1
|
Peris-Díaz MD, Orzeł A, Wu S, Mosna K, Barran PE, Krężel A. Combining Native Mass Spectrometry and Proteomics to Differentiate and Map the Metalloform Landscape in Metallothioneins. J Proteome Res 2024; 23:3626-3637. [PMID: 38993068 PMCID: PMC11301679 DOI: 10.1021/acs.jproteome.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Within the intricate landscape of the proteome, approximately 30% of all proteins bind metal ions. This repertoire is even larger when considering all the different forms of a protein, known as proteoforms. Here, we propose the term "metalloforms" to refer to different structural or functional variations of a protein resulting from the binding of various hetero- or homogeneous metal ions. Using human Cu(I)/Zn(II)-metallothionein-3 as a representative model, we developed a chemical proteomics strategy to simultaneously differentiate and map Zn(II) and Cu(I) metal binding sites. In the first labeling step, N-ethylmaleimide reacts with Cysteine (Cys), resulting in the dissociation of all Zn(II) ions while Cu(I) remains bound to the protein. In the second labeling step, iodoacetamide is utilized to label Cu(I)-bound Cys residues. Native mass spectrometry (MS) was used to determine the metal/labeling protein stoichiometries, while bottom-up/top-down MS was used to map the Cys-labeled residues. Next, we used a developed methodology to interrogate an isolated rabbit liver metallothionein fraction containing three metallothionein-2 isoforms and multiple Cd(II)/Zn(II) metalloforms. The approach detailed in this study thus holds the potential to decode the metalloproteoform diversity within other proteins.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Alicja Orzeł
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Sylwia Wu
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Karolina Mosna
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
2
|
Peng K, Sha J, Fang X, Li M, Yu J, Hao L, Xu F. Detection of Cadmium(II) in Aquatic Products Using a Rolling-Circle Amplification-Coupled Ratio Fluorescent Probe Based on an Aptamer-Peptide Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8167-8179. [PMID: 38509823 DOI: 10.1021/acs.jafc.3c08636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The existing aptamers for cadmium (Cd2+), the common toxic heavy metal contaminant in food, cannot meet the requirements for detecting Cd2+ in rapid detection methods. In previous work, we found that coupling aptamer-peptide conjugates (APCs) with peptides and aptamers can provide a less disruptive method with a significantly improved affinity. Moreover, we found that the spatial conformation of aptamers and peptides is crucial for obtaining proper affinity in APC. Therefore, we describe a simple design strategy to obtain a series of APCs with different affinities by designing peptide orientations (N-terminal, C-terminal). The best affinity was found for APC(C1-N) with a binding constant (Ka) of 2.23 × 106 M-1, indicating that the APC(C1-N) affinity was significantly increased by 829.17% over aptamer. Finally, a rolling-circle amplification (RCA)-coupled ratio fluorescence-based biosensor for Cd2+ detection was established with a detection limit of 0.0036 nM, which has great potential for practical aquatic product detection.
Collapse
Affiliation(s)
- Kaimin Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Jiahao Sha
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Xinyu Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Mengqiu Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Jingsong Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Liling Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Fei Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| |
Collapse
|
3
|
Janisse SE, Fernandez RL, Heffern MC. Characterizing metal-biomolecule interactions by mass spectrometry. Trends Biochem Sci 2023; 48:815-825. [PMID: 37433704 DOI: 10.1016/j.tibs.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023]
Abstract
Metal micronutrients are essential for life and exist in a delicate balance to maintain an organism's health. The labile nature of metal-biomolecule interactions clouds the understanding of metal binders and metal-mediated conformational changes that are influential to health and disease. Mass spectrometry (MS)-based methods and technologies have been developed to better understand metal micronutrient dynamics in the intra- and extracellular environment. In this review, we describe the challenges associated with studying labile metals in human biology and highlight MS-based methods for the discovery and study of metal-biomolecule interactions.
Collapse
Affiliation(s)
- Samuel E Janisse
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA
| | - Rebeca L Fernandez
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA
| | - Marie C Heffern
- Department of Chemistry, University of California, Davis, One Shields Drive, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Peris-Díaz MD, Wu S, Mosna K, Liggett E, Barkhanskiy A, Orzeł A, Barran P, Krężel A. Structural Characterization of Cu(I)/Zn(II)-metallothionein-3 by Ion Mobility Mass Spectrometry and Top-Down Mass Spectrometry. Anal Chem 2023; 95:10966-10974. [PMID: 37440218 PMCID: PMC10372872 DOI: 10.1021/acs.analchem.3c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Mammalian zinc metallothionein-3 (Zn7MT3) plays an important role in protecting against copper toxicity by scavenging free Cu(II) ions or removing Cu(II) bound to β-amyloid and α-synuclein. While previous studies reported that Zn7MT3 reacts with Cu(II) ions to form Cu(I)4Zn(II)4MT3ox containing two disulfides (ox), the precise localization of the metal ions and disulfides remained unclear. Here, we undertook comprehensive structural characterization of the metal-protein complexes formed by the reaction between Zn7MT3 and Cu(II) ions using native ion mobility mass spectrometry (IM-MS). The complex formation mechanism was found to involve the disassembly of Zn3S9 and Zn4S11 clusters from Zn7MT3 and reassembly into Cu(I)xZn(II)yMT3ox complexes rather than simply Zn(II)-to-Cu(I) exchange. At neutral pH, the β-domain was shown to be capable of binding up to six Cu(I) ions to form Cu(I)6Zn(II)4MT3ox, although the most predominant species was the Cu(I)4Zn(II)4MT3ox complex. Under acidic conditions, four Zn(II) ions dissociate, but the Cu(I)4-thiolate cluster remains stable, highlighting the MT3 role as a Cu(II) scavenger even at lower than the cytosolic pH. IM-derived collision cross sections (CCS) reveal that Cu(I)-to-Zn(II) swap in Zn7MT3 with concomitant disulfide formation induces structural compaction and a decrease in conformational heterogeneity. Collision-induced unfolding (CIU) experiments estimated that the native-like folded Cu(I)4Zn(II)4MT3ox conformation is more stable than Zn7MT3. Native top-down MS demonstrated that the Cu(I) ions are exclusively bound to the β-domain in the Cu(I)4Zn(II)4MT3ox complex as well as the two disulfides, serving as a steric constraint for the Cu(I)4-thiolate cluster. In conclusion, this study enhances our comprehension of the structure, stability, and dynamics of Cu(I)xZn(II)yMT3ox complexes.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Sylwia Wu
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Karolina Mosna
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ellen Liggett
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Alexey Barkhanskiy
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Alicja Orzeł
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Perdita Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Korkola NC, Stillman MJ. Structural Role of Cadmium and Zinc in Metallothionein Oxidation by Hydrogen Peroxide: The Resilience of Metal-Thiolate Clusters. J Am Chem Soc 2023; 145:6383-6397. [PMID: 36914167 DOI: 10.1021/jacs.2c13578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Oxidative stress is a state involving an imbalance of reactive oxygen species in a cell and is linked to a variety of diseases. The metal-binding protein metallothionein (MT) may play a role in protection due to its high cysteine content. Many studies have shown that oxidative stress will cause MT to both form disulfide bonds and release bound metals. However, studies on the more biologically relevant partially metalated MTs have been largely neglected. Additionally, most studies to date have used spectroscopic methods that cannot detect specific intermediate species. In this paper, we describe the oxidation and the subsequent metal displacement pathway of fully and partially metalated MTs with hydrogen peroxide. The rates of the reactions were monitored using electrospray ionization mass spectrometry (ESI-MS) techniques, which resolved and characterized the individual intermediate Mx(SH)yMT species. The rate constants were calculated for each species formation. Through ESI-MS and circular dichroism spectroscopy, it was found that the three metals in the β-domain were the first to be released from the fully metalated MTs. The Cd(II) in the partially metalated Cd(II)-bound MTs rearranged to form a protective Cd4MT cluster structure upon exposure to oxidation. The partially metalated Zn(II)-bound MTs oxidized at a faster rate as the Zn(II) did not rearrange in response to oxidation. Additionally, density functional theory calculations showed that the terminally bound cysteines were more negative and thus more susceptible to oxidation than the bridging cysteines. The results of this study highlight the importance of metal-thiolate structures and metal identity in MT's response to oxidation.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
6
|
Peris-Díaz M, Guran R, Domene C, de los Rios V, Zitka O, Adam V, Krężel A. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species. J Am Chem Soc 2021; 143:16486-16501. [PMID: 34477370 PMCID: PMC8517974 DOI: 10.1021/jacs.1c05495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/16/2022]
Abstract
Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and β-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 μs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Vivian de los Rios
- Functional
Proteomics, Department of Cellular and Molecular Medicine and Proteomic
Facility, Centro de Investigaciones Biológicas
(CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK, Walker TE, Russell DH. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:280-305. [PMID: 32608033 PMCID: PMC7989064 DOI: 10.1002/mas.21642] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | | | - Joanna K Denton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
8
|
Peris-Díaz M, Guran R, Zitka O, Adam V, Krężel A. Metal- and Affinity-Specific Dual Labeling of Cysteine-Rich Proteins for Identification of Metal-Binding Sites. Anal Chem 2020; 92:12950-12958. [PMID: 32786475 PMCID: PMC7547867 DOI: 10.1021/acs.analchem.0c01604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Here, using human metallothionein (MT2) as an example, we describe an improved strategy based on differential alkylation coupled to MS, assisted by zinc probe monitoring, for identification of cysteine-rich binding sites with nanomolar and picomolar metal affinity utilizing iodoacetamide (IAM) and N-ethylmaleimide reagents. We concluded that an SN2 reaction provided by IAM is more suitable to label free Cys residues, avoiding nonspecific metal dissociation. Afterward, metal-bound Cys can be easily labeled in a nucleophilic addition reaction after separation by reverse-phase C18 at acidic pH. Finally, we evaluated the efficiency of the method by mapping metal-binding sites of Zn7-xMT species using a bottom-up MS approach with respect to metal-to-protein affinity and element(al) resolution. The methodology presented might be applied not only for MT2 but to identify metal-binding sites in other Cys-containing proteins.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Niu H, Zhang Y, Tang J, Zhu X, Ye Y, Zhao Y. A bifunctional fluorescent sensor for CCCP-induced cancer cell apoptosis imaging. Chem Commun (Camb) 2020; 56:12423-12426. [PMID: 32936131 DOI: 10.1039/d0cc04200e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The detailed mechanism and the extent of pH/SO2 changes during apoptosis remain unknown. The developed sensor NPCF for SO2 and pH dual detection illustrates that SO2 can reduce the inflammation caused by LPS and the acidification of the environment. The levels of SO2 and pH change during carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis.
Collapse
Affiliation(s)
- Huawei Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
McCabe JW, Mallis CS, Kocurek KI, Poltash ML, Shirzadeh M, Hebert MJ, Fan L, Walker TE, Zheng X, Jiang T, Dong S, Lin CW, Laganowsky A, Russell DH. First-Principles Collision Cross Section Measurements of Large Proteins and Protein Complexes. Anal Chem 2020; 92:11155-11163. [PMID: 32662991 PMCID: PMC7967297 DOI: 10.1021/acs.analchem.0c01285] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rotationally averaged collision cross section (CCS) values for a series of proteins and protein complexes ranging in size from 8.6 to 810 kDa are reported. The CCSs were obtained using a native electrospray ionization drift tube ion mobility-Orbitrap mass spectrometer specifically designed to enhance sensitivity while having high-resolution ion mobility and mass capabilities. Periodic focusing (PF)-drift tube (DT)-ion mobility (IM) provides first-principles determination of the CCS of large biomolecules that can then be used as CCS calibrants. The experimental, first-principles CCS values are compared to previously reported experimentally determined and computationally calculated CCS using projected superposition approximation (PSA), the Ion Mobility Projection Approximation Calculation Tool (IMPACT), and Collidoscope. Experimental CCS values are generally in agreement with previously reported CCSs, with values falling within ∼5.5%. In addition, an ion mobility resolution (CCS centroid divided by CCS fwhm) of ∼60 is obtained for pyruvate kinase (MW ∼ 233 kDa); however, ion mobility resolution for bovine serum albumin (MW ∼ 68 kDa) is less than ∼20, which arises from sample impurities and underscores the importance of sample quality. The high resolution afforded by the ion mobility-Orbitrap mass analyzer provides new opportunities to understand the intricate details of protein complexes such as the impact of post-translational modifications (PTMs), stoichiometry, and conformational changes induced by ligand binding.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christopher S Mallis
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Klaudia I Kocurek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael L Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xueyun Zheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ting Jiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Dong S, Shirzadeh M, Fan L, Laganowsky A, Russell DH. Ag + Ion Binding to Human Metallothionein-2A Is Cooperative and Domain Specific. Anal Chem 2020; 92:8923-8932. [PMID: 32515580 PMCID: PMC8114364 DOI: 10.1021/acs.analchem.0c00829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a family of cysteine-rich proteins that play key biological roles for a wide range of metal ions, but unlike many other metalloproteins, the structures of apo- and partially metalated MTs are not well understood. Here, we combine nano-electrospray ionization-mass spectrometry (ESI-MS) and nano-ESI-ion mobility (IM)-MS with collision-induced unfolding (CIU), chemical labeling using N-ethylmaleimide (NEM), and both bottom-up and top-down proteomics in an effort to better understand the metal binding sites of the partially metalated forms of human MT-2A, viz., Ag4-MT. The results for Ag4-MT are then compared to similar results obtained for Cd4-MT. The results show that Ag4-MT is a cooperative product, and data from top-down and bottom-up proteomics mass spectrometry analysis combined with NEM labeling revealed that all four Ag+ ions of Ag4-MT are bound to the β-domain. The binding sites are identified as Cys13, Cys15, Cys19, Cys21, Cys24, and Cys26. While both Ag+ and Cd2+ react with MT to yield cooperative products, i.e., Ag4-MT and Cd4-MT, these products are very different; Ag+ ions of Ag4-MT are located in the β-domain, whereas Cd2+ ions of Cd4-MT are located in the α-domain. Ag6-MT has been reported to be fully metalated in the β-domain, but our data suggest the two additional Ag+ ions are more weakly bound than are the other four. Higher order Agi-MT complexes (i = 7-17) are formed in solutions that contain excess Ag+ ions, and these are assumed to be bound to the α-domain or shared between the two domains. Interestingly, the excess Ag+ ions are displaced upon addition of NEM to this solution to yield predominantly Ag4NEM14-MT. Results from CIU suggest that Agi-MT complexes are structurally more ordered and that the energy required to unfold these complexes increases as the number of coordinated Ag+ increases.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Salim A, Chesnov S, Freisinger E. Metallation pathway of a plant metallothionein: Cicer arietinum MT2. J Inorg Biochem 2020; 210:111157. [PMID: 32622214 DOI: 10.1016/j.jinorgbio.2020.111157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022]
Abstract
The plant metallothionein 2 protein from Cicer arietinum (cicMT2) is a typical member of the plant MT subfamily p2 that is characterized by an N- and C-terminal cysteine- (Cys-)rich, metal binding sequence connected by a long cysteine-free linker region. cicMT2 coordinates up to five ZnII or CdII ions by its 14 cysteine thiolate groups forming a single metal-thiolate cluster. While MTs from other phyla are considerably well-studied, many details about plant MTs are missing. In this study the metallation pathway of cicMT2 is investigated using mass spectrometry. To evaluate the influence of the linker region as well as the interplay of the two Cys-rich stretches, the full-length cicMT2 protein as well as the individual Cys-rich domains with and without the linker region were analysed. Up to three CdII ions can be coordinated by the eight Cys residues of the N-terminal part and up to two CdII ions by the six Cys residues of the C-terminal sequence. However, no preferential binding to either of the two sequences is observed, which is in-line with the closely similar apparent binding constants of the individual domains obtained from competition reactions with the chelator 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid. The combination of limited proteolytic digestion, mass spectrometry, dynamic light scattering, size-exclusion chromatography, and 19F NMR spectroscopy enables us to draw conclusions about the overall protein-fold and the cluster formation process.
Collapse
Affiliation(s)
- Alma Salim
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Serge Chesnov
- University of Zurich/ETH Zurich, Functional Genomics Centre Zurich, Zurich, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Dong S, Wagner ND, Russell DH. Collision-Induced Unfolding of Partially Metalated Metallothionein-2A: Tracking Unfolding Reactions of Gas-Phase Ions. Anal Chem 2018; 90:11856-11862. [PMID: 30221929 DOI: 10.1021/acs.analchem.8b01622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a group of intrinsically disordered proteins that exhibit extreme diversity in structure, biological functionality, and metal ion specificity. Structures of coordinatively saturated metalated MTs have been extensively studied, but very limited structural information for the partially metalated MTs exists. Here, the conformational preferences from partial metalation of rabbit metallothionein-2A (MT) by Cd2+, Zn2+, and Ag+ are studied using nanoelectrospray ionization ion mobility mass spectrometry. We also employ collision-induced unfolding to probe differences in the gas-phase stabilities of these partially metalated MTs. Our results show that despite their similar ion mobility profiles, Cd4-MT, Zn4-MT, Ag4-MT, and Ag6-MT differ dramatically in their gas-phase stabilities. Furthermore, the sequential addition of each Cd2+ and Zn2+ ion results in the incremental stabilization of unique unfolding intermediates.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Nicole D Wagner
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
14
|
Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Clowers BH, Russell DH. Fourier Transform-Ion Mobility-Orbitrap Mass Spectrometer: A Next-Generation Instrument for Native Mass Spectrometry. Anal Chem 2018; 90:10472-10478. [PMID: 30091588 PMCID: PMC6464636 DOI: 10.1021/acs.analchem.8b02463] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new instrument configuration for native ion mobility-mass spectrometry (IM-MS) is described. Macromolecule ions are generated by using a static ESI source coupled to an RF ion funnel, and these ions are then mobility and mass analyzed using a periodic focusing drift tube IM analyzer and an Orbitrap mass spectrometer. The instrument design retains the capabilities for first-principles determination of rotationally averaged ion-neutral collision cross sections and high-resolution measurements in both mobility and mass analysis modes for intact protein complexes. Operation in the IM mode utilizes FT-IMS modes (originally described by Knorr ( Knorr , F. J. Anal. Chem . 1985 , 57 ( 2 ), 402 - 406 )), which provides a means to overcome the inherent duty cycle mismatch for drift tube (DT)-IM and Orbitrap mass analysis. The performance of the native ESI-FT-DT-IM-Orbitrap MS instrument was evaluated using the protein complexes Gln K (MW 44 kDa) and streptavidin (MW 53 kDa) bound to small molecules (ADP and biotin, respectively) and transthyretin (MW 56 kDa) bound to thyroxine and zinc.
Collapse
Affiliation(s)
- Michael L. Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Kalsotra T, Khullar S, Agnihotri R, Reddy MS. Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. MICROBIOLOGY-SGM 2018; 164:868-876. [PMID: 29762106 DOI: 10.1099/mic.0.000666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothioneins (MTs) are small proteins with highly conserved cysteine residues and are involved in metal homeostasis and metal detoxification. Two metallothionein genes ShMT1 and ShMT2 from the ectomycorrhizal fungus Suillus himalayensis were characterised for their potential role in heavy metal detoxification. The response of these MTs to the exogenous concentrations of copper and cadmium was studied by qPCR analysis. The exogenous copper but not the cadmium at the tested concentrations induced the expression of the MT genes. The functional role of ShMTs was validated by expressing the two genes through functional complementation in yeast mutant strain cup1Δ (copper-sensitive), ycf1Δ (cadmium- sensitive) and zrc1Δ (zinc-sensitive). The mutant strain successfully expressed the two genes resulting in wild-type phenotype restoration of copper, cadmium and zinc tolerance. The present study shows that the ectomycorrhizal fungus S. himalayensis encodes two metallothionein genes (ShMT1 and ShMT2) which are more inducible by copper than cadmium and could play an important role in their detoxification.
Collapse
Affiliation(s)
- Tania Kalsotra
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Shikha Khullar
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Radhika Agnihotri
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
16
|
Chromatographic separation of similar post-translationally modified metallothioneins reveals the changing conformations of apo-MT upon cysteine alkylation by high resolution LC-ESI-MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018. [PMID: 29518586 DOI: 10.1016/j.bbapap.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metallothioneins (MTs) are a class of small cysteine-rich proteins essential for Zn and Cu homeostasis, heavy metal detoxification, and cellular redox chemistry. Herein, we describe the separation and characterization of MTs differentially modified with N-ethylmaleimide (NEM) by liquid chromatography-mass spectrometry (LC-MS). The full-length recombinant MT isoform 1a as well as is isolated domain fragments were first alkylated, then separated on column with subsequent detection by ultra-high resolution ESI-MS. Different behavior was observed for the three peptides with the full-length protein and the isolated α-domain exhibiting similar separation characteristics. For the isolated β-domain, the smallest peptide with 9 cysteines in the sequence, each alkylated species was well separated, indicating large changes in protein conformation. For the full-length (20 cysteines in the sequence) and α-domain (11 cysteiens in the sequence) peptides, the apo- and lightly alkylated species co-eluted, indicating similar structural properties. However, the more extensively alkylated species were well separated from each other, indicating the sequential unfolding of the apo-MT peptides and providing evidence for the mechanistic explanation for the cooperative alkylation reaction observed for NEM and other bulky and hydrophobic alkylation reagents. We show for the first time clear separation of highly similar MTs, differing by only +125 Da, and can infer structural properties from the LC-MS data, analogous to more complicated and less ubiquitous ion-mobility experiments. The data suggest a compact globular structure for each of the apo-MTs, but where the β-domain is more easily unfolded. This differential folding stability may have biological implications in terms of domain-specific participation of MT in cellular redox chemistry and resulting metal release.
Collapse
|
17
|
Drozd A, Wojewska D, Peris-Díaz MD, Jakimowicz P, Krężel A. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Metallomics 2018; 10:595-613. [DOI: 10.1039/c7mt00332c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural insights into partially Zn(ii)-depleted MT2 species and their zinc buffering properties are presented and discussed.
Collapse
Affiliation(s)
- Agnieszka Drozd
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Dominika Wojewska
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Piotr Jakimowicz
- Department of Protein Biotechnology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Artur Krężel
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
18
|
Irvine GW, Stillman MJ. Residue Modification and Mass Spectrometry for the Investigation of Structural and Metalation Properties of Metallothionein and Cysteine-Rich Proteins. Int J Mol Sci 2017; 18:ijms18050913. [PMID: 28445428 PMCID: PMC5454826 DOI: 10.3390/ijms18050913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Structural information regarding metallothioneins (MTs) has been hard to come by due to its highly dynamic nature in the absence of metal-thiolate cluster formation and crystallization difficulties. Thus, typical spectroscopic methods for structural determination are limited in their usefulness when applied to MTs. Mass spectrometric methods have revolutionized our understanding of protein dynamics, structure, and folding. Recently, advances have been made in residue modification mass spectrometry in order to probe the hard-to-characterize structure of apo- and partially metalated MTs. By using different cysteine specific alkylation reagents, time dependent electrospray ionization mass spectrometry (ESI-MS), and step-wise “snapshot” ESI-MS, we are beginning to understand the dynamics of the conformers of apo-MT and related species. In this review we highlight recent papers that use these and similar techniques for structure elucidation and attempt to explain in a concise manner the data interpretations of these complex methods. We expect increasing resolution in our picture of the structural conformations of metal-free MTs as these techniques are more widely adopted and combined with other promising tools for structural elucidation.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| |
Collapse
|
19
|
Nguyen H, Rineau F, Vangronsveld J, Cuypers A, Colpaert JV, Ruytinx J. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa
and SlMTb
genes in the ectomycorrhizal fungus Suillus luteus. Environ Microbiol 2017; 19:2577-2587. [DOI: 10.1111/1462-2920.13729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Hoai Nguyen
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - François Rineau
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jan V. Colpaert
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Joske Ruytinx
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| |
Collapse
|
20
|
Irvine GW, Santolini M, Stillman MJ. Selective cysteine modification of metal-free human metallothionein 1a and its isolated domain fragments: Solution structural properties revealed via ESI-MS. Protein Sci 2017; 26:960-971. [PMID: 28187517 DOI: 10.1002/pro.3139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/11/2023]
Abstract
Human metallothionein 1a, a protein with two cysteine-rich metal-binding domains (α with 11 Cys and β with 9), was analyzed in its metal-free form by selective, covalent Cys modification coupled with ESI-MS. The modification profiles of the isolated β- and α-fragments reacted with p-benzoquinone (Bq), N-ethylmalemide (NEM) and iodoacetamide (IAM) were compared with the full length protein using ESI-mass spectral data to follow the reaction pathway. Under denaturing conditions at low pH, the reaction profile with each modifier followed pathways that resulted in stochastic, Normal distributions of species whose maxima was equal to the mol. eq. of modifier added. Our interpretation of modification at this pH is that reaction with the cysteines is unimpeded when the full protein or those of its isolated domains are denatured. At neutral pH, where the protein is expected to be folded in a more compact structure, there is a difference in the larger Bq and NEM modification, whose reaction profiles indicate a cooperative pattern. The reaction profile with IAM under native conditions follows a similar stochastic distribution as at low pH, suggesting that this modifier is small enough to access the cysteines unimpeded by the compact structure. The data emphasize the utility of residue modification coupled with electrospray ionization mass spectrometry for the study of protein structure.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Melissa Santolini
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Scheller JS, Irvine GW, Wong DL, Hartwig A, Stillman MJ. Stepwise copper(i) binding to metallothionein: a mixed cooperative and non-cooperative mechanism for all 20 copper ions. Metallomics 2017; 9:447-462. [DOI: 10.1039/c7mt00041c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|