efrati
- Pediatric Pulmonary Institute and National CF Center, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Geitani R, Moubareck CA, Costes F, Marti L, Dupuis G, Sarkis DK, Touqui L. Bactericidal effects and stability of LL-37 and CAMA in the presence of human lung epithelial cells. Microbes Infect 2021; 24:104928. [PMID: 34954126 DOI: 10.1016/j.micinf.2021.104928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Cationic antimicrobial peptides (CAMPs) are important actors in host innate immunity and represent a promising alternative to combat antibiotic resistance. Here, the bactericidal activity of two CAMPs (LL-37, and CAMA) was evaluated against Pseudomonas aeruginosa (PA) in the presence of IB3-1 cells, a cell line derived from patients with cystic fibrosis. The two CAMPs exerted different effects on PA survival depending on the timing of their administration. We observed a greater bactericidal effect when IB3-1 cells were pretreated with sub-minimum bactericidal concentrations (Sub-MBCs) of the CAMPs prior to infection. These findings suggest that CAMPs induce the production of factors by IB3-1 cells that improve their bactericidal action. However, we observed no bactericidal effect when supra-minimum bactericidal concentrations (Supra-MBCs) of the CAMPs were added to IB3-1 cells at the same time or after infection. Western-blot analysis showed a large decrease in LL-37 levels in supernatants of infected IB3-1 cells and an increase in LL-37 binding to these cells after LL-37 administration. LL-37 induced a weak inflammatory response in the cells without being toxic. In conclusion, our findings suggest a potential prophylactic action of CAMPs. The bactericidal effects were low when the CAMPs were added after cell infection, likely due to degradation of CAMPs by bacterial or epithelial cell proteases and/or due to adherence of CAMPs to cells becoming less available for direct bacterial killing.
Collapse
Affiliation(s)
- Regina Geitani
- Microbiology Laboratory, School of Pharmacy, Saint Joseph University, Beirut, Lebanon.
| | - Carole Ayoub Moubareck
- Microbiology Laboratory, School of Pharmacy, Saint Joseph University, Beirut, Lebanon; College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Floriane Costes
- "Sorbonne Université", INSERM UMR_S 938, "Centre de Recherche Saint-Antoine" (CRSA), Paris, France; "Mucoviscidose and Bronchopathies Chroniques", Department "Santé Globale", Pasteur Institute, Paris, France
| | - Léa Marti
- "Sorbonne Université", INSERM UMR_S 938, "Centre de Recherche Saint-Antoine" (CRSA), Paris, France; "Mucoviscidose and Bronchopathies Chroniques", Department "Santé Globale", Pasteur Institute, Paris, France
| | - Gabrielle Dupuis
- "Sorbonne Université", INSERM UMR_S 938, "Centre de Recherche Saint-Antoine" (CRSA), Paris, France; "Mucoviscidose and Bronchopathies Chroniques", Department "Santé Globale", Pasteur Institute, Paris, France
| | - Dolla Karam Sarkis
- Microbiology Laboratory, School of Pharmacy, Saint Joseph University, Beirut, Lebanon
| | - Lhousseine Touqui
- "Sorbonne Université", INSERM UMR_S 938, "Centre de Recherche Saint-Antoine" (CRSA), Paris, France; "Mucoviscidose and Bronchopathies Chroniques", Department "Santé Globale", Pasteur Institute, Paris, France.
| |
Collapse
|
11
|
Yoo Y, Choi E, Kim Y, Cha Y, Um E, Kim Y, Kim Y, Lee YS. Therapeutic potential of targeting cathepsin S in pulmonary fibrosis. Biomed Pharmacother 2021; 145:112245. [PMID: 34772578 DOI: 10.1016/j.biopha.2021.112245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cathepsin S (CTSS), a lysosomal protease, belongs to a family of cysteine cathepsin proteases that promote degradation of damaged proteins in the endolysosomal pathway. Aberrant CTSS expression and regulation are associated with the pathogenesis of several diseases, including lung diseases. CTSS overexpression causes a variety of pathological processes, including pulmonary fibrosis, with increased CTSS secretion and accelerated extracellular matrix remodeling. Compared to many other cysteine cathepsin family members, CTSS has unique features that it presents limited tissue expression and retains its enzymatic activity at a neutral pH, suggesting its decisive involvement in disease microenvironments. In this review, we investigated the role of CTSS in lung disease, exploring recent studies that have indicated that CTSS mediates fibrosis in unique ways, along with its structure, substrates, and distinct regulation. We also outlined examples of CTSS inhibitors in clinical and preclinical development and proposed CTSS as a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- YoungJo Yoo
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eun Choi
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yejin Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunyoung Cha
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Eunhye Um
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Younghwa Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yunji Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 120-720, Republic of Korea.
| |
Collapse
|
12
|
Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates Inhibit SARS-CoV-2 Replication. Pharmaceuticals (Basel) 2021; 14:ph14111111. [PMID: 34832893 PMCID: PMC8619593 DOI: 10.3390/ph14111111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone. Their antiviral effect was tested against SARS-CoV-2 in Vero E6 cells, using a cell viability assay and quantitative PCR of the viral RNA, confirming their micromolar inhibitory activity against viral replication. Interestingly, two of the parent apocarotenoids, bixin and β-apo-8′carotenoic acid, exerted remarkable anti-SARS-CoV-2 activity. Mechanistic studies involved cathepsin L and B, as well as the main protease 3CLPro, and the results were rationalized by computational studies. Glycopeptide conjugates show dual inhibitory action, while apocarotenoids have mostly cathepsin B and L affinity. Since teicoplanin is a marketed antibiotic and the natural bixin is an approved, cheap and widely used red colorant food additive, these readily available compounds and their conjugates as potential antivirals are worthy of further exploration.
Collapse
|
13
|
Saidi A, Gaboriaud P, Lalmanach AC, Vanderlynden L, Fessard A, Vettori P, Fort G, Guabiraba R, Schouler C, Laurent F, Guitton E, Lecaille F, Bussière FI, Lalmanach G. Upregulation of gut cathepsin L during Eimeria tenella infection. Res Vet Sci 2021; 140:109-116. [PMID: 34419895 DOI: 10.1016/j.rvsc.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Coccidiosis is a disease caused by Eimeria, which represents the first parasitic disease in poultry farming. Among them, E. tenella is a virulent species which specifically colonizes the caecum. The inflammatory response to infection is associated to numerous host proteases including cysteine cathepsins that can be deleterious for tissue and innate immunity integrity. Here, germ-free and conventional chickens were used as models to find out whether the microbiota could modify the intestinal expression of host cysteine cathepsins during coccidiosis. The basal caecal peptidase activity primarily relies on host proteases rather than proteases from the commensal flora. While mRNA levels of E. tenella cathepsins B and L remained unchanged in germ-free and conventional broilers, an overall increase in endopeptidase activity of cysteine cathepsins was found in E. tenella-infected caeca in both experimental models (P < 0.005). A significant decrease in avian cystatin C transcription was also observed in infected conventional, but not in infected germ-free broilers. Despite an unchanged mRNA level of avian cathepsin L (CatL), its protein expression raised following infection, in parallel with an increased transcription of antimicrobial β-defensins (AvBD1, AvBD2, AvBD4, AvBD6, and AvBD7). Taken together, data support that host CatL is post-translationally upregulated during E. tenella infection, and thus may be involved in the alteration of the gut proteolytic balance. Furthermore, CatL may participate to inflammation occurring during coccidiosis through its known ability to proteolytically inactivates up-regulated avian β-defensins that are key molecules of innate immunity.
Collapse
Affiliation(s)
- Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France.
| | - Pauline Gaboriaud
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | - Lise Vanderlynden
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Aurélie Fessard
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Pauline Vettori
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Geneviève Fort
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Rodrigo Guabiraba
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Catherine Schouler
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Fabrice Laurent
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Edouard Guitton
- INRAE, UE Plate-forme d'Infectiologie Expérimentale, F-37380 Nouzilly, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| | - Françoise I Bussière
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe «Mécanismes Protéolytiques dans l'Inflammation», Tours, France
| |
Collapse
|
14
|
Creane SE, Carlile SR, Downey D, Weldon S, Dalton JP, Taggart CC. The Impact of Lung Proteases on Snake-Derived Antimicrobial Peptides. Biomolecules 2021; 11:biom11081106. [PMID: 34439773 PMCID: PMC8394243 DOI: 10.3390/biom11081106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Respiratory infections are a leading cause of global morbidity and mortality and are of significant concern for individuals with chronic inflammatory lung diseases. There is an urgent need for novel antimicrobials. Antimicrobial peptides (AMPs) are naturally occurring innate immune response peptides with therapeutic potential. However, therapeutic development has been hindered by issues with stability and cytotoxicity. Availing of direct drug delivery to the affected site, for example the lung, can reduce unwanted systemic side effects and lower the required dose. As cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) lungs typically exhibit elevated protease levels, the aim of this study was to assess their impact on snake-derived AMPs. Peptide cleavage was determined using SDS-PAGE and antimicrobial and anti-inflammatory activities of neutrophil elastase (NE)-incubated peptides were assessed using a radial diffusion assay (RDA) and an in vitro LPS-induced inflammation model, respectively. Although the snake-derived AMPs were found to be susceptible to cleavage by lung proteases including NE, several retained their function following NE-incubation. This facilitated the design of novel truncated derivatives that retained functionality following NE incubation. Snake-derived AMPs are tractable candidate treatments for use in environments that feature elevated NE levels, such as the CF airways.
Collapse
Affiliation(s)
- Shannice E. Creane
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
| | - Simon R. Carlile
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
| | - Damian Downey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
| | - John P. Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.E.C.); (S.R.C.); (S.W.)
- Correspondence:
| |
Collapse
|
15
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
16
|
Brown R, Small DM, Doherty DF, Holsinger L, Booth R, Williams R, Ingram RJ, Elborn JS, Mall MA, Taggart CC, Weldon S. Therapeutic Inhibition of Cathepsin S Reduces Inflammation and Mucus Plugging in Adult βENaC-Tg Mice. Mediators Inflamm 2021; 2021:6682657. [PMID: 33828414 PMCID: PMC8004367 DOI: 10.1155/2021/6682657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Elevated levels of the cysteine protease cathepsin S (CatS) are associated with chronic mucoobstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). We have previously demonstrated that prophylactic treatment with a CatS inhibitor from birth reduces inflammation, mucus plugging, and lung tissue damage in juvenile β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice with chronic inflammatory mucoobstructive lung disease. In this study, we build upon this work to examine the effects of therapeutic intervention with a CatS inhibitor in adult βENaC-Tg mice with established disease. METHODS βENaC-Tg mice and wild-type (WT) littermates were treated with a CatS inhibitor from 4 to 6 weeks of age, and CatS-/- βENaC-Tg mice were analysed at 6 weeks of age. Bronchoalveolar lavage (BAL) fluid inflammatory cell counts were quantified, and lung tissue destruction and mucus obstruction were analysed histologically. RESULTS At 6 weeks of age, βENaC-Tg mice developed significant airway inflammation, lung tissue damage, and mucus plugging when compared to WT mice. CatS-/- βENaC-Tg mice and βENaC-Tg mice receiving inhibitor had significantly reduced airway mononuclear and polymorphonuclear (PMN) cell counts as well as mucus plugging. However, in contrast to CatS-/- βENaC-Tg mice, therapeutic inhibition of CatS in βENaC-Tg mice had no effect on established emphysema-like lung tissue damage. CONCLUSIONS These results suggest that while early CatS targeting may be required to prevent the onset and progression of lung tissue damage, therapeutic CatS targeting effectively inhibited airway inflammation and mucus obstruction. These results indicate the important role CatS may play in the pathogenesis and progression of mucoobstructive lung disease.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Donna M. Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Declan F. Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | - Richard Williams
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J. Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
17
|
Batalha PN, Forezi LSM, Lima CGS, Pauli FP, Boechat FCS, de Souza MCBV, Cunha AC, Ferreira VF, da Silva FDC. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches. Bioorg Chem 2021; 106:104488. [PMID: 33261844 PMCID: PMC7676325 DOI: 10.1016/j.bioorg.2020.104488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, a new variant of SARS-CoV emerged, the so-called acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes the new coronavirus disease (COVID-19) and has been plaguing the world owing to its unprecedented spread efficiency, which has resulted in a huge death toll. In this sense, the repositioning of approved drugs is the fastest way to an effective response to a pandemic outbreak of this scale. Considering these facts, in this review we provide a comprehensive and critical discussion on the chemical aspects surrounding the drugs currently being studied as candidates for COVID-19 therapy. We intend to provide the general chemical community with an overview on the synthetic/biosynthetic pathways related to such molecules, as well as their mechanisms of action against the evaluated viruses and some insights on the pharmacological interactions involved in each case. Overall, the review aims to present the chemical aspects of the main bioactive molecules being considered to be repositioned for effective treatment of COVID-19 in all phases, from the mildest to the most severe.
Collapse
Affiliation(s)
- Pedro N Batalha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| | - Luana S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Carolina G S Lima
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda C S Boechat
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Anna C Cunha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil.
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| |
Collapse
|
18
|
Houston CJ, Taggart CC, Downey DG. The role of inflammation in cystic fibrosis pulmonary exacerbations. Expert Rev Respir Med 2020; 14:889-903. [PMID: 32544353 DOI: 10.1080/17476348.2020.1778469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cystic Fibrosis pulmonary exacerbations are critical events in the lives of people with CF that have deleterious effects on lung function, quality of life, and life expectancy. There are significant unmet needs in the management of exacerbations. We review here the associated inflammatory changes that underlie these events and are of interest for the development of biomarkers of exacerbation. AREAS COVERED Inflammatory responses in CF are abnormal and contribute to a sustained proinflammatory lung microenvironment, abundant in proinflammatory mediators and deficient in counter-regulatory mediators that terminate and resolve inflammation. There is increasing interest in these inflammatory pathways to discover novel biomarkers for pulmonary exacerbation management. In this review, we explore the inflammatory changes occurring during intravenous antibiotic therapy for exacerbation and how they may be applied as biomarkers to guide exacerbation therapy. A literature search was conducted using the PubMed database in February 2020. EXPERT OPINION Heterogeneity in inflammatory responses to treatment of a pulmonary exacerbation, a disease process with complex pathophysiology, limits the clinical utility of individual biomarkers. Biomarker panels may be a more successful strategy to capture informative changes within the CF population to improve pulmonary exacerbation management and outcomes.
Collapse
Affiliation(s)
- Claire J Houston
- Airway Innate Immunity Group (Aiir), Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland
| | - Clifford C Taggart
- Airway Innate Immunity Group (Aiir), Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland
| | - Damian G Downey
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland.,Northern Ireland Regional Adult CF Centre, Belfast Health and Social Care Trust , Belfast, UK
| |
Collapse
|
19
|
McKelvey MC, Weldon S, McAuley DF, Mall MA, Taggart CC. Targeting Proteases in Cystic Fibrosis Lung Disease. Paradigms, Progress, and Potential. Am J Respir Crit Care Med 2020; 201:141-147. [PMID: 31626562 DOI: 10.1164/rccm.201906-1190pp] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany; and.,German Center for Lung Research, Berlin, Germany
| | | |
Collapse
|
20
|
Brown R, Nath S, Lora A, Samaha G, Elgamal Z, Kaiser R, Taggart C, Weldon S, Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir Res 2020; 21:111. [PMID: 32398133 PMCID: PMC7216426 DOI: 10.1186/s12931-020-01381-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression and activity of cathepsin S (CTSS), a lysosomal protease and a member of the cysteine cathepsin protease family, is linked to the pathogenesis of multiple diseases, including a number of conditions affecting the lungs. Extracellular CTSS has potent elastase activity and by processing cytokines and host defense proteins, it also plays a role in the regulation of inflammation. CTSS has also been linked to G-coupled protein receptor activation and possesses an important intracellular role in major histocompatibility complex class II antigen presentation. Modulated CTSS activity is also associated with pulmonary disease comorbidities, such as cancer, cardiovascular disease, and diabetes. CTSS is expressed in a wide variety of immune cells and is biologically active at neutral pH. Herein, we review the significance of CTSS signaling in pulmonary diseases and associated comorbidities. We also discuss CTSS as a plausible therapeutic target and describe recent and current clinical trials examining CTSS inhibition as a means for treatment.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Alnardo Lora
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ghassan Samaha
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ziyad Elgamal
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ryan Kaiser
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Clifford Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
| |
Collapse
|
21
|
Multifunctional Acidocin 4356 Combats Pseudomonas aeruginosa through Membrane Perturbation and Virulence Attenuation: Experimental Results Confirm Molecular Dynamics Simulation. Appl Environ Microbiol 2020; 86:AEM.00367-20. [PMID: 32169940 DOI: 10.1128/aem.00367-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 11/20/2022] Open
Abstract
A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (∼8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.
Collapse
|
22
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
23
|
Involvement of Cathepsins in Innate and Adaptive Immune Responses in Periodontitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4517587. [PMID: 32328131 PMCID: PMC7150685 DOI: 10.1155/2020/4517587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infectious disease whereby the chronic inflammatory process of the periodontium stimulated by bacterial products induces specific host cell responses. The activation of the host cell immune system upregulates the production of inflammatory mediators, comprising cytokines and proteolytic enzymes, which contribute to inflammation and bone destruction. It has been well known that periodontitis is related to systemic inflammation which links to numerous systemic diseases, including diabetes and arteriosclerosis. Furthermore, periodontitis has been reported in association with neurodegenerative diseases such as Alzheimer's disease (AD) in the brain. Regarding immune responses and inflammation, cathepsin B (CatB) plays pivotal role for the induction of IL-1β, cathepsin K- (CatK-) dependent active toll-like receptor 9 (TLR9) signaling, and cathepsin S (CatS) which involves in regulating both TLR signaling and maturation of the MHC class II complex. Notably, both the production and proteolytic activities of cathepsins are upregulated in chronic inflammatory diseases, including periodontitis. In the present review, we focus on the roles of cathepsins in the innate and adaptive immune responses within periodontitis. We believe that understanding the roles of cathepsins in the immune responses in periodontitis would help to elucidate the therapeutic strategies of periodontitis, thus benefit for reduction of systemic diseases as well as neurodegenerative diseases in the global aging society.
Collapse
|
24
|
Engineered Human Cathelicidin Antimicrobial Peptides Inhibit Ebola Virus Infection. iScience 2020; 23:100999. [PMID: 32252021 PMCID: PMC7104201 DOI: 10.1016/j.isci.2020.100999] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
The 2014–2016 West Africa Ebola virus (EBOV) outbreak coupled with the most recent outbreaks in Central Africa underscore the need to develop effective treatment strategies against EBOV. Although several therapeutic options have shown great potential, developing a wider breadth of countermeasures would increase our efforts to combat the highly lethal EBOV. Here we show that human cathelicidin antimicrobial peptide (AMP) LL-37 and engineered LL-37 AMPs inhibit the infection of recombinant virus pseudotyped with EBOV glycoprotein (GP) and the wild-type EBOV. These AMPs target EBOV infection at the endosomal cell-entry step by impairing cathepsin B-mediated processing of EBOV GP. Furthermore, two engineered AMPs containing D-amino acids are particularly potent in blocking EBOV infection in comparison with other AMPs, most likely owing to their resistance to intracellular enzymatic degradation. Our results identify AMPs as a novel class of anti-EBOV therapeutics and demonstrate the feasibility of engineering AMPs for improved therapeutic efficacy. Cathelicidin-derived antimicrobial peptides (AMPs) potently inhibit EBOV infection D-form AMPs are more resistant to proteolytic cleavage than L-form AMPs in the cell AMPs prevent cathepsin B-mediated processing of EBOV GP1, 2
Collapse
|
25
|
Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. Int J Mol Sci 2020; 21:ijms21061944. [PMID: 32178437 PMCID: PMC7139492 DOI: 10.3390/ijms21061944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Besides their primary involvement in the recycling and degradation of proteins in endo-lysosomal compartments and also in specialized biological functions, cysteine cathepsins are pivotal proteolytic contributors of various deleterious diseases. While the molecular mechanisms of regulation via their natural inhibitors have been exhaustively studied, less is currently known about how their enzymatic activity is modulated during the redox imbalance associated with oxidative stress and their exposure resistance to oxidants. More specifically, there is only patchy information on the regulation of lung cysteine cathepsins, while the respiratory system is directly exposed to countless exogenous oxidants contained in dust, tobacco, combustion fumes, and industrial or domestic particles. Papain-like enzymes (clan CA, family C1, subfamily C1A) encompass a conserved catalytic thiolate-imidazolium pair (Cys25-His159) in their active site. Although the sulfhydryl group (with a low acidic pKa) is a potent nucleophile highly susceptible to chemical modifications, some cysteine cathepsins reveal an unanticipated resistance to oxidative stress. Besides an introductory chapter and peculiar attention to lung cysteine cathepsins, the purpose of this review is to afford a concise update of the current knowledge on molecular mechanisms associated with the regulation of cysteine cathepsins by redox balance and by oxidants (e.g., Michael acceptors, reactive oxygen, and nitrogen species).
Collapse
|
26
|
Dana D, Pathak SK. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules 2020; 25:E698. [PMID: 32041276 PMCID: PMC7038230 DOI: 10.3390/molecules25030698] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
27
|
Andrault PM, Schamberger AC, Chazeirat T, Sizaret D, Renault J, Staab-Weijnitz CA, Hennen E, Petit-Courty A, Wartenberg M, Saidi A, Baranek T, Guyetant S, Courty Y, Eickelberg O, Lalmanach G, Lecaille F. Cigarette smoke induces overexpression of active human cathepsin S in lungs from current smokers with or without COPD. Am J Physiol Lung Cell Mol Physiol 2019; 317:L625-L638. [PMID: 31553637 DOI: 10.1152/ajplung.00061.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cigarette smoking has marked effects on lung tissue, including induction of oxidative stress, inflammatory cell recruitment, and a protease/antiprotease imbalance. These effects contribute to tissue remodeling and destruction resulting in loss of lung function in chronic obstructive pulmonary disease (COPD) patients. Cathepsin S (CatS) is a cysteine protease that is involved in the remodeling/degradation of connective tissue and basement membrane. Aberrant expression or activity of CatS has been implicated in a variety of diseases, including arthritis, cancer, cardiovascular, and lung diseases. However, little is known about the effect of cigarette smoking on both CatS expression and activity, as well as its role in smoking-related lung diseases. Here, we evaluated the expression and activity of human CatS in lung tissues from never-smokers and smokers with or without COPD. Despite the presence of an oxidizing environment, CatS expression and activity were significantly higher in current smokers (both non-COPD and COPD) compared with never-smokers, and correlated positively with smoking history. Moreover, we found that the exposure of primary human bronchial epithelial cells to cigarette smoke extract triggered the activation of P2X7 receptors, which in turns drives CatS upregulation. The present data suggest that excessive CatS expression and activity contribute, beside other proteases, to the deleterious effects of cigarette smoke on pulmonary homeostasis.
Collapse
Affiliation(s)
- Pierre-Marie Andrault
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Andrea C Schamberger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Thibault Chazeirat
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Damien Sizaret
- Université de Tours, Tours, France.,Centre Hospitalier Régional Universitaire de Tours, Service d'Anatomie et Cytologie Pathologique, Tours, France
| | | | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Elisabeth Hennen
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Agnès Petit-Courty
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Mylène Wartenberg
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Thomas Baranek
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Serge Guyetant
- Université de Tours, Tours, France.,Centre Hospitalier Régional Universitaire de Tours, Service d'Anatomie et Cytologie Pathologique, Tours, France
| | - Yves Courty
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Gilles Lalmanach
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France.,INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires, Team Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| |
Collapse
|
28
|
Small DM, Brown RR, Doherty DF, Abladey A, Zhou-Suckow Z, Delaney RJ, Kerrigan L, Dougan CM, Borensztajn KS, Holsinger L, Booth R, Scott CJ, López-Campos G, Elborn JS, Mall MA, Weldon S, Taggart CC. Targeting of cathepsin S reduces cystic fibrosis-like lung disease. Eur Respir J 2019; 53:13993003.01523-2018. [PMID: 30655278 DOI: 10.1183/13993003.01523-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/27/2018] [Indexed: 11/05/2022]
Abstract
Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of βENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-βENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with βENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of βENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in βENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.
Collapse
Affiliation(s)
- Donna M Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Ryan R Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Declan F Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anthony Abladey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Zhe Zhou-Suckow
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Rebecca J Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lauren Kerrigan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Keren S Borensztajn
- INSERM UMRS_933, Université Pierre et Marie Curie, Hôpital Trousseau, Paris, France
| | | | | | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Guillermo López-Campos
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dept of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
29
|
Huynh E, Penney J, Caswell J, Li J. Protective Effects of Protegrin in Dextran Sodium Sulfate-Induced Murine Colitis. Front Pharmacol 2019; 10:156. [PMID: 30873029 PMCID: PMC6403130 DOI: 10.3389/fphar.2019.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cathelicidins, a class of antimicrobial peptides, have been widely studied for their antimicrobial role in innate immune responses during infection and inflammation. At sub-antimicrobial concentrations, various cathelicidins from different species have been reported to exert chemotactic activity on neutrophils, monocytes, dendritic cells and T-cells, and also enhance angiogenesis and wound healing. To date, the role of the pig cathelicidin, protegrin-1 (PG-1), in immune modulation and tissue repair in the intestinal tract has not been investigated. The aim of the present study was to examine the potential protective effects of recombinant PG-1 in a mouse dextran sodium sulfate (DSS)-induced colitis inflammation model. This is the first report showing the protective effects of PG-1 in its various forms (pro-, cathelin-, and mature-forms) in attenuating significant body weight loss associated with DSS-induced colitis (p < 0.05). PG-1 treatment improved histological scores (P < 0.05) and influenced the gene expression of inflammatory mediators and tissue repair factors such as trefoil factor 3 (TFF3) and mucin (MUC-2). Protegrin treatment also altered the metabolite profile, returning the metabolite levels closer to untreated control levels. These findings lay the foundation for future oral application of recombinant PG-1 to potentially treat intestinal damage and inflammation.
Collapse
Affiliation(s)
- Evanna Huynh
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Jenna Penney
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Jeff Caswell
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
- Department of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
30
|
A highly significant association between Cathepsin S gene polymorphisms rs12068264 and chronic obstructive pulmonary disease susceptibility in Han Chinese population. Biosci Rep 2018; 38:BSR20180410. [PMID: 29976774 PMCID: PMC6050194 DOI: 10.1042/bsr20180410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/08/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Cathepsin S (CTSS) and Sirtuin-1 (SIRT1) played crucial roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the associations between the polymorphisms of CTSS as well as SIRT1 and COPD in Asian population remain elusive. In the present study, one single nucleotide polymorphism (SNP) in rs12068264 was discovered (in 385 individuals) to be associated with the susceptibility of COPD in a Chinese Han population. The genotyping was performed using improved multiplex ligase detection reaction (iMLDR) technique. Subjects with T allele of rs12068264 in CTSS gene had an increased risk of COPD (T compared with C: odds ratio (OR) = 1.351, 95% confidence interval (95% CI): 1.008-1.811, P=0.044) compared with C allele. Subjects with TT genotype at rs12068264 had a higher risk of COPD in a recessive model (TT compared with TC + CC: OR = 2.30, 95% CI: 1.06-4.989, P=0.035). Compared with the C variant of rs12068264, the homozygous carriers of the TT genotype had higher procalcitonin (PCT) levels. Finally, haplotype analysis demonstrated that the SNPs in the CTSS and SIRT1 gene had no statistical differences between patients with COPD and the controls. In conclusion, the genetic polymorphisms of CTSS were associated with the susceptibility of COPD in a Chinese Han population, which may be helpful in understanding genetic mechanisms underlying the pathogenesis of COPD.
Collapse
|
31
|
Memmert S, Nokhbehsaim M, Damanaki A, Nogueira AVB, Papadopoulou AK, Piperi C, Basdra EK, Rath-Deschner B, Götz W, Cirelli JA, Jäger A, Deschner J. Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells. BMC Oral Health 2018; 18:60. [PMID: 29622023 PMCID: PMC5887187 DOI: 10.1186/s12903-018-0518-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. Methods An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Results Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Conclusions Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.
Collapse
Affiliation(s)
- Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany. .,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Andressa V B Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.,Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
Role of Cathepsin S in Periodontal Inflammation and Infection. Mediators Inflamm 2017; 2017:4786170. [PMID: 29362520 PMCID: PMC5736933 DOI: 10.1155/2017/4786170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.
Collapse
|
33
|
Efficacy of Rhesus Theta-Defensin-1 in Experimental Models of Pseudomonas aeruginosa Lung Infection and Inflammation. Antimicrob Agents Chemother 2017; 61:AAC.00154-17. [PMID: 28559270 DOI: 10.1128/aac.00154-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/21/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic airway infection and inflammation contribute to the progressive loss of lung function and shortened survival of patients with cystic fibrosis (CF). Rhesus theta defensin-1 (RTD-1) is a macrocyclic host defense peptide with antimicrobial and immunomodulatory activities. Combined with favorable preclinical safety and peptide stability data, RTD-1 warrants investigation to determine its therapeutic potential for treatment of CF lung disease. We sought to evaluate the therapeutic potential of RTD-1 for CF airway infection and inflammation using in vitro, ex vivo, and in vivo models. We evaluated RTD-1's effects on basal and Pseudomonas aeruginosa-induced inflammation in CF sputum leukocytes and CF bronchial epithelial cells. Peptide stability was evaluated by incubation with CF sputum. Airway pharmacokinetics, safety, and tolerance studies were performed in naive mice. Aerosolized RTD-1 treatment effects were assessed by analyzing lung bacterial burdens and airway inflammation using an established model of chronic P. aeruginosa endobronchial infection in CF (ΔF508) mice. RTD-1 directly reduces metalloprotease activity, as well as inflammatory cytokine secretion from CF airway leukocyte and bronchial epithelial cells. Intrapulmonary safety, tolerability, and stability data support the aerosol administration route. RTD-1 reduced the bacterial lung burden, airway neutrophils, and inflammatory cytokines in CF mice with chronic P. aeruginosa lung infection. Collectively, these studies support further development of RTD-1 for treatment of CF airway disease.
Collapse
|
34
|
The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity. PLoS One 2016; 11:e0161573. [PMID: 27561012 PMCID: PMC4999073 DOI: 10.1371/journal.pone.0161573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/08/2016] [Indexed: 12/29/2022] Open
Abstract
Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion.
Collapse
|
35
|
LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep 2016; 68:802-8. [PMID: 27117377 DOI: 10.1016/j.pharep.2016.03.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
Abstract
Antimicrobial peptides (AMPs) is a large family of compounds serving as natural antibiotics, widely distributed across the organism, mainly in mucus layers. They are designed to prevent pathogens from colonization. Among them, defensins and cathelicidins could be found. LL-37, the sole human cathelicidin draws particular attention because of its outstanding abilities. In addition to being a broad spectrum antibiotic, LL-37 has potent chemotactic and immunomodulatory properties. In this review, we discussed the potency of LL-37 as a therapeutic agent in four systems: immunological, respiratory, gastrointestinal and in the skin. We analyzed the main molecular pathways dependent on human cathelicidin and related them to specific diseases. We conclude that LL-37 shows a great potential to be further investigated and developed as a drug with clinical use.
Collapse
|
36
|
Zhou N, Pan T, Zhang J, Li Q, Zhang X, Bai C, Huang F, Peng T, Zhang J, Liu C, Tao L, Zhang H. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J Biol Chem 2016; 291:9218-32. [PMID: 26953343 PMCID: PMC4861487 DOI: 10.1074/jbc.m116.716100] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 01/18/2023] Open
Abstract
Ebola virus infection can cause severe hemorrhagic fever with a high mortality in
humans. The outbreaks of Ebola viruses in 2014 represented the most serious
Ebola epidemics in history and greatly threatened public health worldwide. The
development of additional effective anti-Ebola therapeutic agents is therefore
quite urgent. In this study, via high throughput screening of Food and Drug
Administration-approved drugs, we identified that teicoplanin, a glycopeptide
antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses
into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on
transcription- and replication-competent virus-like particles, with an
IC50 as low as 330 nm. Comparative analysis further
demonstrated that teicoplanin is able to block the entry of Middle East
respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS)
envelope pseudotyped viruses as well. Teicoplanin derivatives such as
dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola,
MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola
virus entry by specifically inhibiting the activity of cathepsin L, opening a
novel avenue for the development of additional glycopeptides as potential
inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has
routinely been used in the clinic with low toxicity, our work provides a
promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS
virus infection.
Collapse
Affiliation(s)
- Nan Zhou
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Ting Pan
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Junsong Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Qianwen Li
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Xue Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Chuan Bai
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Feng Huang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Tao Peng
- the Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510182, Guangdong, and
| | - Jianhua Zhang
- the CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine
| | - Hui Zhang
- From the Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, and Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-sen University, Guangzhou 510080, Guangdong,
| |
Collapse
|
37
|
Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 2015; 122:151-68. [PMID: 26341472 DOI: 10.1016/j.biochi.2015.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France.
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| | - Pierre-Marie Andrault
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
38
|
Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P. Unique features of human cathelicidin LL-37. Biofactors 2015; 41:289-300. [PMID: 26434733 DOI: 10.1002/biof.1225] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023]
Abstract
Cathelicidins are antimicrobial peptides produced by humans and animals in response to various pathogenic microbes. This review intends to provide a brief overview of the expression, structure, properties and function of human cathelicidin LL-37 which may be a therapeutic agent against a variety of bacterial and viral diseases, cancers, and hard-to-heal wounds. Cathelicidins act as a primary defense against bacteria and other pathogens in the case of inflammation. They are able to kill bacteria and fungi, inhibit and destroy bacterial biofilms, and possess antiviral and antiparasitics properties. They can also play a role in angiogenesis, wound healing, and the regulation of apoptosis. The host defense peptide LL-37 has emerged as a novel modulator of tumor growth and metastasis in carcinogenesis of various types of cancers. LL-37 is an antimicrobial peptide able of inducing various effects. It acts as an anti- and pro- inflammatory factor. Cathelicidins are able to directly and selectively destroy membranes of various microbes and cancer cells, but they do not attack normal cells. The role of cathelicidins in cancer is double-sided. They play an important role in killing cancer cells and may provide a new possibility for the development of cancer therapeutics. However, they also can participate in carcinogenesis. Due to its activity spectrum LL-37 could be applied in pharmacotherapy. Cathelicidin peptides could serve as a template for the development of modern anti-microbial and anti-viral drugs. LL-37 is an excellent candidate to develop into therapeutics for infected wounds.
Collapse
Affiliation(s)
- Katarzyna Bandurska
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Agnieszka Berdowska
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | | | - Piotr Krupa
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| |
Collapse
|