1
|
Deshpande P, Chimata AV, Singh A. Exploring the role of N-acetyltransferases in diseases: a focus on N-acetyltransferase 9 in neurodegeneration. Neural Regen Res 2025; 20:2862-2871. [PMID: 39435604 PMCID: PMC11826463 DOI: 10.4103/nrr.nrr-d-24-00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Acetyltransferases, required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease. Protein acetylation is a common post-translational modification pivotal to basic cellular processes. Close to 80%-90% of proteins are acetylated during translation, which is an irreversible process that affects protein structure, function, life, and localization. In this review, we have discussed the various N-acetyltransferases present in humans, their function, and how they might play a role in diseases. Furthermore, we have focused on N-acetyltransferase 9 and its role in microtubule stability. We have shed light on how N-acetyltransferase 9 and acetylation of proteins can potentially play a role in neurodegenerative diseases. We have specifically discussed the N-acetyltransferase 9-acetylation independent function and regulation of c-Jun N-terminal kinase signaling and microtubule stability during development and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
2
|
Li L, Luo Q, Yang S, Wang H, Mu Y, Guo J, Zhang F. Unraveling the molecular mechanism of FgGcn5 inhibition by phenazine-1-carboxamide: combined in silico and in vitro studies. PEST MANAGEMENT SCIENCE 2025; 81:937-945. [PMID: 39465489 DOI: 10.1002/ps.8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Fusarium head blight (FHB), mainly caused by Fusarium graminearum (F. graminearum), remains a devastating disease worldwide. The histone acetyltransferase Gcn5 plays a crucial role in epigenetic regulation. Aberrant Gcn5 acetylation activity can result in serious impacts such as impaired growth and development in organisms. The secondary metabolite phenazine-1-carboxamide (PCN) inhibits F. graminearum by blocking the acetylation process of Gcn5 (FgGcn5), and is currently used to control FHB. However, the molecular basis of acetylation inhibition by PCN remains to be further explored. RESULTS Our molecular dynamics simulations revealed that PCN binds to the cleft in FgGcn5 where histone H3 is bound, with key amino acid residues including Leu96 (L96), Arg121 (R121), Phe133 (F133), Tyr169 (Y169), and Tyr201 (Y201), preventing FgGcn5 from binding to histone H3 and affecting histone H3 from being acetylated. Experimental validation of key amino acid mutations further confirmed the impact of these mutations on the interaction of FgGcn5 with PCN and histone H3 peptide. CONCLUSION In summary, our study sheds light on the mechanism by which PCN inhibits the acetylation function of FgGcn5, providing a foundation for the development of drugs or fungicides targeting histone acetyltransferases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing Luo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Shuai Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hancheng Wang
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Wang G, Chen L, Lian J, Gong L, Tian F, Wang Y, Lin X, Liu Y. Proteomic Insights into the Regulatory Role of CobQ Deacetylase in Aeromonas hydrophila. J Proteome Res 2025; 24:333-343. [PMID: 39659247 DOI: 10.1021/acs.jproteome.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Post-translational modifications are crucial in regulating biological functions across both prokaryotes and eukaryotes. In Aeromonas hydrophila, CobQ, a recently identified novel deacetylase, plays a significant role in lysine deacetylation, influencing bacterial metabolism and stress responses. The present study utilized quantitative proteomics to investigate the impact of cobQ deletion on the global protein expression profile in A. hydrophila. Through data-independent acquisition mass spectrometry, we identified 233 upregulated and 41 downregulated proteins in the cobQ deletion mutant (ΔahcobQ) strain compared to the wild-type (WT) strain. Key differentially expressed proteins were involved in oxidative phosphorylation, bacterial secretion, and ribosomal function. Additionally, phenotypic assays demonstrated that the ΔahcobQ strain exhibited an increased resistance to oxidative phosphorylation inhibitors, suggesting a pivotal role for AhCobQ in energy metabolism. Outer membrane proteins and efflux pumps also showed altered expression, indicating potential implications for membrane permeability and antibiotic resistance. These results suggested that AhCobQ plays a vital regulatory role in maintaining metabolic homeostasis and responding to environmental stress, highlighting its potential as a target for therapeutic interventions against A. hydrophila infections.
Collapse
Affiliation(s)
- Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linxin Chen
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanqi Lian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanqing Gong
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Tian
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Leiva H, Caro De Silva PL, Painter R, Le VTB, Uychoco P, Figueroa Paniagua D, Endres M, Maltseva N, Joachimiak A, Kuhn ML. A Structurally Diverse Compound Screening Library to Identify Substrates for Diamine, Polyamine, and Related Acetyltransferases. ACS OMEGA 2024; 9:49887-49898. [PMID: 39713696 PMCID: PMC11656603 DOI: 10.1021/acsomega.4c08743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024]
Abstract
Spermidine/spermine N-acetyltransferases (SSATs) and other types of polyamine acetyltransferases (PAATs) acetylate diamines and/or polyamines. These enzymes are evolutionarily related and belong to the Gcn5-related N-acetyltransferase (GNAT) superfamily, yet we lack a fundamental understanding of their substrate specificity and/or promiscuity toward different compounds. Many of these enzymes are known or are predicted to acetylate polyamines, but in the cell there are other types of compounds that contain moieties derived from polyamines that may be the native substrates for these enzymes. To learn more about the identity of substrates that are acetylated, we selected and screened 17 different GNAT enzymes for activity toward a set of structurally diverse compounds that contained different types of amine moieties (e.g., aminopropyl, aminobutyl, etc.). These compounds included diamines, triamines, and polyamines containing primary amino groups, and they had structural diversity with variation of the chain length and presence or absence of internal amino groups and other functional groups. We found 12 of the 17 enzymes acetylated at least one of the compounds. Some enzymes were selective toward acetylating only one compound while others exhibited substrate promiscuity toward numerous compounds. Our experimental results ultimately allowed us to pinpoint specific substrates that could be further investigated to more fully understand substrate specificity versus promiscuity of GNAT enzymes and the role of acetylated small molecules in cells.
Collapse
Affiliation(s)
- Hazel Leiva
- San
Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States
| | - Pamela L. Caro De Silva
- San
Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States
- Department
of Chemistry, Foothill College, Los Altos, California 94022, United
States
| | - Ron Painter
- San
Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States
| | - Van Thi Bich Le
- San
Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States
| | - Patricia Uychoco
- San
Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States
| | - Daniel Figueroa Paniagua
- San
Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States
| | - Michael Endres
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60667, United States
- Structural
Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Natalia Maltseva
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60667, United States
- Structural
Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrzej Joachimiak
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60667, United States
- Structural
Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Misty L. Kuhn
- San
Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California 94132, United States
| |
Collapse
|
5
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
6
|
Żebracki K, Koper P, Wójcik M, Marczak M, Mazur A. Transcriptomic Response of Rhizobium leguminosarum to Acidic Stress and Nutrient Limitation Is Versatile and Substantially Influenced by Extrachromosomal Gene Pool. Int J Mol Sci 2024; 25:11734. [PMID: 39519284 PMCID: PMC11547076 DOI: 10.3390/ijms252111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Multipartite genomes are thought to confer evolutionary advantages to bacteria by providing greater metabolic flexibility in fluctuating environments and enabling rapid adaptation to new ecological niches and stress conditions. This genome architecture is commonly found in plant symbionts, including nitrogen-fixing rhizobia, such as Rhizobium leguminosarum bv. trifolii TA1 (RtTA1), whose genome comprises a chromosome and four extrachromosomal replicons (ECRs). In this study, the transcriptomic responses of RtTA1 to partial nutrient limitation and low acidic pH were analyzed using high-throughput RNA sequencing. RtTA1 growth under these conditions resulted in the differential expression of 1035 to 1700 genes (DEGs), which were assigned to functional categories primarily related to amino acid and carbohydrate metabolism, ribosome and cell envelope biogenesis, signal transduction, and transcription. These results highlight the complexity of the bacterial response to stress. Notably, the distribution of DEGs among the replicons indicated that ECRs played a significant role in the stress response. The transcriptomic data align with the Rhizobium pangenome analysis, which revealed an over-representation of functional categories related to transport, metabolism, and regulatory functions on ECRs. These findings confirm that ECRs contribute substantially to the ability of rhizobia to adapt to challenging environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (K.Ż.); (P.K.); (M.W.); (M.M.)
| |
Collapse
|
7
|
Victoria AJ, Selão TT, Moreno-Cabezuelo JÁ, Mills LA, Gale GAR, Lea-Smith DJ, McCormick AJ. A toolbox to engineer the highly productive cyanobacterium Synechococcus sp. PCC 11901. PLANT PHYSIOLOGY 2024; 196:1674-1690. [PMID: 38713768 PMCID: PMC11444289 DOI: 10.1093/plphys/kiae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
Synechococcus sp. PCC 11901 (PCC 11901) is a fast-growing marine cyanobacterial strain that has a capacity for sustained biomass accumulation to very high cell densities, comparable to that achieved by commercially relevant heterotrophic organisms. However, genetic tools to engineer PCC 11901 for biotechnology applications are limited. Here we describe a suite of tools based on the CyanoGate MoClo system to unlock the engineering potential of PCC 11901. First, we characterized neutral sites suitable for stable genomic integration that do not affect growth even at high cell densities. Second, we tested a suite of constitutive promoters, terminators, and inducible promoters including a 2,4-diacetylphloroglucinol (DAPG)-inducible PhlF repressor system, which has not previously been demonstrated in cyanobacteria and showed tight regulation and a 228-fold dynamic range of induction. Lastly, we developed a DAPG-inducible dCas9-based CRISPR interference (CRISPRi) system and a modular method to generate markerless mutants using CRISPR-Cas12a. Based on our findings, PCC 11901 is highly responsive to CRISPRi-based repression and showed high efficiencies for single insertion (31% to 81%) and multiplex double insertion (25%) genome editing with Cas12a. We envision that these tools will lay the foundations for the adoption of PCC 11901 as a robust model strain for engineering biology and green biotechnology.
Collapse
Affiliation(s)
- Angelo J Victoria
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Tiago Toscano Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
8
|
Zhou Y, Zhang X, Yu W, Fu Y, Ni L, Yu J, Wang X, Song W, Wang C. Enhancing Pseudomonas cell growth for the production of medium-chain-length polyhydroxyalkanoates from Antarctic krill shell waste. Int J Biol Macromol 2024; 277:133364. [PMID: 38917919 DOI: 10.1016/j.ijbiomac.2024.133364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Antarctic krill shell waste (AKSW), a byproduct of Antarctic krill processing, has substantial quantity but low utilization. Utilizing microbial-based cell factories, with Pseudomonas putida as a promising candidate, offers an ecofriendly and sustainable approach to producing valuable bioproducts from renewable sources. However, the high fluoride content in AKSW impedes the cell growth of P. putida. This study aims to investigate the transcriptional response of P. putida to fluoride stress from AKSW and subsequently conduct genetic modification of the strain based on insights gained from transcriptomic analysis. Notably, the engineered strain KT+16840+03100 exhibited a remarkable 33.7-fold increase in cell growth, capable of fermenting AKSW for medium-chain-length-polyhydroxyalkanoates (mcl-PHA) biosynthesis, achieving a 40.3-fold increase in mcl-PHA yield compared to the control strain. This research advances our understanding of how P. putida responds to fluoride stress from AKSW and provides engineered strains that serve as excellent platforms for producing mcl-PHA through AKSW.
Collapse
Affiliation(s)
- Yueyue Zhou
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| | - Xingyu Zhang
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China
| | - Wenying Yu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang, China
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang, China
| | - Lijuan Ni
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China
| | - Jiayi Yu
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China
| | - Xiaopeng Wang
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| | - Weiwei Song
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| | - Chunlin Wang
- Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo 315000, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315000, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315000, China.
| |
Collapse
|
9
|
Qin C, Graf LG, Striska K, Janetzky M, Geist N, Specht R, Schulze S, Palm GJ, Girbardt B, Dörre B, Berndt L, Kemnitz S, Doerr M, Bornscheuer UT, Delcea M, Lammers M. Acetyl-CoA synthetase activity is enzymatically regulated by lysine acetylation using acetyl-CoA or acetyl-phosphate as donor molecule. Nat Commun 2024; 15:6002. [PMID: 39019872 PMCID: PMC11255334 DOI: 10.1038/s41467-024-49952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leonie G Graf
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Kilian Striska
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Markus Janetzky
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Robin Specht
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Britta Girbardt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Babett Dörre
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Stefan Kemnitz
- Department for High Performance Computing, University Computing Center, University of Greifswald, 17489, Greifswald, Germany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
10
|
Jones BS, Pareek V, Hu DD, Weaver SD, Syska C, Galfano G, Champion MM, Champion PA. N - acetyl-transferases required for iron uptake and aminoglycoside resistance promote virulence lipid production in M. marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602253. [PMID: 39005365 PMCID: PMC11245092 DOI: 10.1101/2024.07.05.602253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged Mycobacterium marinum, a nontubercular pathogen and an established model for M. tuberculosis. M. marinum hemolysis is a proxy for phagolytic activity. We generated M. marinum strains with deletions in conserved NAT genes and screened for hemolytic activity. Several conserved lysine acetyltransferases (KATs) contributed to hemolysis. Hemolysis is mediated by the ESX-1 secretion system and by phthiocerol dimycocerosate (PDIM), a virulence lipid. For several strains, the hemolytic activity was restored by the addition of second copy of the ESX-1 locus. Using thin-layer chromatography (TLC), we found a single NAT required for PDIM and phenolic glycolipid (PGL) production. MbtK is a conserved KAT required for mycobactin siderophore synthesis and virulence. Mycobactin J exogenously complemented PDIM/PGL production in the Δ mbtK strain. The Δ mbtK M. marinum strain was attenuated in macrophage and Galleria mellonella infection models. Constitutive expression of either eis or papA5, which encode a KAT required for aminoglycoside resistance and a PDIM/PGL biosynthetic enzyme, rescued PDIM/PGL production and virulence of the Δ mbtK strain. Eis N-terminally acetylated PapA5 in vitro , supporting a mechanism for restored lipid production. Overall, our study establishes connections between the MbtK and Eis NATs, and between iron uptake and PDIM and PGL synthesis in M. marinum . Our findings underscore the multifunctional nature of mycobacterial NATs and their connection to key virulence pathways. Significance Statement Acetylation is a modification of protein N-termini, lysine residues, antibiotics and lipids. Many of the enzymes that promote acetylation belong to the GNAT family of proteins. M. marinum is a well-established as a model to understand how M. tuberculosis causes tuberculosis. In this study we sought to identify conserved GNAT proteins required for early stages of mycobacterial infection. Using M. marinum, we determined that several GNAT proteins are required for the lytic activity of M. marinum. We uncovered previously unknown connections between acetyl-transferases required for iron uptake and antimicrobial resistance, and the production of the unique mycobacterial lipids, PDIM and PGLOur data support that acetyl-transferases from the GNAT family are interconnected, and have activities beyond those previously reported.
Collapse
|
11
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
12
|
Thompson C, Waldron C, George S, Ouyang Z. Assessment of the hypothetical protein BB0616 in the murine infection of Borrelia burgdorferi. Infect Immun 2024; 92:e0009024. [PMID: 38700336 PMCID: PMC11237664 DOI: 10.1128/iai.00090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Kan Y, Xie S, Sun Y, Ye T, Bian Y, Guo F, Zhang M, Liu T, Liu T, Ji J, Liu B, Tan M, Xu JY. Substrate and functional characterization of the lysine acetyltransferase MsKat and deacetylase MsCobB in Mycobacterium smegmatis. J Proteomics 2024; 300:105177. [PMID: 38631426 DOI: 10.1016/j.jprot.2024.105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Tuberculosis (TB) is a serious cause of infectious death worldwide. Recent studies have reported that about 30% of the Mtb proteome was modified post-translationally, indicating that their functions are essential for drug resistance, mycobacterial survival, and pathogenicity. Among them, lysine acetylation, reversibly regulated by acetyltransferase and deacetylase, has important roles involved in energy metabolism, cellular adaptation, and protein interactions. However, the substrate and biological functions of these two important regulatory enzymes remain unclear. Herein, we utilized the non-pathogenic M. smegmatis strain as a model and systematically investigated the dynamic proteome changes in response to the overexpressing of MsKat/MsCobB in mycobacteria. A total of 4179 proteins and 1236 acetylated sites were identified in our data. Further analysis of the dynamic changes involved in proteome and acetylome showed that MsKat/MsCobB played a regulatory role in various metabolic pathways and nucleic acid processes. After that, the quantitative mass spectrometric method was utilized and proved that the AMP-dependent synthetase, Citrate synthase, ATP-dependent specificity component of the Clp protease, and ATP-dependent DNA/RNA helicases were identified to be the substrates of MsKat. Overall, our study provided an important resource underlying the substrates and functions of the acetylation regulatory enzymes in mycobacteria. SIGNIFICANCE: In this study, we systematically analyzed the dynamic molecular changes in response to the MsKat/MsCobB overexpression in mycobacteria at proteome and lysine acetylation level by using a TMT-based quantitative proteomic approach. Pathways related with glycolysis, degradation of branched chain amino acids, phosphotransferase system were affected after disturbance of the two regulates enzymes involved in lysine acetylation. We also proved that AMP-dependent synthetase Clp protease, ATP-dependent DNA/RNA helicases and citrate synthase was the substrate of MsKat according to our proteomic data and biological validation. Together, our study underlined the substrates and functions of the acetylation regulatory enzymes in mycobacteria.
Collapse
Affiliation(s)
- Yunbo Kan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shanghai Easymass Co., Ltd, Shanghai 201318, China
| | - Shuyu Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yewen Sun
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Tong Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yunxu Bian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Fang Guo
- Shanghai Easymass Co., Ltd, Shanghai 201318, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianxian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianqi Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| | - Minjia Tan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| | - Jun-Yu Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| |
Collapse
|
14
|
Zhang Y, Zhou Q, Gao C, Lu Y, Sheng Y, Xiao M, Yun Y, Selvaraj JN, Zhang X, Li Y, Yu X. Endophytic bacteria for Cd remediation in rice: Unraveling the Cd tolerance mechanisms of Cupriavidus metallidurans CML2. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133846. [PMID: 38412644 DOI: 10.1016/j.jhazmat.2024.133846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
The utility of endophytic bacteria in Cadmium (Cd) remediation has gained significant attention due to their ability to alleviate metal-induced stress and enhance plant growth. Here, we investigate C. metallidurans CML2, an endophytic bacterial strain prevalent in rice, showing resilience against 2400 mg/L of Cd(II). We conducted an in-depth integrated morphological and transcriptomic analysis illustrating the multifarious mechanisms CML2 employs to combat Cd, including the formation of biofilm and CdO nanoparticles, upregulation of genes involved in periplasmic immobilization, and the utilization of RND efflux pumps to extract excess Cd ions. Beyond Cd, CML2 exhibited robust tolerance to an array of heavy metals, including Mn2+, Se4+, Ni2+, Cu2+, and Hg2+, demonstrating effective Cd(II) removal capacity. Furthermore, CML2 has exhibited plant growth-promoting properties through the production of indole-3-acetic acid (IAA) at 0.93 mg/L, soluble phosphorus compounds at 1.11 mg/L, and siderophores at 22.67%. Supportively, pot experiments indicated an increase in root lengths and a decrease in Cd bioaccumulation in rice seedlings inoculated with CML2, consequently reducing Cd translocation rates from 43% to 31%. These findings not only contribute to the understanding of Cd resistance mechanisms in C. metallidurans, but also underscore CML2's promising application in Cd remediation within rice farming ecosystems.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Qi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chang Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yue Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yang Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Ming Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yadong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
15
|
Syriste L, Patel DT, Stogios PJ, Skarina T, Patel D, Savchenko A. An acetyltransferase effector conserved across Legionella species targets the eukaryotic eIF3 complex to modulate protein translation. mBio 2024; 15:e0322123. [PMID: 38335095 PMCID: PMC10936415 DOI: 10.1128/mbio.03221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The survival of Legionella spp. as intracellular pathogens relies on the combined action of protein effectors delivered inside their eukaryotic hosts by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IVb secretion system. The specific repertoire of effector arsenals varies dramatically across over 60 known species of this genera with Legionella pneumophila responsible for most cases of Legionnaires' disease in humans encoding over 360 Dot/Icm effectors. However, a small subset of "core" effectors appears to be conserved across all Legionella species raising an intriguing question of their role in these bacteria's pathogenic strategy, which for most of these effectors remains unknown. L. pneumophila Lpg0103 effector, also known as VipF, represents one of the core effector families that features a tandem of Gcn5-related N-acetyltransferase (GNAT) domains. Here, we present the crystal structure of the Lha0223, the VipF representative from Legionella hackeliae in complex with acetyl-coenzyme A determined to 1.75 Å resolution. Our structural analysis suggested that this effector family shares a common fold with the two GNAT domains forming a deep groove occupied by residues conserved across VipF homologs. Further analysis suggested that only the C-terminal GNAT domain of VipF effectors retains the active site composition compatible with catalysis, whereas the N-terminal GNAT domain binds the ligand in a non-catalytical mode. We confirmed this by in vitro enzymatic assays which revealed VipF activity not only against generic small molecule substrates, such as chloramphenicol, but also against poly-L-lysine and histone-derived peptides. We identified the human eukaryotic translation initiation factor 3 (eIF3) complex co-precipitating with Lpg0103 and demonstrated the direct interaction between the several representatives of the VipF family, including Lpg0103 and Lha0223 with the K subunit of eIF3. According to our data, these interactions involve primarily the C-terminal tail of eIF3-K containing two lysine residues that are acetylated by VipF. VipF catalytic activity results in the suppression of eukaryotic protein translation in vitro, revealing the potential function of VipF "core" effectors in Legionella's pathogenic strategy.IMPORTANCEBy translocating effectors inside the eukaryotic host cell, bacteria can modulate host cellular processes in their favor. Legionella species, which includes the pneumonia-causing Legionella pneumophila, encode a widely diverse set of effectors with only a small subset that is conserved across this genus. Here, we demonstrate that one of these conserved effector families, represented by L. pneumophila VipF (Lpg0103), is a tandem Gcn5-related N-acetyltransferase interacting with the K subunit of human eukaryotic initiation factor 3 complex. VipF catalyzes the acetylation of lysine residues on the C-terminal tail of the K subunit, resulting in the suppression of eukaryotic translation initiation factor 3-mediated protein translation in vitro. These new data provide the first insight into the molecular function of this pathogenic factor family common across Legionellae.
Collapse
Affiliation(s)
- Lukas Syriste
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deepak T. Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Dhruvin Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Kremer M, Schulze S, Eisenbruch N, Nagel F, Vogt R, Berndt L, Dörre B, Palm GJ, Hoppen J, Girbardt B, Albrecht D, Sievers S, Delcea M, Baumann U, Schnetz K, Lammers M. Bacteria employ lysine acetylation of transcriptional regulators to adapt gene expression to cellular metabolism. Nat Commun 2024; 15:1674. [PMID: 38395951 PMCID: PMC10891134 DOI: 10.1038/s41467-024-46039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Nadja Eisenbruch
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Felix Nagel
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Vogt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Leona Berndt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Babett Dörre
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Jens Hoppen
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Britta Girbardt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Michael Lammers
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
17
|
Jia K, Yang M, Liu X, Zhang Q, Cao G, Ge F, Zhao J. Deciphering the structure, function, and mechanism of lysine acetyltransferase cGNAT2 in cyanobacteria. PLANT PHYSIOLOGY 2024; 194:634-661. [PMID: 37770070 DOI: 10.1093/plphys/kiad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.
Collapse
Affiliation(s)
- Kun Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Hurst-Hess K, McManaman C, Yang Y, Gupta S, Ghosh P. Hierarchy and interconnected networks in the WhiB7 mediated transcriptional response to antibiotic stress in Mycobacterium abscessus. PLoS Genet 2023; 19:e1011060. [PMID: 38055757 PMCID: PMC10727445 DOI: 10.1371/journal.pgen.1011060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/18/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Mycobacterium abscessus is intrinsically resistant to antibiotics effective against other pathogenic mycobacteria largely due to the drug-induced expression of genes that confer resistance. WhiB7 is a major hub controlling the induction of resistance to ribosome-targeting antibiotics. It activates the expression of >100 genes, 7 of which are known determinants of drug resistance; the function of most genes within the regulon is however unknown, but some conceivably encode additional mechanisms of resistance. Furthermore, the hierarchy of gene expression within the regulon, if any, is poorly understood. In the present work we have identified 56 WhiB7 binding sites using chromatin immunoprecipitation sequencing (CHIP-Seq) which accounts for the WhiB7-dependent upregulation of 72 genes, and find that M. abscessus WhiB7 functions exclusively as a transcriptional activator at promoters recognized by σA/σB. We have investigated the role of 18 WhiB7 regulated genes in drug resistance. Our results suggest that while some genes within the regulon (eg. erm41, hflX, eis2 and the ABCFs) play a major role in resistance, others make smaller contributions (eg. MAB_4324c and MAB_1409c) and the observed hypersensitivity ΔMabwhiB7 is a cumulative effect of these individual contributions. Moreover, our CHIP-Seq data implicate additional roles of WhiB7 induced genes beyond antibiotic resistance. Finally, we identify a σH-dependent network in aminoglycoside and tigecycline resistance which is induced upon drug exposure and is further activated by WhiB7 demonstrating the existence of a crosstalk between components of the WhiB7-dependent and -independent circuits.
Collapse
Affiliation(s)
- Kelley Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Charity McManaman
- School of Public Health, University at Albany, Albany, New York, United States of America
| | - Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Shamba Gupta
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- School of Public Health, University at Albany, Albany, New York, United States of America
| |
Collapse
|
19
|
Collars OA, Jones BS, Hu DD, Weaver SD, Sherman TA, Champion MM, Champion PA. An N-acetyltransferase required for ESAT-6 N-terminal acetylation and virulence in Mycobacterium marinum. mBio 2023; 14:e0098723. [PMID: 37772840 PMCID: PMC10653941 DOI: 10.1128/mbio.00987-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE N-terminal acetylation is a protein modification that broadly impacts basic cellular function and disease in higher organisms. Although bacterial proteins are N-terminally acetylated, little is understood how N-terminal acetylation impacts bacterial physiology and pathogenesis. Mycobacterial pathogens cause acute and chronic disease in humans and in animals. Approximately 15% of mycobacterial proteins are N-terminally acetylated, but the responsible enzymes are largely unknown. We identified a conserved mycobacterial protein required for the N-terminal acetylation of 23 mycobacterial proteins including the EsxA virulence factor. Loss of this enzyme from M. marinum reduced macrophage killing and spread of M. marinum to new host cells. Defining the acetyltransferases responsible for the N-terminal protein acetylation of essential virulence factors could lead to new targets for therapeutics against mycobacteria.
Collapse
Affiliation(s)
- Owen A. Collars
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Taylor A. Sherman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, Indiana, USA
| |
Collapse
|
20
|
Lund D, Coertze RD, Parras-Moltó M, Berglund F, Flach CF, Johnning A, Larsson DGJ, Kristiansson E. Extensive screening reveals previously undiscovered aminoglycoside resistance genes in human pathogens. Commun Biol 2023; 6:812. [PMID: 37537271 PMCID: PMC10400643 DOI: 10.1038/s42003-023-05174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Antibiotic resistance is a growing threat to human health, caused in part by pathogens accumulating antibiotic resistance genes (ARGs) through horizontal gene transfer. New ARGs are typically not recognized until they have become widely disseminated, which limits our ability to reduce their spread. In this study, we use large-scale computational screening of bacterial genomes to identify previously undiscovered mobile ARGs in pathogens. From ~1 million genomes, we predict 1,071,815 genes encoding 34,053 unique aminoglycoside-modifying enzymes (AMEs). These cluster into 7,612 families (<70% amino acid identity) of which 88 are previously described. Fifty new AME families are associated with mobile genetic elements and pathogenic hosts. From these, 24 of 28 experimentally tested AMEs confer resistance to aminoglycoside(s) in Escherichia coli, with 17 providing resistance above clinical breakpoints. This study greatly expands the range of clinically relevant aminoglycoside resistance determinants and demonstrates that computational methods enable early discovery of potentially emerging ARGs.
Collapse
Affiliation(s)
- David Lund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roelof Dirk Coertze
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcos Parras-Moltó
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
21
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
22
|
Fleming JR, Hauth F, Hartig JS, Mayans O. Crystal structure of a GCN5-related N-acetyltransferase from Lactobacillus curiae. Acta Crystallogr F Struct Biol Commun 2023; 79:217-223. [PMID: 37565839 PMCID: PMC10416765 DOI: 10.1107/s2053230x2300571x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
Members of the GCN5-related N-acetyltransferase (GNAT) family are found in all domains of life and are involved in processes ranging from protein synthesis and gene expression to detoxification and virulence. Due to the variety of their macromolecular targets, GNATs are a highly diverse family of proteins. Currently, 3D structures of only a small number of GNAT representatives are available and thus the family remains poorly characterized. Here, the crystal structure of the guanidine riboswitch-associated GNAT from Lactobacillus curiae (LcGNAT) that acetylates canavanine, a structural analogue of arginine with antimetabolite properties, is reported. LcGNAT shares the conserved fold of the members of the GNAT superfamily, but does not contain an N-terminal β0 strand and instead contains a C-terminal β7 strand. Its P-loop, which coordinates the pyrophosphate moiety of the acetyl-coenzyme A cosubstrate, is degenerated. These features are shared with its closest homologues in the polyamine acetyltransferase subclass. Site-directed mutagenesis revealed a central role of the conserved residue Tyr142 in catalysis, as well as the semi-conserved Tyr97 and Glu92, suggesting that despite its individual substrate specificity LcGNAT performs the classical reaction mechanism of this family.
Collapse
Affiliation(s)
- Jennifer R. Fleming
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Franziskus Hauth
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
23
|
Pal M, Yadav VK, Pal P, Agarwal N, Rao A. The physiological effect of rimI/rimJ silencing by CRISPR interference in Mycobacterium smegmatis mc 2155. Arch Microbiol 2023; 205:211. [PMID: 37119317 DOI: 10.1007/s00203-023-03561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
N-terminal acetylation of proteins is an important post-translational modification (PTM) found in eukaryotes and prokaryotes. In bacteria, N-terminal acetylation is suggested to play various regulatory roles related to protein stability, gene expression, stress response, and virulence; however, the mechanism of such response remains unclear. The proteins, namely RimI/RimJ, are involved in N-terminal acetylation in mycobacteria. In this study, we used CRISPR interference (CRISPRi) to silence rimI/rimJ in Mycobacterium smegmatis mc2155 to investigate the physiological effects of N-terminal acetylation in cell survival and stress response. Repeat analysis of growth curves in rich media and biofilm analysis in minimal media of various mutant strains and wild-type bacteria did not show significant differences that could be attributed to the rimI/rimJ silencing. However, total proteome and acetylome profiles varied significantly across mutants and wild-type strains, highlighting the role of RimI/RimJ in modulating levels of proprotein acetylation in the cellular milieu. Further, we observed a significant increase in the minimum inhibitory concentration (MIC) (from 64 to 1024 µg ml-1) for the drug isoniazid in rimI mutant strains. The increase in MIC value for the drug isoniazid in the mutant strains suggests the link between N-terminal acetylation and antibiotic resistance. The study highlights the utility of CRISPRi as a convenient tool to study the role of PTMs, such as acetylation in mycobacteria. It also identifies rimI/rimJ genes as necessary for managing cellular response against antibiotic stress. Further research would be required to decipher the potential of targeting acetylation to enhance the efficacy of existing antibiotics.
Collapse
Grants
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR25690/GET/119/142/2017 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Mohinder Pal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| | - Vinay Kumar Yadav
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Pramila Pal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, 496, UdyogVihar Phase-III, Gurgaon, Haryana, 122016, India
| | - Nisheeth Agarwal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, 496, UdyogVihar Phase-III, Gurgaon, Haryana, 122016, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
- Academy of Scientific and Innovation Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
24
|
Hurst-Hess K, McManaman C, Yang Y, Gupta S, Ghosh P. Hierarchy and networks in the transcriptional response of Mycobacterium abscessus to antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533064. [PMID: 36993298 PMCID: PMC10055156 DOI: 10.1101/2023.03.16.533064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mycobacterium abscessus causes acute and chronic pulmonary infection in patients with chronic lung damage. It is intrinsically resistance to antibiotics effective against other pathogenic mycobacteria largely due to the drug-induced expression of genes that confer resistance. Induction of genes upon exposure to ribosome targeting antibiotics proceeds via WhiB7-dependent and -independent pathways. WhiB7 controls the expression of >100 genes, a few of which are known determinants of drug resistance. The function of the vast majority of genes within the regulon is unknown, but some conceivably encode additional mechanisms of resistance. Furthermore, the hierarchy of gene expression within the regulon, if any, is poorly understood. In the present work we have identified 56 WhiB7 binding sites using chromatin immunoprecipitation sequencing (CHIP-Seq) which accounts for the WhiB7-dependent upregulation of 70 genes, and find that M. abscessus WhiB7 functions exclusively as a transcriptional activator at promoters recognized by σ A /σ B We have investigated the role of 18 WhiB7 regulated genes in drug resistance and demonstrated the role of MAB_1409c and MAB_4324c in aminoglycoside resistance. Further, we identify a σ H -dependent pathway in aminoglycoside and tigecycline resistance which is induced upon drug exposure and is further activated by WhiB7 demonstrating the existence of a crosstalk between components of the WhiB7-dependent and -independent circuits. Abstract Importance The induction of multiple genes that confer resistance to structurally diverse ribosome-targeting antibiotics is funneled through the induction of a single transcriptional activator, WhiB7, by antibiotic-stalled ribosomes. This poses a severe restriction in M. abscessus therapy as treatment with one ribosome-targeting antibiotic confers resistance to all other ribosome-targeting antibiotics. Here we uncover the intricacies of the WhiB7 regulatory circuit, identify three previously unknown determinants of aminoglycoside resistance and unveil a communication between WhiB7 dependent and independent components. This not only expands our understanding of the antibiotic resistance potential of M. abscessus but can also inform the development of much needed therapeutic options.
Collapse
|
25
|
Collars OA, Jones BS, Hu DD, Weaver SD, Champion MM, Champion PA. An N-acetyltransferase required for EsxA N-terminal protein acetylation and virulence in Mycobacterium marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532585. [PMID: 36993388 PMCID: PMC10055061 DOI: 10.1101/2023.03.14.532585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
N-terminal protein acetylation is a ubiquitous post-translational modification that broadly impacts diverse cellular processes in higher organisms. Bacterial proteins are also N-terminally acetylated, but the mechanisms and consequences of this modification in bacteria are poorly understood. We previously quantified widespread N-terminal protein acetylation in pathogenic mycobacteria (C. R. Thompson, M. M. Champion, and P.A. Champion, J Proteome Res 17(9): 3246-3258, 2018, https:// doi: 10.1021/acs.jproteome.8b00373). The major virulence factor EsxA (ESAT-6, Early secreted antigen, 6kDa) was one of the first N-terminally acetylated proteins identified in bacteria. EsxA is conserved in mycobacterial pathogens, including Mycobacterium tuberculosis and Mycobacterium marinum, a non-tubercular mycobacterial species that causes tuberculosis-like disease in ectotherms. However, enzyme responsible for EsxA N-terminal acetylation has been elusive. Here, we used genetics, molecular biology, and mass-spectroscopy based proteomics to demonstrate that MMAR_1839 (renamed Emp1, ESX-1 modifying protein, 1) is the putative N-acetyl transferase (NAT) solely responsible for EsxA acetylation in Mycobacterium marinum. We demonstrated that ERD_3144, the orthologous gene in M. tuberculosis Erdman, is functionally equivalent to Emp1. We identified at least 22 additional proteins that require Emp1 for acetylation, demonstrating that this putative NAT is not dedicated to EsxA. Finally, we showed that loss of emp1 resulted in a significant reduction in the ability of M. marinum to cause macrophage cytolysis. Collectively, this study identified a NAT required for N-terminal acetylation in Mycobacterium and provided insight into the requirement of N-terminal acetylation of EsxA and other proteins in mycobacterial virulence in the macrophage.
Collapse
Affiliation(s)
- Owen A. Collars
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, USA
| | - Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
- Eck Institute for Global Health, University of Note Dame, Notre Dame, USA
| |
Collapse
|
26
|
Xu M, Liu X, Li X, Chen L, Li S, Sun B, Xu D, Ran T, Wang W. Crystal structure of prodigiosin binding protein PgbP, a GNAT family protein, in Serratia marcescens FS14. Biochem Biophys Res Commun 2023; 640:73-79. [PMID: 36502634 DOI: 10.1016/j.bbrc.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Acetylation is a conserved modification catalyzed by acetyltransferases that play prominent roles in a large number of biological processes. Members of the general control non-repressible 5 (GCN5)-N-acetyltransferase (GNAT) protein superfamily are widespread in all kingdoms of life and are characterized by highly conserved catalytic fold, and can acetylate a wide range of substrates. Although the structures and functions of numerous eukaryotic GNATs have been identified thus far, many GNATs in microorganisms remain structurally and functionally undescribed. Here, we determined the crystal structure of the putative GCN5-N-acetyltransferase PgbP in complex with CoA in Serratia marcescens FS14. Structural analysis revealed that the PgbP dimer has two cavities, each of which binds a CoA molecule via conserved motifs of the GNAT family. In addition, the biochemical studies showed that PgbP is a prodigiosin-binding protein with high thermal stability. To our knowledge, this is the first view of GNAT binding to secondary metabolites and it is also the first report of prodigiosin binding protein. Molecular docking and mutation experiments indicated that prodigiosin binds to the substrate binding site of PgbP. The structure-function analyses presented here broaden our understanding of the multifunctionality of GNAT family members and may infer the mechanism of the multiple biological activities of prodigiosin.
Collapse
Affiliation(s)
- Mengxue Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xia Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaoyan Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lin Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shengzhe Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Dongqing Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Tingting Ran
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Weiwu Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
27
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
28
|
de Francisco Martínez P, Morgante V, González-Pastor JE. Isolation of novel cold-tolerance genes from rhizosphere microorganisms of Antarctic plants by functional metagenomics. Front Microbiol 2022; 13:1026463. [DOI: 10.3389/fmicb.2022.1026463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The microorganisms that thrive in Antarctica, one of the coldest environments on the planet, have developed diverse adaptation mechanisms to survive in these extreme conditions. Through functional metagenomics, in this work, 29 new genes related to cold tolerance have been isolated and characterized from metagenomic libraries of microorganisms from the rhizosphere of two Antarctic plants. Both libraries were hosted in two cold-sensitive strains of Escherichia coli: DH10B ΔcsdA and DH10B ΔcsdA Δrnr. The csdA gene encodes a DEAD-box RNA helicase and rnr gene encodes an exoribonuclease, both essential for cold-adaptation. Cold-tolerance tests have been carried out in solid and liquid media at 15°C. Among the cold-tolerance genes identified, 12 encode hypothetical and unknown proteins, and 17 encode a wide variety of different proteins previously related to other well-characterized ones involved in metabolism reactions, transport and membrane processes, or genetic information processes. Most of them have been connected to cold-tolerance mechanisms. Interestingly, 13 genes had no homologs in E. coli, thus potentially providing entirely new adaptation strategies for this bacterium. Moreover, ten genes also conferred resistance to UV-B radiation, another extreme condition in Antarctica.
Collapse
|
29
|
Rahman MA, Heme UH, Parvez MAK. In silico functional annotation of hypothetical proteins from the Bacillus paralicheniformis strain Bac84 reveals proteins with biotechnological potentials and adaptational functions to extreme environments. PLoS One 2022; 17:e0276085. [PMID: 36228026 PMCID: PMC9560612 DOI: 10.1371/journal.pone.0276085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Members of the Bacillus genus are industrial cell factories due to their capacity to secrete significant quantities of biomolecules with industrial applications. The Bacillus paralicheniformis strain Bac84 was isolated from the Red Sea and it shares a close evolutionary relationship with Bacillus licheniformis. However, a significant number of proteins in its genome are annotated as functionally uncharacterized hypothetical proteins. Investigating these proteins' functions may help us better understand how bacteria survive extreme environmental conditions and to find novel targets for biotechnological applications. Therefore, the purpose of our research was to functionally annotate the hypothetical proteins from the genome of B. paralicheniformis strain Bac84. We employed a structured in-silico approach incorporating numerous bioinformatics tools and databases for functional annotation, physicochemical characterization, subcellular localization, protein-protein interactions, and three-dimensional structure determination. Sequences of 414 hypothetical proteins were evaluated and we were able to successfully attribute a function to 37 hypothetical proteins. Moreover, we performed receiver operating characteristic analysis to assess the performance of various tools used in this present study. We identified 12 proteins having significant adaptational roles to unfavorable environments such as sporulation, formation of biofilm, motility, regulation of transcription, etc. Additionally, 8 proteins were predicted with biotechnological potentials such as coenzyme A biosynthesis, phenylalanine biosynthesis, rare-sugars biosynthesis, antibiotic biosynthesis, bioremediation, and others. Evaluation of the performance of the tools showed an accuracy of 98% which represented the rationality of the tools used. This work shows that this annotation strategy will make the functional characterization of unknown proteins easier and can find the target for further investigation. The knowledge of these hypothetical proteins' potential functions aids B. paralicheniformis strain Bac84 in effectively creating a new biotechnological target. In addition, the results may also facilitate a better understanding of the survival mechanisms in harsh environmental conditions.
Collapse
Affiliation(s)
- Md. Atikur Rahman
- Institute of Microbiology, Friedrich Schiller University Jena, Thuringia, Germany
| | - Uzma Habiba Heme
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Thuringia, Germany
| | | |
Collapse
|
30
|
Voigt AY, Emiola A, Johnson JS, Fleming ES, Nguyen H, Zhou W, Tsai KY, Fink C, Oh J. Skin Microbiome Variation with Cancer Progression in Human Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2022; 142:2773-2782.e16. [PMID: 35390349 PMCID: PMC9509417 DOI: 10.1016/j.jid.2022.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The skin microbiome plays a critical role in skin homeostasis and disorders. UVR is the major cause of nonmelanoma skin cancer, but other risk factors, including immune suppression, chronic inflammation, and antibiotic usage, suggest the microbiome as an additional, unexplored risk factor and potential disease biomarker. The overarching goal was to study the skin microbiome in squamous cell carcinoma (SCC) and premalignant actinic keratosis compared with that in healthy skin to identify skin cancer‒associated changes in the skin microbiome. We performed a high-resolution analysis of shotgun metagenomes of actinic keratosis and SCC in healthy skin, revealing the microbial community shifts specific to actinic keratosis and SCC. Most prominently, the relative abundance of pathobiont Staphylococcus aureus was increased at the expense of commensal Cutibacterium acnes in SCC compared with that in healthy skin, and enrichment of functional pathways in SCC reflected this shift. Notably, C. acnes associated with lesional versus healthy skin differed at the strain level, suggesting the specific functional changes associated with its depletion in SCC. Our study revealed a transitional microbial dysbiosis from healthy skin to actinic keratosis to SCC, supporting further investigation of the skin microbiome for use as a biomarker and providing hypotheses for studies investigating how these microbes might influence skin cancer progression.
Collapse
Affiliation(s)
- Anita Y Voigt
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Akintunde Emiola
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jethro S Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA; Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | | | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Kenneth Y Tsai
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Christine Fink
- Department of Dermatology, Venereology, and Allergology, University Medical Center, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
31
|
Alekseeva MG, Zakharevich NV, Ratkin AV, Danilenko VN. Human Intestinal Microbiome—A Reservoir of Aminoglycoside-N-Acetyltransferases—Drug Resistance Genes. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Grob G, Hemmerle M, Yakobov N, Mahmoudi N, Fischer F, Senger B, Becker HD. tRNA-dependent addition of amino acids to cell wall and membrane components. Biochimie 2022; 203:93-105. [DOI: 10.1016/j.biochi.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
33
|
Chen TT, Lin Y, Zhang S, Han A. Structural basis for the acetylation mechanism of the Legionella effector VipF. Acta Crystallogr D Struct Biol 2022; 78:1110-1119. [DOI: 10.1107/s2059798322007318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022] Open
Abstract
The pathogen Legionella pneumophila, which is the causative agent of Legionnaires' disease, secrets hundreds of effectors into host cells via its Dot/Icm secretion system to subvert host-cell pathways during pathogenesis. VipF, a conserved core effector among Legionella species, is a putative acetyltransferase, but its structure and catalytic mechanism remain unknown. Here, three crystal structures of VipF in complex with its cofactor acetyl-CoA and/or a substrate are reported. The two GNAT-like domains of VipF are connected as two wings by two β-strands to form a U-shape. Both domains bind acetyl-CoA or CoA, but only in the C-terminal domain does the molecule extend to the bottom of the U-shaped groove as required for an active transferase reaction; the molecule in the N-terminal domain folds back on itself. Interestingly, when chloramphenicol, a putative substrate, binds in the pocket of the central U-shaped groove adjacent to the N-terminal domain, VipF remains in an open conformation. Moreover, mutations in the central U-shaped groove, including Glu129 and Asp251, largely impaired the acetyltransferase activity of VipF, suggesting a unique enzymatic mechanism for the Legionella effector VipF.
Collapse
|
34
|
Abstract
Lysine acetylation, a ubiquitous and dynamic regulatory posttranslational modification (PTM), affects hundreds of proteins across all domains of life. In bacteria, lysine acetylation can be found in many essential pathways, and it is also crucial for bacterial virulence. However, the biological significance of lysine acetylation events to bacterial virulence factors remains poorly characterized. In Streptococcus mutans, the acetylome profiles help identify several lysine acetylation sites of lactate dehydrogenase (LDH), which catalyzes the conversion of pyruvate to lactic acid, causing the deterioration of teeth. We investigated the regulatory mechanism of LDH acetylation and characterized the effect of LDH acetylation on its function. We overexpressed the 15 Gcn5 N-acetyltransferases (GNAT) family members in S. mutans and showed that the acetyltransferase ActA impaired its acidogenicity by acetylating LDH. Additionally, enzymatic acetyltransferase reactions demonstrated that purified ActA could acetylate LDH in vitro, and 10 potential lysine acetylation sites of LDH were identified by mass spectrometry, 70% of which were also detected in vivo. We further demonstrated that the lysine acetylation of LDH inhibited its enzymatic activity, and a subsequent rat caries model showed that ActA impaired the cariogenicity of S. mutans. Collectively, we demonstrated that ActA, the first identified and characterized acetyltransferase in S. mutans, acetylated the LDH enzymatically and inhibited its enzymatic activity, thereby providing a starting point for the further analysis of the biological significance of lysine acetylation in the virulence of S. mutans.
Collapse
|
35
|
N-Succinyltransferase Encoded by a Cryptic Siderophore Biosynthesis Gene Cluster in Streptomyces Modifies Structurally Distinct Antibiotics. mBio 2022; 13:e0178922. [PMID: 36040031 DOI: 10.1128/mbio.01789-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibiotic desertomycin A and its previously undescribed inactive N-succinylated analogue, desertomycin X, were isolated from Streptomyces sp. strain YIM 121038. Genome sequencing and analysis readily identified the desertomycin biosynthetic gene cluster (BGC), which lacked genes encoding acyltransferases that would account for desertomycin X formation. Scouting the genome for putative N-acyltransferase genes led to the identification of a candidate within a cryptic siderophore BGC (csb) encoding a putative homologue of the N6'-hydroxylysine acetyltransferase IucB. Expression of the codon-optimized gene designated csbC in Escherichia coli yielded the recombinant protein that was able to N-succinylate desertomycin A as well as several other structurally distinct antibiotics harboring amino groups. Some antibiotics were rendered antibiotically inactive due to the CsbC-catalyzed succinylation in vitro. Unlike many known N-acyltransferases involved in antibiotic resistance, CsbC could not efficiently acetylate the same antibiotics. When expressed in E. coli, CsbC provided low-level resistance to kanamycin and ampicillin, suggesting that it may play a role in antibiotic resistance in natural habitats, where the concentration of antibiotics is usually low. IMPORTANCE In their natural habitats, bacteria encounter a plethora of organic compounds, some of which may be represented by antibiotics produced by certain members of the microbial community. A number of antibiotic resistance mechanisms have been described, including those specified by distinct genes encoding proteins that degrade, modify, or expel antibiotics. In this study, we report identification and characterization of an enzyme apparently involved in the biosynthesis of a siderophore, but also having the ability of modify and thereby inactivate a wide variety of structurally diverse antibiotics. This discovery sheds light on additional capabilities of bacteria to withstand antibiotic treatment and suggests that enzymes involved in secondary metabolism may have an additional function in the natural environment.
Collapse
|
36
|
Karamycheva S, Wolf YI, Persi E, Koonin EV, Makarova KS. Analysis of lineage-specific protein family variability in prokaryotes combined with evolutionary reconstructions. Biol Direct 2022; 17:22. [PMID: 36042479 PMCID: PMC9425974 DOI: 10.1186/s13062-022-00337-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Evolutionary rate is a key characteristic of gene families that is linked to the functional importance of the respective genes as well as specific biological functions of the proteins they encode. Accurate estimation of evolutionary rates is a challenging task that requires precise phylogenetic analysis. Here we present an easy to estimate protein family level measure of sequence variability based on alignment column homogeneity in multiple alignments of protein sequences from Clade-Specific Clusters of Orthologous Genes (csCOGs). Results We report genome-wide estimates of variability for 8 diverse groups of bacteria and archaea and investigate the connection between variability and various genomic and biological features. The variability estimates are based on homogeneity distributions across amino acid sequence alignments and can be obtained for multiple groups of genomes at minimal computational expense. About half of the variance in variability values can be explained by the analyzed features, with the greatest contribution coming from the extent of gene paralogy in the given csCOG. The correlation between variability and paralogy appears to originate, primarily, not from gene duplication, but from acquisition of distant paralogs and xenologs, introducing sequence variants that are more divergent than those that could have evolved in situ during the lifetime of the given group of organisms. Both high-variability and low-variability csCOGs were identified in all functional categories, but as expected, proteins encoded by integrated mobile elements as well as proteins involved in defense functions and cell motility are, on average, more variable than proteins with housekeeping functions. Additionally, using linear discriminant analysis, we found that variability and fraction of genomes carrying a given gene are the two variables that provide the best prediction of gene essentiality as compared to the results of transposon mutagenesis in Sulfolobus islandicus. Conclusions Variability, a measure of sequence diversity within an alignment relative to the overall diversity within a group of organisms, offers a convenient proxy for evolutionary rate estimates and is informative with respect to prediction of functional properties of proteins. In particular, variability is a strong predictor of gene essentiality for the respective organisms and indicative of sub- or neofunctionalization of paralogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-022-00337-7.
Collapse
Affiliation(s)
- Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
37
|
Kumar V, Turnbull WB, Kumar A. Review on Recent Developments in Biocatalysts for Friedel–Crafts Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| |
Collapse
|
38
|
The MinCDE Cell Division System Participates in the Regulation of Type III Secretion System (T3SS) Genes, Bacterial Virulence, and Motility in Xanthomonas oryzae pv. oryzae. Microorganisms 2022; 10:microorganisms10081549. [PMID: 36013967 PMCID: PMC9414521 DOI: 10.3390/microorganisms10081549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice, which is one of the most severe bacterial diseases in rice in some Asian countries. The type III secretion system (T3SS) of Xoo encoded by the hypersensitive response and pathogenicity (hrp) genes is essential for its pathogenicity in host rice. Here, we identified the Min system (MinC, MinD, and MinE), a negative regulatory system for bacterial cell division encoded by minC, minD, and minE genes, which is involved in negative regulation of hrp genes (hrpB1 and hrpF) in Xoo. We found that the deletion of minC, minD, and minCDE resulted in enhanced hrpB1 and hrpF expression, which is dependent on two key hrp regulators HrpG and HrpX. The minC, minD, and minCDE mutants exhibited elongated cell lengths, and the classic Min system-defective cell morphology including minicells and short filamentations. Mutation of minC in Xoo resulted in significantly impaired virulence in host rice, swimming motility, and enhanced biofilm formation. Our transcriptome profiling also indicated some virulence genes were differentially expressed in the minC mutants. To our knowledge, this is the first report about the Min system participating in the regulation of T3SS expression. It sheds light on the understanding of Xoo virulence mechanisms.
Collapse
|
39
|
Freitas S, Castelo-Branco R, Wenzel-Storjohann A, Vasconcelos VM, Tasdemir D, Leão PN. Structure and Biosynthesis of Desmamides A-C, Lipoglycopeptides from the Endophytic Cyanobacterium Desmonostoc muscorum LEGE 12446. JOURNAL OF NATURAL PRODUCTS 2022; 85:1704-1714. [PMID: 35793792 PMCID: PMC9315949 DOI: 10.1021/acs.jnatprod.2c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.
Collapse
Affiliation(s)
- Sara Freitas
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Arlette Wenzel-Storjohann
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
| | - Vitor M. Vasconcelos
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Deniz Tasdemir
- GEOMAR
Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Am Kiel Kanal 44, 24106 Kiel, Germany
- Kiel
University, Christian-Albrechts-Platz
4, 24118 Kiel, Germany
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
40
|
Crystal structure of the phage-encoded N-acetyltransferase in complex with acetyl-CoA, revealing a novel dimeric arrangement. J Microbiol 2022; 60:746-755. [DOI: 10.1007/s12275-022-2030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
|
41
|
Toplak M, Nagel A, Frensch B, Lechtenberg T, Teufel R. An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes. Chem Sci 2022; 13:7157-7164. [PMID: 35799824 PMCID: PMC9215129 DOI: 10.1039/d2sc01952c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023] Open
Abstract
The often complex control of bacterial natural product biosynthesis typically involves global and pathway-specific transcriptional regulators of gene expression, which often limits the yield of bioactive compounds under laboratory conditions. However, little is known about regulation mechanisms on the enzymatic level. Here, we report a novel regulatory principle for natural products involving a dedicated acetyltransferase, which modifies a redox-tailoring enzyme and thereby enables pathway furcation and alternating pharmacophore assembly in rubromycin polyketide biosynthesis. The rubromycins such as griseorhodin (grh) A are complex bioactive aromatic polyketides from Actinobacteria with a hallmark bisbenzannulated [5,6]-spiroketal pharmacophore that is mainly installed by two flavoprotein monooxygenases. First, GrhO5 converts the advanced precursor collinone into the [6,6]-spiroketal containing dihydrolenticulone, before GrhO6 effectuates a ring contraction to afford the [5,6]-spiroketal. Our results show that pharmacophore assembly in addition involves the acetyl-CoA-dependent acetyltransferase GrhJ that activates GrhO6 to allow the rapid generation and release of its labile product, which is subsequently sequestered by ketoreductase GrhO10 and converted into a stable intermediate. Consequently, the biosynthesis is directed to the generation of canonical rubromycins, while the alternative spontaneous [5,6]-spiroketal hydrolysis to a ring-opened pathway product is thwarted. Presumably, this allows the bacteria to rapidly adjust the biosynthesis of functionally distinct secondary metabolites depending on nutrient and precursor (i.e. acetyl-CoA) availability. Our study thus illustrates how natural product biosynthesis can be enzymatically regulated and provides new perspectives for the improvement of in vitro enzyme activities and natural product titers via biotechnological approaches. Characterization of the acetyltransferase GrhJ reveals the surprising acetylation of flavoenzyme GrhO6 in rubromycin polyketide biosynthesis, showcasing a novel principle for the enzymatic regulation of secondary metabolic pathways.![]()
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Adelheid Nagel
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Britta Frensch
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Thorsten Lechtenberg
- Faculty of Biology, University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
42
|
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell. One such regulatory mechanism involves lysine acetylation, a covalent modification involving the transfer of an acetyl group from central metabolite acetyl-coenzyme A or acetyl phosphate to a lysine residue in a protein.
Collapse
|
43
|
Dang T, Loll B, Müller S, Skobalj R, Ebeling J, Bulatov T, Gensel S, Göbel J, Wahl MC, Genersch E, Mainz A, Süssmuth RD. Molecular basis of antibiotic self-resistance in a bee larvae pathogen. Nat Commun 2022; 13:2349. [PMID: 35487884 PMCID: PMC9054821 DOI: 10.1038/s41467-022-29829-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
Paenibacillus larvae, the causative agent of the devastating honey-bee disease American Foulbrood, produces the cationic polyketide-peptide hybrid paenilamicin that displays antibacterial and antifungal activity. Its biosynthetic gene cluster contains a gene coding for the N-acetyltransferase PamZ. We show that PamZ acts as self-resistance factor in Paenibacillus larvae by deactivation of paenilamicin. Using tandem mass spectrometry, nuclear magnetic resonance spectroscopy and synthetic diastereomers, we identified the N-terminal amino group of the agmatinamic acid as the N-acetylation site. These findings highlight the pharmacophore region of paenilamicin, which we very recently identified as a ribosome inhibitor. Here, we further determined the crystal structure of PamZ:acetyl-CoA complex at 1.34 Å resolution. An unusual tandem-domain architecture provides a well-defined substrate-binding groove decorated with negatively-charged residues to specifically attract the cationic paenilamicin. Our results will help to understand the mode of action of paenilamicin and its role in pathogenicity of Paenibacillus larvae to fight American Foulbrood.
Collapse
Affiliation(s)
- Tam Dang
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Müller
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Ranko Skobalj
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Timur Bulatov
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Sebastian Gensel
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Josefine Göbel
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Markus C Wahl
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Berlin, Germany
- Macromolecular Crystallography, Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
- Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
44
|
Imani AS, Lee AR, Vishwanathan N, de Waal F, Freeman MF. Diverse Protein Architectures and α- N-Methylation Patterns Define Split Borosin RiPP Biosynthetic Gene Clusters. ACS Chem Biol 2022; 17:908-917. [PMID: 35297605 PMCID: PMC9019853 DOI: 10.1021/acschembio.1c01002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borosins are ribosomally synthesized and post-translationally modified peptides (RiPPs) with α-N-methylations installed on the peptide backbone that impart unique properties like proteolytic stability to these natural products. The borosin RiPP family was initially reported only in fungi until our recent discovery and characterization of a Type IV split borosin system in the metal-respiring bacterium Shewanella oneidensis. Here, we used hidden Markov models and sequence similarity networks to identify over 1600 putative pathways that show split borosin biosynthetic gene clusters are widespread in bacteria. Noteworthy differences in precursor and α-N-methyltransferase open reading frame sizes, architectures, and core peptide properties allow further subdivision of the borosin family into six additional discrete structural types, of which five have been validated in this study.
Collapse
Affiliation(s)
| | | | | | - Floris de Waal
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
45
|
Ribosomal protein S18 acetyltransferase RimI is responsible for the acetylation of elongation factor Tu. J Biol Chem 2022; 298:101914. [PMID: 35398352 PMCID: PMC9079301 DOI: 10.1016/j.jbc.2022.101914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.
Collapse
|
46
|
The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific. mBio 2022; 13:e0282621. [PMID: 35012352 PMCID: PMC8749412 DOI: 10.1128/mbio.02826-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Antibiotic resistance is an increasing threat to human health. A direct link has been established between antimicrobial self-resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Natural odilorhabdins (ODLs) constitute a new family of 10-mer linear cationic peptide antibiotics inhibiting bacterial translation by binding to the 30S subunit of the ribosome. These bioactive secondary metabolites are produced by entomopathogenic bacterial symbiont Xenorhabdus (Morganellaceae), vectored by the soil-dwelling nematodes. ODL-producing Xenorhabdus nematophila symbionts have mechanisms of self-protection. In this study, we cloned the 44.5-kb odl biosynthetic gene cluster (odl-BGC) of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed an exclusive cis-link to the odilorhabdin BGC, found only in X. nematophila and a specific phylogenetic clade of Photorhabdus. This work highlights the coevolution of antibiotic production and self-resistance as ancient features of this unique tripartite complex of host-vector-symbiont interactions without odl-BGC dissemination by lateral gene transfer. IMPORTANCE Odilorhabdins (ODLs) constitute a novel antibiotic family with promising properties for treating problematic multidrug-resistant Gram-negative bacterial infections. ODLs are 10-mer linear cationic peptides inhibiting bacterial translation by binding to the small subunit of the ribosome. These natural peptides are produced by Xenorhabdus nematophila, a bacterial symbiont of entomopathogenic nematodes well known to produce large amounts of specialized secondary metabolites. Like other antimicrobial producers, ODL-producing Xenorhabdus nematophila has mechanisms of self-protection. In this study, we cloned the ODL-biosynthetic gene cluster of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and LC-MS/MS analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed the coevolution of antibiotic production and self-resistance as ancient feature of this particular niche in soil invertebrates without resistance dissemination.
Collapse
|
47
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
48
|
Yakobov N, Mahmoudi N, Grob G, Yokokawa D, Saga Y, Kushiro T, Worrell D, Roy H, Schaller H, Senger B, Huck L, Riera Gascon G, Becker HD, Fischer F. RNA-dependent synthesis of ergosteryl-3β-O-glycine in Ascomycota expands the diversity of steryl-amino acids. J Biol Chem 2022; 298:101657. [PMID: 35131263 PMCID: PMC8913301 DOI: 10.1016/j.jbc.2022.101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
|
49
|
Hubrich F, Bösch NM, Chepkirui C, Morinaka BI, Rust M, Gugger M, Robinson SL, Vagstad AL, Piel J. Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proc Natl Acad Sci U S A 2022; 119:e2113120119. [PMID: 35027450 PMCID: PMC8784127 DOI: 10.1073/pnas.2113120119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Lipopeptides represent a large group of microbial natural products that include important antibacterial and antifungal drugs and some of the most-powerful known biosurfactants. The vast majority of lipopeptides comprise cyclic peptide backbones N-terminally equipped with various fatty acyl moieties. The known compounds of this type are biosynthesized by nonribosomal peptide synthetases, giant enzyme complexes that assemble their products in a non-gene-encoded manner. Here, we report the genome-guided discovery of ribosomally derived, fatty-acylated lipopeptides, termed selidamides. Heterologous reconstitution of three pathways, two from cyanobacteria and one from an arctic, ocean-derived alphaproteobacterium, allowed structural characterization of the probable natural products and suggest that selidamides are widespread over various bacterial phyla. The identified representatives feature cyclic peptide moieties and fatty acyl units attached to (hydroxy)ornithine or lysine side chains by maturases of the GCN5-related N-acetyltransferase superfamily. In contrast to nonribosomal lipopeptides that are usually produced as congener mixtures, the three selidamides are selectively fatty acylated with C10, C12, or C16 fatty acids, respectively. These results highlight the ability of ribosomal pathways to emulate products with diverse, nonribosomal-like features and add to the biocatalytic toolbox for peptide drug improvement and targeted discovery.
Collapse
Affiliation(s)
- Florian Hubrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Nina M Bösch
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Brandon I Morinaka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Muriel Gugger
- Collection of Cyanobacteria, Institut Pasteur, 75724 Paris, France
| | - Serina L Robinson
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
50
|
Lakshmi SA, Prasath KG, Tamilmuhilan K, Srivathsan A, Shafreen RMB, Kasthuri T, Pandian SK. Suppression of Thiol-Dependent Antioxidant System and Stress Response in Methicillin-Resistant Staphylococcus aureus by Docosanol: Explication Through Proteome Investigation. Mol Biotechnol 2022; 64:575-589. [PMID: 35018617 DOI: 10.1007/s12033-021-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, 602117, India
| | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Alagappapuram, Karaikudi, Tamil Nadu, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | | |
Collapse
|