1
|
Mutlu B, Sharabi K, Sohn JH, Yuan B, Latorre-Muro P, Qin X, Yook JS, Lin H, Yu D, Camporez JPG, Kajimura S, Shulman GI, Hui S, Kamenecka TM, Griffin PR, Puigserver P. Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation. Cell Chem Biol 2024; 31:1772-1786.e5. [PMID: 39341205 PMCID: PMC11500315 DOI: 10.1016/j.chembiol.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation. SR18292 increases phosphoenolpyruvate carboxykinase 1 (PCK1) acetylation, which reverses its gluconeogenic reaction and favors oxaloacetate (OAA) synthesis from phosphoenolpyruvate. PCK1 reverse catalytic reaction induced by SR18292 supplies OAA to tricarboxylic acid (TCA) cycle and is required for increasing glucose and lactate oxidation and suppressing gluconeogenesis. Acetylation mimetic mutant PCK1 K91Q favors anaplerotic reaction and mimics the metabolic effects of SR18292 in hepatocytes. Liver-specific expression of PCK1 K91Q mutant ameliorates hyperglycemia in obese mice. Thus, SR18292 blocks gluconeogenesis by enhancing gluconeogenic substrate oxidation through PCK1 lysine acetylation, supporting the anti-diabetic effects of these small molecules.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xin Qin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Lin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - João Paulo G Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
McLeod MJ, Barwell SAE, Holyoak T, Thorne RE. A structural perspective on the temperature-dependent activity of enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609221. [PMID: 39229032 PMCID: PMC11370597 DOI: 10.1101/2024.08.23.609221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Enzymes are biomolecular catalysts whose activity varies with temperature. Unlike for small-molecule catalysts, the structural ensembles of enzymes can vary substantially with temperature, and it is in general unclear how this modulates the temperature dependence of activity. Here multi-temperature X-ray crystallography was used to record structural changes from -20°C to 40°C for a mesophilic enzyme in complex with inhibitors mimicking substrate-, intermediate-, and product-bound states, representative of major complexes underlying the kinetic constantk c a t . Both inhibitors, substrates and catalytically relevant loop motifs increasingly populate catalytically competent conformations as temperature increases. These changes occur even in temperature ranges where kinetic measurements show roughly linear Arrhenius/Eyring behavior where parameters characterizing the system are assumed to be temperature independent. Simple analysis shows that linear Arrhenius/Eyring behavior can still be observed when the underlying activation energy / enthalpy values vary with temperature, e.g., due to structural changes, and that the underlying thermodynamic parameters can be far from values derived from Arrhenius/Eyring model fits. Our results indicate a critical role for temperature-dependent atomic-resolution structural data in interpreting temperature-dependent kinetic data from enzymatic systems.
Collapse
Affiliation(s)
| | | | - Todd Holyoak
- University of Waterloo, Waterloo Ontario, Canada. Department of Biology
| | | |
Collapse
|
3
|
de Zeeuw P, Treps L, García-Caballero M, Harjes U, Kalucka J, De Legher C, Brepoels K, Peeters K, Vinckier S, Souffreau J, Bouché A, Taverna F, Dehairs J, Talebi A, Ghesquière B, Swinnen J, Schoonjans L, Eelen G, Dewerchin M, Carmeliet P. The gluconeogenesis enzyme PCK2 has a non-enzymatic role in proteostasis in endothelial cells. Commun Biol 2024; 7:618. [PMID: 38783087 PMCID: PMC11116505 DOI: 10.1038/s42003-024-06186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Endothelial cells (ECs) are highly glycolytic, but whether they generate glycolytic intermediates via gluconeogenesis (GNG) in glucose-deprived conditions remains unknown. Here, we report that glucose-deprived ECs upregulate the GNG enzyme PCK2 and rely on a PCK2-dependent truncated GNG, whereby lactate and glutamine are used for the synthesis of lower glycolytic intermediates that enter the serine and glycerophospholipid biosynthesis pathways, which can play key roles in redox homeostasis and phospholipid synthesis, respectively. Unexpectedly, however, even in normal glucose conditions, and independent of its enzymatic activity, PCK2 silencing perturbs proteostasis, beyond its traditional GNG role. Indeed, PCK2-silenced ECs have an impaired unfolded protein response, leading to accumulation of misfolded proteins, which due to defective proteasomes and impaired autophagy, results in the accumulation of protein aggregates in lysosomes and EC demise. Ultimately, loss of PCK2 in ECs impaired vessel sprouting. This study identifies a role for PCK2 in proteostasis beyond GNG.
Collapse
Affiliation(s)
- Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Droia Ventures, Zaventem, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- CNRS, Nantes, France
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Dept. Molecular Biology and Biochemistry, Fac. Science, University of Malaga, Malaga, Spain
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Aarhus Institute of Advanced Studies (AIAS), Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Carla De Legher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Kristel Peeters
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
- Novartis Ireland, Dublin, Ireland
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Bart Ghesquière
- Metabolomics Core Facility, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Johan Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
- Metaptys NV/Droia Labs, Leuven, Belgium.
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, B-3000, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
McLeod MJ, Holyoak T. Biochemical, structural, and kinetic characterization of PP i -dependent phosphoenolpyruvate carboxykinase from Propionibacterium freudenreichii. Proteins 2023; 91:1261-1275. [PMID: 37226637 DOI: 10.1002/prot.26513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.
Collapse
Affiliation(s)
- Matthew J McLeod
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Xu H, Wang Y, Kwon H, Shah A, Kalemba K, Su X, He L, Wondisford FE. Glucagon changes substrate preference in gluconeogenesis. J Biol Chem 2022; 298:102708. [PMID: 36402444 PMCID: PMC9747632 DOI: 10.1016/j.jbc.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-13C- or 2-13C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two 13C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from 13C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate 13C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ankit Shah
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Katarzyna Kalemba
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ling He
- Departments of Pediatrics and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
6
|
Barwell S, Duman R, Wagner A, Holyoak T. Directional regulation of cytosolic PEPCK catalysis is mediated by competitive binding of anions. Biochem Biophys Res Commun 2022; 637:218-223. [DOI: 10.1016/j.bbrc.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
7
|
Frodyma DE, Troia TC, Rao C, Svoboda RA, Berg JA, Shinde DD, Thomas VC, Lewis RE, Fisher KW. PGC-1β and ERRα Promote Glutamine Metabolism and Colorectal Cancer Survival via Transcriptional Upregulation of PCK2. Cancers (Basel) 2022; 14:4879. [PMID: 36230802 PMCID: PMC9562873 DOI: 10.3390/cancers14194879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have shown that Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Beta (PGC-1β) and Estrogen-Related Receptor Alpha (ERRα) are over-expressed in colorectal cancer and promote tumor survival. METHODS In this study, we use immunoprecipitation of epitope tagged endogenous PGC-1β and inducible PGC-1β mutants to show that amino acid motif LRELL on PGC-1β is responsible for the physical interaction with ERRα and promotes ERRα mRNA and protein expression. We use RNAsequencing to determine the genes regulated by both PGC-1β & ERRα and find that mitochondrial Phosphoenolpyruvate Carboxykinase 2 (PCK2) is the gene that decreased most significantly after depletion of both genes. RESULTS Depletion of PCK2 in colorectal cancer cells was sufficient to reduce anchorage-independent growth and inhibit glutamine utilization by the TCA cycle. Lastly, shRNA-mediated depletion of ERRα decreased anchorage-independent growth and glutamine metabolism, which could not be rescued by plasmid derived expression of PCK2. DISCUSSION These findings suggest that transcriptional control of PCK2 is one mechanism used by PGC-1β and ERRα to promote glutamine metabolism and colorectal cancer cell survival.
Collapse
Affiliation(s)
- Danielle E. Frodyma
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas C. Troia
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chaitra Rao
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jordan A. Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Dhananjay D. Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert E. Lewis
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Tsujimoto G, Ito R, Yoshikawa K, Ueki C, Okada N. NFYA promotes the anti-tumor effects of gluconeogenesis in hepatocellular carcinoma through the regulation of PCK1 expression. Front Cell Dev Biol 2022; 10:983599. [PMID: 36092708 PMCID: PMC9452718 DOI: 10.3389/fcell.2022.983599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022] Open
Abstract
Reprogramming of glucose metabolism occurs in many human tumor types, and one of these, gluconeogenesis, is known to exhibit anti-tumor effects in hepatocellular carcinoma (HCC). The transcription factor NFYA regulates gluconeogenesis in the normal liver tissue, but the function of the NFYA-gluconeogenesis axis in cancer and the functional differences of NFYA splicing variants in the regulation of gluconeogenesis is still unclear. Here, we demonstrate that NFYAv2, the short-form variant, upregulates the transcription of a gluconeogenic enzyme PCK1. We further reveal that its regulation induces high ROS levels and energy crisis in HCC and promotes cell death. These indicate that the NFYAv2-gluconeogenesis axis has enhanced anti-tumor effects in HCC, suggesting that the axis may be a potential therapeutic target for HCC. Furthermore, Nfyav1-deficient mice, spontaneously overexpressing Nfyav2, had no increasing gluconeogenesis in the liver. Taken together, our results reveal NFYAv2-gluconeogenesis axis has anti-tumor effects and the potential for NFYAv2 to be a safer therapeutic target for HCC.
Collapse
Affiliation(s)
| | | | | | | | - Nobuhiro Okada
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Xiang J, Wang K, Tang N. PCK1 dysregulation in cancer: Metabolic reprogramming, oncogenic activation, and therapeutic opportunities. Genes Dis 2022; 10:101-112. [PMID: 37013052 PMCID: PMC10066343 DOI: 10.1016/j.gendis.2022.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
The last few decades have witnessed an advancement in our understanding of multiple cancer cell pathways related to metabolic reprogramming. One of the most important cancer hallmarks, including aerobic glycolysis (the Warburg effect), the central carbon pathway, and multiple-branch metabolic pathway remodeling, enables tumor growth, progression, and metastasis. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate. PCK1 expression in gluconeogenic tissues is tightly regulated during fasting. In tumor cells, PCK1 is regulated in a cell-autonomous manner rather than by hormones or nutrients in the extracellular environment. Interestingly, PCK1 has an anti-oncogenic role in gluconeogenic organs (the liver and kidneys), but a tumor-promoting role in cancers arising from non-gluconeogenic organs. Recent studies have revealed that PCK1 has metabolic and non-metabolic roles in multiple signaling networks linking metabolic and oncogenic pathways. Aberrant PCK1 expression results in the activation of oncogenic pathways, accompanied by metabolic reprogramming, to maintain tumorigenesis. In this review, we summarize the mechanisms underlying PCK1 expression and regulation, and clarify the crosstalk between aberrant PCK1 expression, metabolic rewiring, and signaling pathway activation. In addition, we highlight the clinical relevance of PCK1 and its value as a putative cancer therapeutic target.
Collapse
|
10
|
Banerji R, Huynh C, Figueroa F, Dinday MT, Baraban SC, Patel M. Enhancing glucose metabolism via gluconeogenesis is therapeutic in a zebrafish model of Dravet syndrome. Brain Commun 2021; 3:fcab004. [PMID: 33842883 PMCID: PMC8023476 DOI: 10.1093/braincomms/fcab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Energy-producing pathways are novel therapeutic targets for the treatment of neurodevelopmental disorders. Here, we focussed on correcting metabolic defects in a catastrophic paediatric epilepsy, Dravet syndrome which is caused by mutations in sodium channel NaV1.1 gene, SCN1A. We utilized a translatable zebrafish model of Dravet syndrome (scn1lab) which exhibits key characteristics of patients with Dravet syndrome and shows metabolic deficits accompanied by down-regulation of gluconeogenesis genes, pck1 and pck2. Using a metabolism-based small library screen, we identified compounds that increased gluconeogenesis via up-regulation of pck1 gene expression in scn1lab larvae. Treatment with PK11195, a pck1 activator and a translocator protein ligand, normalized dys-regulated glucose levels, metabolic deficits, translocator protein expression and significantly decreased electrographic seizures in mutant larvae. Inhibition of pck1 in wild-type larvae mimicked metabolic and behaviour defects observed in scn1lab mutants. Together, this suggests that correcting dys-regulated metabolic pathways can be therapeutic in neurodevelopmental disorders such as Dravet syndrome arising from ion channel dysfunction.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Christopher Huynh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Francisco Figueroa
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Matthew T Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Manisha Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| |
Collapse
|
11
|
The phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, 3-mercaptopicolinic acid (3-MPA), induces myogenic differentiation in C2C12 cells. Sci Rep 2020; 10:22177. [PMID: 33335245 PMCID: PMC7747743 DOI: 10.1038/s41598-020-79324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme with a cytosolic (Pck1/PEPCK-C) and mitochondrial (Pck2/PEPCK-M) isoform. Here we investigate the effect of 3-mercaptopicolinic acid (3-MPA), a PEPCK inhibitor, on C2C12 muscle cells. We report that Pck2 mRNA is 50–5000-fold higher than Pck1 during C2C12 myogenesis, indicating Pck2 is the predominant PEPCK isoform. C2C12 cell proliferation was inhibited in a dose-dependent manner following 48 h 3-MPA treatment (0.01–1 mM). C2C12 myogenic differentiation was significantly induced following 3-MPA treatment (0.25, 0.5, 1 mM) from day 0 of differentiation, demonstrated by increased creatine kinase activity, fusion index and myotube diameter; likewise, the myosin heavy chain (MyHC)-IIB isoform (encoded by Myh4) is an indicator of hypertrophy, and both porcine MYH4-promoter activity and endogenous Myh4 mRNA were also significantly induced. High doses (0.5 and/or 1 mM) of 3-MPA reduced mRNA expression of Pck2 and genes associated with serine biosynthesis (Phosphoglycerate dehydrogenase, Phgdh; phosphoserine aminotransferase-1, Psat1) following treatment from days 0 and 4. To conclude, as Pck2/PEPCK-M is the predominant isoform in C2C12 cells, we postulate that 3-MPA promoted myogenic differentiation through the inhibition of PEPCK-M. However, we were unable to confirm that 3-MPA inhibited PEPCK-M enzyme activity as 3-MPA interfered with the PEPCK enzyme assay, particularly at 0.5 and 1 mM.
Collapse
|
12
|
Khan MA, Zubair H, Anand S, Srivastava SK, Singh S, Singh AP. Dysregulation of metabolic enzymes in tumor and stromal cells: Role in oncogenesis and therapeutic opportunities. Cancer Lett 2020; 473:176-185. [PMID: 31923436 PMCID: PMC7067140 DOI: 10.1016/j.canlet.2020.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023]
Abstract
Altered cellular metabolism is a hallmark of cancer. Metabolic rewiring in cancer cells occurs due to the activation of oncogenes, inactivation of tumor suppressor genes, and/or other adaptive changes in cell signaling pathways. Furthermore, altered metabolism is also reported in tumor-corrupted stromal cells as a result of their interaction with cancer cells or due to their adaptation in the dynamic tumor microenvironment. Metabolic alterations are associated with dysregulation of metabolic enzymes and tumor-stromal metabolic crosstalk is vital for the progressive malignant journey of the tumor cells. Therefore, several therapies targeting metabolic enzymes have been evaluated and/or are being investigated in preclinical and clinical studies. In this review, we discuss some important metabolic enzymes that are altered in tumor and/or stromal cells, and focus on their role in supporting tumor growth. Moreover, we also discuss studies carried out in various cancers to target these metabolic abnormalities for therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
13
|
Aragó M, Moreno-Felici J, Abás S, Rodríguez-Arévalo S, Hyroššová P, Figueras A, Viñals F, Pérez B, Loza MI, Brea J, Latorre P, Carrodeguas JA, García-Rovés PM, Galdeano C, Ginex T, Luque FJ, Escolano C, Perales JC. Pharmacology and preclinical validation of a novel anticancer compound targeting PEPCK-M. Biomed Pharmacother 2019; 121:109601. [PMID: 31739159 DOI: 10.1016/j.biopha.2019.109601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the decarboxylation of oxaloacetate to phosphoenolpyruvate. The mitochondrial isozyme, PEPCK-M is highly expressed in cancer cells, where it plays a role in nutrient stress response. To date, pharmacological strategies to target this pathway have not been pursued. METHODS A compound embodying a 3-alkyl-1,8-dibenzylxanthine nucleus (iPEPCK-2), was synthesized and successfully probed in silico on a PEPCK-M structural model. Potency and target engagement in vitro and in vivo were evaluated by kinetic and cellular thermal shift assays (CETSA). The compound and its target were validated in tumor growth models in vitro and in murine xenografts. RESULTS Cross-inhibitory capacity and increased potency as compared to 3-MPA were confirmed in vitro and in vivo. Treatment with iPEPCK-2 inhibited cell growth and survival, especially in poor-nutrient environment, consistent with an impact on colony formation in soft agar. Finally, daily administration of the PEPCK-M inhibitor successfully inhibited tumor growth in two murine xenograft models as compared to vehicle, without weight loss, or any sign of apparent toxicity. CONCLUSION We conclude that iPEPCK-2 is a compelling anticancer drug targeting PEPCK-M, a hallmark gene product involved in metabolic adaptations of the tumor.
Collapse
Affiliation(s)
- Marc Aragó
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet del Llobregat, Spain
| | - Juan Moreno-Felici
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet del Llobregat, Spain
| | - Sonia Abás
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Sergio Rodríguez-Arévalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Petra Hyroššová
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet del Llobregat, Spain
| | - Agnes Figueras
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Francesc Viñals
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet del Llobregat, Spain; Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), and Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Maria I Loza
- Innopharma Screening Platform, BioFarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Brea
- Innopharma Screening Platform, BioFarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pedro Latorre
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC), Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose A Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC), Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Pablo M García-Rovés
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet del Llobregat, Spain
| | - Carlos Galdeano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramanet, Spain
| | - Francisco J Luque
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramanet, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Jose C Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet del Llobregat, Spain.
| |
Collapse
|
14
|
Mcleod MJ, Krismanich AP, Assoud A, Dmitrienko GI, Holyoak T. Characterization of 3-[(Carboxymethyl)thio]picolinic Acid: A Novel Inhibitor of Phosphoenolpyruvate Carboxykinase. Biochemistry 2019; 58:3918-3926. [PMID: 31461616 DOI: 10.1021/acs.biochem.9b00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) has traditionally been characterized for its role in the first committed step of gluconeogenesis. The current understanding of PEPCK's metabolic role has recently expanded to include it serving as a general mediator of tricarboxylic acid cycle flux. Selective inhibition of PEPCK in vivo and in vitro has been achieved with 3-mercaptopicolinic acid (MPA) (Ki ∼ 8 μM), whose mechanism of inhibition has been elucidated only recently. On the basis of crystallographic and mechanistic data of various inhibitors of PEPCK, MPA was used as the initial chemical scaffold to create a potentially more selective inhibitor, 3-[(carboxymethyl)thio]picolinic acid (CMP), which has been characterized both structurally and kinetically here. These data demonstrate that CMP acts as a competitive inhibitor at the OAA/PEP binding site, with its picolinic acid moiety coordinating directly with the M1 metal in the active site (Ki ∼ 29-55 μM). The extended carboxy tail occupies a secondary binding cleft that was previously shown could be occupied by sulfoacetate (Ki ∼ 82 μM) and for the first time demonstrates the simultaneous occupation of both OAA/PEP subsites by a single molecular structure. By occupying both the OAA/PEP binding subsites simultaneously, CMP and similar molecules can potentially be used as a starting point for the creation of additional selective inhibitors of PEPCK.
Collapse
|
15
|
Baptista LPR, Sinatti VV, Da Silva JH, Dardenne LE, Guimarães AC. Computational evaluation of natural compounds as potential inhibitors of human PEPCK-M: an alternative for lung cancer therapy. Adv Appl Bioinform Chem 2019; 12:15-32. [PMID: 31496750 PMCID: PMC6689533 DOI: 10.2147/aabc.s197119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related death worldwide. Among its subtypes, non-small cell lung cancer (NSCLC) is the most common. Recently, the mitochondrial isoform of the enzyme phosphoenolpyruvate carboxykinase (HsPEPCK-M) was identified as responsible for the metabolic adaptation in the NSCLC allowing tumor growth even under conditions of glucose deficiency. This adaptation is possible due to the role of HsPEPCK-M in gluconeogenesis, converting the oxaloacetate to phosphoenolpyruvate in the presence of GTP, which plays an important role in the energetic support of these tumors. In this context, it was shown that the inhibition or knockdown of this enzyme was able to induce apoptosis in NSCLC under low glucose conditions. Purpose In this study, novel putative inhibitors were proposed for the human PEPCK-M (HsPEPCK-M) based on a computer-aided approach. Methods Comparative modeling was used to generate 3D models for HsPEPCK-M. Subsequently, the set of natural compounds of the ZINC database was screened against HsPEPCK-M models using structure-based pharmacophore modeling and molecular docking approaches. The selected compounds were evaluated according to its chemical diversity and clustered based on chemical similarity. Results The pharmacophore hypotheses, generated based on known PEPCK inhibitors, were able to select 7,124 candidate compounds. These compounds were submitted to molecular docking studies using three conformations of HsPEPCK-M generated by comparative modeling. The aim was to select compounds with high predicted binding affinity for at least one of the conformations of HsPEPCK-M. After molecular docking, 612 molecules were selected as potential inhibitors of HsPEPCK-M. These compounds were clustered according to their structural similarity. Chemical profiling and binding mode analyses of these compounds allowed the proposal of four promising compounds: ZINC01656421, ZINC895296, ZINC00895535 and ZINC02571340. Conclusion These compounds may be considered as potential candidates for HsPEPCK-M inhibitors and may also be used as lead compounds for the development of novel HsPEPCK-M inhibitors.
Collapse
Affiliation(s)
- Luiz Phillippe R Baptista
- Laboratory for Functional Genomics and Bioinformatics, Fiocruz, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Vanessa Vc Sinatti
- Laboratory for Functional Genomics and Bioinformatics, Fiocruz, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Joao Hm Da Silva
- Group for Computational Modelling, Fiocruz, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - Laurent Emmanuel Dardenne
- Group for Molecular Modelling of Biologic Systems, National Laboratory of Scientific Computing, Petrópolis, RJ, Brazil
| | - Ana Carolina Guimarães
- Laboratory for Functional Genomics and Bioinformatics, Fiocruz, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Westermeier F, Holyoak T, Asenjo JL, Gatica R, Nualart F, Burbulis I, Bertinat R. Gluconeogenic Enzymes in β-Cells: Pharmacological Targets for Improving Insulin Secretion. Trends Endocrinol Metab 2019; 30:520-531. [PMID: 31213347 DOI: 10.1016/j.tem.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells express the gluconeogenic enzymes glucose 6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBP), and phosphoenolpyruvate (PEP) carboxykinase (PCK), which modulate glucose-stimulated insulin secretion (GSIS) through their ability to reverse otherwise irreversible glycolytic steps. Here, we review current knowledge about the expression and regulation of these enzymes in the context of manipulating them to improve insulin secretion in diabetics. Because the regulation of gluconeogenic enzymes in β-cells is so poorly understood, we propose novel research avenues to study these enzymes as modulators of insulin secretion and β-cell dysfunction, with especial attention to FBP, which constitutes an attractive target with an inhibitor under clinical evaluation at present.
Collapse
Affiliation(s)
- Francisco Westermeier
- FH JOANNEUM Gesellschaft mbH University of Applied Sciences, Institute of Biomedical Science, Eggenberger Allee 13, 8020 Graz, Austria
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joel L Asenjo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, La Pirámide 5750, 8580745 Santiago, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160 C, 4030000 Concepción, Chile
| | - Ian Burbulis
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall Room 6022, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Escuela de Medicina, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, 5501842 Puerto Montt, Chile
| | - Romina Bertinat
- Centro de Microscopía Avanzada, CMA BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160 C, 4030000 Concepción, Chile.
| |
Collapse
|
17
|
Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene 2018; 37:1637-1653. [PMID: 29335519 PMCID: PMC5860930 DOI: 10.1038/s41388-017-0070-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting step in hepatic gluconeogenesis pathway to maintain blood glucose levels. Mammalian cells express two PCK genes, encoding for a cytoplasmic (PCPEK-C or PCK1) and a mitochondrial (PEPCK-M or PCK2) isoforms, respectively. Increased expressions of both PCK genes are found in cancer of several organs, including colon, lung, and skin, and linked to increased anabolic metabolism and cell proliferation. Here, we report that the expressions of both PCK1 and PCK2 genes are downregulated in primary hepatocellular carcinoma (HCC) and low PCK expression was associated with poor prognosis in patients with HCC. Forced expression of either PCK1 or PCK2 in liver cancer cell lines results in severe apoptosis under the condition of glucose deprivation and suppressed liver tumorigenesis in mice. Mechanistically, we show that the pro-apoptotic effect of PCK1 requires its catalytic activity. We demonstrate that forced PCK1 expression in glucose-starved liver cancer cells induced TCA cataplerosis, leading to energy crisis and oxidative stress. Replenishing TCA intermediate α-ketoglutarate or inhibition of reactive oxygen species production blocked the cell death caused by PCK expression. Taken together, our data reveal that PCK1 is detrimental to malignant hepatocytes and suggest activating PCK1 expression as a potential treatment strategy for patients with HCC.
Collapse
|
18
|
Biological significance of phosphoenolpyruvate carboxykinase in a cestode parasite, Raillietina echinobothrida and effect of phytoestrogens on the enzyme from the parasite and its host, Gallus domesticus. Parasitology 2017; 144:1264-1274. [PMID: 28485262 DOI: 10.1017/s0031182017000518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is involved in glycolysis in the cestode parasite, Raillietina echinobothrida; whereas, it executes a gluconeogenic role in its host, Gallus domesticus. Because of its differing primary function in the cestode parasite and its host, this enzyme is regarded as a plausible anthelmintic target. Hence, the biological significance of PEPCK in the parasite was analysed using siRNA against PEPCK from R. echinobothrida (RePEPCK). In order to find out the functional differences between RePEPCK and GdPEPCK (PEPCK from its host, G. domesticus), PEPCK genes from both sources were cloned, over-expressed, characterized, and some properties of the purified enzymes were compared. RePEPCK and GdPEPCK showed a standard Michaelis-Menten kinetics with K mapp of 46.9 and 22.9 µ m, respectively, for phosphoenolpyruvate and K mapp of 15.4 µ m for oxaloacetate in GdPEPCK decarboxylation reaction. Here, we report antagonist behaviours of recombinant PEPCKs derived from the parasite and its host. In search of possible modulators for PEPCK, few phytoestrogens were examined on the purified enzymes and their inhibitory constants were determined and discussed. This study stresses the potential of these findings to validate PEPCK as the anthelmintic drug target for parasitism management.
Collapse
|
19
|
Hidalgo J, Latorre P, Carrodeguas JA, Velázquez-Campoy A, Sancho J, López-Buesa P. Inhibition of Pig Phosphoenolpyruvate Carboxykinase Isoenzymes by 3-Mercaptopicolinic Acid and Novel Inhibitors. PLoS One 2016; 11:e0159002. [PMID: 27391465 PMCID: PMC4938538 DOI: 10.1371/journal.pone.0159002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/25/2016] [Indexed: 11/24/2022] Open
Abstract
There exist two isoforms of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in pig populations that differ in a single amino acid (Met139Leu). The isoenzymes have different kinetic properties, affecting more strongly the Km and Vmax of nucleotides. They are associated to different phenotypes modifying traits of considerable economic interest. In this work we use inhibitors of phosphoenolpyruvate carboxykinase activity to search for further differences between these isoenzymes. On the one hand we have used the well-known inhibitor 3-mercaptopicolinic acid. Its inhibition patterns were the same for both isoenzymes: a three-fold decrease of the Ki values for GTP in 139Met and 139Leu (273 and 873 μM, respectively). On the other hand, through screening of a chemical library we have found two novel compounds with inhibitory effects of a similar magnitude to that of 3-mercaptopicolinic acid but with less solubility and specificity. One of these novel compounds, (N'1-({5-[1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl]-2-thienyl}methylidene)-2,4-dichlorobenzene-1-carbohydrazide), exhibited significantly different inhibitory effects on either isoenzyme: it enhanced threefold the apparent Km value for GTP in 139Met, whereas in 139Leu, it reduced it from 99 to 69 μM. The finding of those significant differences in the binding of GTP reinforces the hypothesis that the Met139Leu substitution affects strongly the nucleotide binding site of PEPCK-C.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, Zaragoza, Spain
| | - Pedro Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, Zaragoza, Spain
| | - José Alberto Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
- Fundación ARAID, Government of Aragón, Zaragoza, Spain
| | - Javier Sancho
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
20
|
Latorre P, Burgos C, Hidalgo J, Varona L, Carrodeguas JA, López-Buesa P. c.A2456C-substitution in Pck1 changes the enzyme kinetic and functional properties modifying fat distribution in pigs. Sci Rep 2016; 6:19617. [PMID: 26792594 PMCID: PMC4726144 DOI: 10.1038/srep19617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022] Open
Abstract
Cytosolic phosphoenolpyruvate carboxykinase, PCK1, is one of the main regulatory enzymes of gluconeogenesis and glyceroneogenesis. The substitution of a single amino acid (Met139Leu) in PCK1 as a consequence of a single nucleotide polymorphism (SNP), c.A2456C, is associated in the pig to a negative phenotype characterized by reduced intramuscular fat content, enhanced backfat thickness and lower meat quality. The p.139L enzyme shows reduced kcat values in the glyceroneogenic direction and enhanced ones in the anaplerotic direction. Accordingly, the expression of the p.139L isoform results in about 30% lower glucose and 9% lower lipid production in cell cultures. Moreover, the ability of this isoform to be acetylated is also compromised, what would increase its susceptibility to be degraded in vivo by the ubiquitin-proteasome system. The high frequency of the c.2456C allele in modern pig breeds implies that the benefits of including c.A2456C SNP in selection programs could be considerable.
Collapse
Affiliation(s)
- Pedro Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Carmen Burgos
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Jorge Hidalgo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Luis Varona
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain.,Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - José Alberto Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.,IIS Aragón, 50009 Zaragoza, Spain
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|