1
|
Clough SE, Young TR, Tarrant E, Scott AJP, Chivers PT, Glasfeld A, Robinson NJ. A metal-trap tests and refines blueprints to engineer cellular protein metalation with different elements. Nat Commun 2025; 16:810. [PMID: 39827241 PMCID: PMC11742986 DOI: 10.1038/s41467-025-56199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
It has been challenging to test how proteins acquire specific metals in cells. The speciation of metalation is thought to depend on the preferences of proteins for different metals competing at intracellular metal-availabilities. This implies mis-metalation may occur if proteins become mis-matched to metal-availabilities in heterologous cells. Here we use a cyanobacterial MnII-cupin (MncA) as a metal trap, to test predictions of metalation. By re-folding MncA in buffered competing metals, metal-preferences are determined. Relating metal-preferences to metal-availabilities estimated using cellular metal sensors, predicts mis-metalation of MncA with FeII in E. coli. After expression in E. coli, predominantly FeII-bound MncA is isolated experimentally. It is predicted that in metal-supplemented viable cells metal-MncA speciation should switch. MnII-, CoII-, or NiII-MncA are recovered from the respective metal-supplemented cells. Differences between observed and predicted metal-MncA speciation are used to refine estimated metal availabilities. Values are provided as blueprints to guide engineering biological protein metalation.
Collapse
Affiliation(s)
- Sophie E Clough
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Tessa R Young
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Emma Tarrant
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Andrew J P Scott
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Peter T Chivers
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Arthur Glasfeld
- Department of Biosciences, University of Durham, Durham, UK
- Department of Chemistry, University of Durham, Durham, UK
| | - Nigel J Robinson
- Department of Biosciences, University of Durham, Durham, UK.
- Department of Chemistry, University of Durham, Durham, UK.
| |
Collapse
|
2
|
Kwiatkowski A, Caserta G, Schulz AC, Frielingsdorf S, Pelmenschikov V, Weisser K, Belsom A, Rappsilber J, Sergueev I, Limberg C, Mroginski MA, Zebger I, Lenz O. ATP-Triggered Fe(CN) 2CO Synthon Transfer from the Maturase HypCD to the Active Site of Apo-[NiFe]-Hydrogenase. J Am Chem Soc 2024; 146:30976-30989. [PMID: 39491524 PMCID: PMC11565642 DOI: 10.1021/jacs.4c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
[NiFe]-hydrogenases catalyze the reversible activation of H2 using a unique NiFe(CN)2CO metal site, which is assembled by a sophisticated multiprotein machinery. The [4Fe-4S] cluster-containing HypCD complex, which possesses an ATPase activity with a hitherto unknown function, serves as the hub for the assembly of the Fe(CN)2CO subfragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism has remained unexplored. Here, we performed a thorough spectroscopic characterization of different HypCD preparations using infrared, Mössbauer, and NRVS spectroscopy, revealing molecular details of the coordination of the Fe(CN)2CO fragment. Moreover, biochemical assays in combination with spectroscopy, AlphaFold structure predictions, protein-ligand docking calculations, and crosslinking MS deciphered unexpected mechanistic aspects of the ATP requirement of HypCD, which we found to actually trigger the transfer of the Fe(CN)2CO fragment to the apo-hydrogenase.
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anne-Christine Schulz
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vladimir Pelmenschikov
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Kilian Weisser
- Institute
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Adam Belsom
- Institute
of Biotechnology, Chair of Bioanalytics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Juri Rappsilber
- Institute
of Biotechnology, Chair of Bioanalytics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Si-M/‘Der
Simulierte Mensch’, a Science Framework
of Technische Universität Berlin and Charité −
Universitätsmedizin Berlin, 10623 Berlin, Germany
- Wellcome
Centre of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, U.K.
| | - Ilya Sergueev
- Deutsches
Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Limberg
- Institute
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Maria-Andrea Mroginski
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ingo Zebger
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
3
|
Hiralal A, Geelhoed JS, Neukirchen S, Meysman FJR. Comparative genomic analysis of nickel homeostasis in cable bacteria. BMC Genomics 2024; 25:692. [PMID: 39009997 PMCID: PMC11247825 DOI: 10.1186/s12864-024-10594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre‑scale electron transport in marine and freshwater sediments. This long‑distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre‑long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel‑containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel‑dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome‑encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order. RESULTS Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10‑6 and Candidatus Electrothrix antwerpensis strain GW3‑4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome‑encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel‑binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine‑rich loop that has been largely expanded compared to RcnA homologs in other organisms. CONCLUSION Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel‑dependent conduction mechanism that is uniquely found in cable bacteria.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Sinje Neukirchen
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | - Filip J R Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
4
|
Yang Y, Zwijnenburg MA, Gardner AM, Adamczyk S, Yang J, Sun Y, Jiang Q, Cowan AJ, Sprick RS, Liu LN, Cooper AI. Conjugated Polymer/Recombinant Escherichia coli Biohybrid Systems for Photobiocatalytic Hydrogen Production. ACS NANO 2024; 18:13484-13495. [PMID: 38739725 PMCID: PMC11140839 DOI: 10.1021/acsnano.3c10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Biohybrid photocatalysts are composite materials that combine the efficient light-absorbing properties of synthetic materials with the highly evolved metabolic pathways and self-repair mechanisms of biological systems. Here, we show the potential of conjugated polymers as photosensitizers in biohybrid systems by combining a series of polymer nanoparticles with engineered Escherichia coli cells. Under simulated solar light irradiation, the biohybrid system consisting of fluorene/dibenzo [b,d]thiophene sulfone copolymer (LP41) and recombinant E. coli (i.e., a LP41/HydA BL21 biohybrid) shows a sacrificial hydrogen evolution rate of 3.442 mmol g-1 h-1 (normalized to polymer amount). It is over 30 times higher than the polymer photocatalyst alone (0.105 mmol g-1 h-1), while no detectable hydrogen was generated from the E. coli cells alone, demonstrating the strong synergy between the polymer nanoparticles and bacterial cells. The differences in the physical interactions between synthetic materials and microorganisms, as well as redox energy level alignment, elucidate the trends in photochemical activity. Our results suggest that organic semiconductors may offer advantages, such as solution processability, low toxicity, and more tunable surface interactions with the biological components over inorganic materials.
Collapse
Affiliation(s)
- Ying Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United
Kingdom
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | | | - Adrian M. Gardner
- Stephenson
Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Early
Career Laser Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Sylwia Adamczyk
- Macromolecular
Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gauss-Straße 20, D-42097 Wuppertal, Germany
| | - Jing Yang
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United
Kingdom
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Yaqi Sun
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Qiuyao Jiang
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
| | - Alexander J. Cowan
- Stephenson
Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Early
Career Laser Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Reiner Sebastian Sprick
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, United
Kingdom
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United
Kingdom
- MOE Key Laboratory
of Evolution and Marine Biodiversity, Frontiers Science Center for
Deep Ocean Multispheres and Earth System & College of Marine Life
Sciences, Ocean University of China, Qingdao 266003, China
| | - Andrew I. Cooper
- Materials
Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United
Kingdom
| |
Collapse
|
5
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Witkowska M, Jedrzejczak RP, Joachimiak A, Cavdar O, Malankowska A, Skowron PM, Zylicz-Stachula A. Promising approaches for the assembly of the catalytically active, recombinant Desulfomicrobium baculatum hydrogenase with substitutions at the active site. Microb Cell Fact 2023; 22:134. [PMID: 37479997 PMCID: PMC10362691 DOI: 10.1186/s12934-023-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Hydrogenases (H2ases) are metalloenzymes capable of the reversible conversion of protons and electrons to molecular hydrogen. Exploiting the unique enzymatic activity of H2ases can lead to advancements in the process of biohydrogen evolution and green energy production. RESULTS Here we created of a functional, optimized operon for rapid and robust production of recombinant [NiFe] Desulfomicrobium baculatum hydrogenase (Dmb H2ase). The conversion of the [NiFeSe] Dmb H2ase to [NiFe] type was performed on genetic level by site-directed mutagenesis. The native dmb operon includes two structural H2ase genes, coding for large and small subunits, and an additional gene, encoding a specific maturase (protease) that is essential for the proper maturation of the enzyme. Dmb, like all H2ases, needs intricate bio-production machinery to incorporate its crucial inorganic ligands and cofactors. Strictly anaerobic, sulfate reducer D. baculatum bacteria are distinct, in terms of their biology, from E. coli. Thus, we introduced a series of alterations within the native dmb genes. As a result, more than 100 elements, further compiled into 32 operon variants, were constructed. The initial requirement for a specific maturase was omitted by the artificial truncation of the large Dmb subunit. The assembly of the produced H2ase subunit variants was investigated both, in vitro and in vivo. This approach resulted in 4 recombinant [NiFe] Dmb enzyme variants, capable of H2 evolution. The aim of this study was to overcome the gene expression, protein biosynthesis, maturation and ligand loading bottlenecks for the easy, fast, and cost-effective delivery of recombinant [NiFe] H2ase, using a commonly available E. coli strains. CONCLUSION The optimized genetic constructs together with the developed growth and purification procedures appear to be a promising platform for further studies toward fully-active and O2 tolerant, recombinant [NiFeSe] Dmb H2ase, resembling the native Dmb enzyme. It could likely be achieved by selective cysteine to selenocysteine substitution within the active site of the [NiFe] Dmb variant.
Collapse
Affiliation(s)
- Malgorzata Witkowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Robert P Jedrzejczak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Onur Cavdar
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Anna Malankowska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland.
| |
Collapse
|
7
|
Kronen M, Vázquez-Campos X, Wilkins MR, Lee M, Manefield MJ. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae. mSystems 2023; 8:e0011923. [PMID: 36943133 PMCID: PMC10134865 DOI: 10.1128/msystems.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Recent discoveries of isoprene-metabolizing microorganisms suggest they might play an important role in the global isoprene budget. Under anoxic conditions, isoprene can be used as an electron acceptor and is reduced to methylbutene. This study describes the proteogenomic profiling of an isoprene-reducing bacterial culture to identify organisms and genes responsible for the isoprene hydrogenation reaction. A metagenome-assembled genome (MAG) of the most abundant (89% relative abundance) lineage in the enrichment, Acetobacterium wieringae, was obtained. Comparative proteogenomics and reverse transcription-PCR (RT-PCR) identified a putative five-gene operon from the A. wieringae MAG upregulated during isoprene reduction. The operon encodes a putative oxidoreductase, three pleiotropic nickel chaperones (2 × HypA, HypB), and one 4Fe-4S ferredoxin. The oxidoreductase is proposed as the putative isoprene reductase with a binding site for NADH, flavin adenine dinucleotide (FAD), two pairs of canonical [4Fe-4S] clusters, and a putative iron-sulfur cluster site in a Cys6-bonding environment. Well-studied Acetobacterium strains, such as A. woodii DSM 1030, A. wieringae DSM 1911, or A. malicum DSM 4132, do not encode the isoprene-regulated operon but encode, like many other bacteria, a homolog of the putative isoprene reductase (~47 to 49% amino acid sequence identity). Uncharacterized homologs of the putative isoprene reductase are observed across the Firmicutes, Spirochaetes, Tenericutes, Actinobacteria, Chloroflexi, Bacteroidetes, and Proteobacteria, suggesting the ability of biohydrogenation of unfunctionalized conjugated doubled bonds in other unsaturated hydrocarbons. IMPORTANCE Isoprene was recently shown to act as an electron acceptor for a homoacetogenic bacterium. The focus of this study is the molecular basis for isoprene reduction. By comparing a genome from our isoprene-reducing enrichment culture, dominated by Acetobacterium wieringae, with genomes of other Acetobacterium lineages that do not reduce isoprene, we shortlisted candidate genes for isoprene reduction. Using comparative proteogenomics and reverse transcription-PCR we have identified a putative five-gene operon encoding an oxidoreductase referred to as putative isoprene reductase.
Collapse
Affiliation(s)
- Miriam Kronen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Yi Z, Tian S, Geng W, Zhang T, Zhang W, Huang Y, Barad HN, Tian G, Yang XY. A Semiconductor Biohybrid System for Photo-Synergetic Enhancement of Biological Hydrogen Production. Chemistry 2023; 29:e202203662. [PMID: 36598845 DOI: 10.1002/chem.202203662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
CdS nanoparticles were introduced on E. coli cells to construct a hydrogen generating biohybrid system via the biointerface of tannic acid-Fe complex. This hybrid system promotes good biological activity in a high salinity environment. Under light illumination, the as-synthesized biohybrid system achieves a 32.44 % enhancement of hydrogen production in seawater through a synergistic effect.
Collapse
Affiliation(s)
- Ziqian Yi
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shouqin Tian
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, P. R. China
| | - Tongkai Zhang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wen Zhang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yaoqi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hannah-Noa Barad
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Ge Tian
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing &, School of Materials Science and Engineering &, State Key Laboratory of Silicate Materials for Architectures &, Shenzhen Research Institute &, Joint Laboratory for Marine Advanced Materials in, National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
9
|
Osman D, Robinson NJ. Protein metalation in a nutshell. FEBS Lett 2023; 597:141-150. [PMID: 36124565 PMCID: PMC10087151 DOI: 10.1002/1873-3468.14500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Metalation, the acquisition of metals by proteins, must avoid mis-metalation with tighter binding metals. This is illustrated by four selected proteins that require different metals: all show similar ranked orders of affinity for bioavailable metals, as described in a universal affinity series (the Irving-Williams series). Crucially, cellular protein metalation occurs in competition with other metal binding sites. The strength of this competition defines the intracellular availability of each metal: its magnitude has been estimated by calibrating a cells' set of DNA-binding, metal-sensing, transcriptional regulators. This has established that metal availabilities (as free energies for forming metal complexes) are maintained to the inverse of the universal series. The tightest binding metals are least available. With these availabilities, correct metalation is achieved.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| | - Nigel J Robinson
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| |
Collapse
|
10
|
Sebastiampillai S, Lacasse MJ, McCusker S, Campbell T, Nitz M, Zamble DB. Using a high-throughput, whole-cell hydrogenase assay to identify potential small molecule inhibitors of [NiFe]-hydrogenase. Metallomics 2022; 14:6747159. [DOI: 10.1093/mtomcs/mfac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Abstract
[NiFe]-hydrogenases are used by several human pathogens to catalyze the reversible conversion between molecular hydrogen and protons and electrons. Hydrogenases provide an increased metabolic flexibility for pathogens, such as Escherichia coli and Helicobacter pylori, by allowing the use of molecular hydrogen as an energy source to promote survival in anaerobic environments. With the rise of antimicrobial resistance and the desire for novel therapeutics, the [NiFe]-hydrogenases are alluring targets. Inhibiting the nickel insertion pathway of [NiFe]-hydrogenases is attractive as this pathway is required for the generation of functional enzymes and is orthogonal to human biochemistry. In this work, nickel availability for the production and function of E. coli [NiFe]-hydrogenase was explored through immunoblot and activity assays. Whole-cell hydrogenase activities were assayed in high throughput against a small molecule library of known bioactives. Iodoquinol was identified as a potential inhibitor of the nickel biosynthetic pathway of [NiFe]-hydrogenase through a two-step screening process, but further studies with immunoblot assays showed confounding effects dependent on the cell growth phase. This study highlights the significance of considering the growth phenotype for whole-cell based assays overall and its effects on various cellular processes influenced by metal trafficking and homeostasis.
Collapse
Affiliation(s)
| | - Michael J Lacasse
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6 , Canada
| | - Susan McCusker
- Centre for Microbial Chemical Biology , MDCL-2330, Hamilton, Ontario L8S 4K1 , Canada
| | - Tracey Campbell
- Centre for Microbial Chemical Biology , MDCL-2330, Hamilton, Ontario L8S 4K1 , Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6 , Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6 , Canada
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8 , Canada
| |
Collapse
|
11
|
Haase A, Sawers RG. Exchange of a Single Amino Acid Residue in the HybG Chaperone Allows Maturation of All H 2-Activating [NiFe]-Hydrogenases in Escherichia coli. Front Microbiol 2022; 13:872581. [PMID: 35422773 PMCID: PMC9002611 DOI: 10.3389/fmicb.2022.872581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of the NiFe(CN)2CO organometallic cofactor of [NiFe]-hydrogenase (Hyd) involves several discreet steps, including the synthesis of the Fe(CN)2CO group on a HypD-HypC scaffold complex. HypC has an additional function in transferring the Fe(CN)2CO group to the apo-precursor of the Hyd catalytic subunit. Bacteria that synthesize more than one Hyd enzyme often have additional HypC-type chaperones specific for each precursor. The specificity determinants of this large chaperone family are not understood. Escherichia coli synthesizes two HypC paralogs, HypC and HybG. HypC delivers the Fe(CN)2CO group to pre-HycE, the precursor of the H2-evolving Hyd-3 enzyme, while HybG transfers the group to the pre-HybC of the H2-oxidizing Hyd-2 enzyme. We could show that a conserved histidine residue around the amino acid position 50 in both HypC and HybG, when exchanged for an alanine, resulted in a severe reduction in the activity of its cognate Hyd enzyme. This reduction in enzyme activity proved to be due to the impaired ability of the chaperones to interact with HypD. Surprisingly, and only in the case of the HybGH52A variant, its co-synthesis with HypD improved its interaction with pre-HycE, resulting in the maturation of Hyd-3. This study demonstrates that the conserved histidine residue helps enhance the interaction of the chaperone with HypD, but additionally, and in E. coli only for HybG, acts as a determinant to prevent the inadvertent maturation of the wrong large-subunit precursor. This study identifies a new level of control exerted by a bacterium synthesizing multiple [NiFe]-Hyd to ensure the correct enzyme is matured only under the appropriate physiological conditions.
Collapse
Affiliation(s)
- Alexander Haase
- Institute of Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Yang J, Peng Z, Zhu Q, Zhang J, Du G. [NiFe] Hydrogenase Accessory Proteins HypB-HypC Accelerate Proton Conversion to Enhance the Acid Resistance and d-Lactic Acid Production of Escherichia coli. ACS Synth Biol 2022; 11:1521-1530. [PMID: 35271275 DOI: 10.1021/acssynbio.1c00599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli is a major industrial producer of d-lactic acid due to its well-known advantages, such as short cycle times and low demand. However, acid sensitivity limits production capacity and increases costs. Enhancing the resistance of E. coli to acid stress is essential for improving the cell performance and production value. Here, we propose a feasible strategy to increase the acid tolerance of cells by strengthening intracellular proton conversion. The transcriptome test of the acid-tolerant adaptive evolution strain identified the hydrogenase accessory proteins HypB and HypC as a class of acid-tolerant factors that can assist the hydrogenase in catalyzing the reduction of protons to produce hydrogen. Strengthening the expression of HypB and HypC can increase the cell survival rate by 336.3 times during the lethal stress of d-lactate. In addition, HypB and HypC will assist d-lactate-producing strains to show higher sustainable productivity in an acidic fermentation environment, and d-lactate titer will increase by 113.6%. In order to further improve the expression system of the hydrogenase accessory protein, the introduction of a strong acid stress-driven promoter tdcAp can reduce the demand for neutralizer delivery in the fermentation process by about 26.7% while maintaining the maximum intensity of d-lactic acid production. Therefore, this research developed a method to improve the acid resistance of E. coli cells and reduce the cost of organic acid production by transforming protons.
Collapse
Affiliation(s)
- Jinhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Qi Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Abstract
Hydrogenases and ureases play vital metabolic functions in all three domains of life. However, nickel ions are cytotoxic because they can inactivate enzymes that require less competitive ions (e.g. Mg2+) in the Irving-Williams series to function. Life has evolved elegant mechanisms to solve the problem of delivering the toxic metal to the active site of nickel-containing enzymes inside the cells. Here, we review our current understanding of nickel trafficking along the hydrogenase and urease maturation pathways. Metallochaperones and accessory proteins (SlyD, HypA, HypB, UreD, UreE, UreF, and UreG) form specific protein complexes to allow the transfer of nickel from one protein to another without releasing the toxic metal into the cytoplasm. The role of SlyD is not fully understood, but it can interact with and transfer its nickel to HypB. In the hydrogenase maturation pathway, nickel is transferred from HypB to HypA, which can then deliver its nickel to the hydrogenase large subunit precursor. In Helicobacter pylori, the urease maturation pathway receives its nickel from HypA of the hydrogenase maturation pathway via the formation of a HypA/UreE2 complex. Guanosine triphosphate (GTP) binding promotes the formation of a UreE2G2 complex, where UreG receives a nickel from UreE. In the final step of the urease maturation, nickel/GTP-bound UreG forms an activation complex with UreF, UreD, and apo-urease. Upon GTP hydrolysis, nickel is released from UreG to the urease. Finally, some common themes learned from the hydrogenase-urease maturation pathway are discussed.
Collapse
Affiliation(s)
- Ka Lung Tsang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
14
|
Brawley HN, Lindahl PA. Direct Detection of the Labile Nickel Pool in Escherichia coli: New Perspectives on Labile Metal Pools. J Am Chem Soc 2021; 143:18571-18580. [PMID: 34723500 DOI: 10.1021/jacs.1c08213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nickel serves critical roles in the metabolism of E. coli and many prokaryotes. Many details of nickel trafficking are unestablished, but a nonproteinaceous low-molecular-mass (LMM) labile nickel pool (LNiP) is thought to be involved. The portion of the cell lysate that flowed through a 3 kDa cutoff membrane, which ought to contain this pool, was analyzed by size-exclusion and hydrophilic interaction chromatographies (SEC and HILIC) with detection by inductively coupled plasma (ICP) and electrospray ionization (ESI) mass spectrometries. Flow-through-solutions (FTSs) contained 11-15 μM Ni, which represented most Ni in the cell. Chromatograms exhibited 4 major Ni-detected peaks. MS analysis of FTS and prepared nickel complex standards established that these peaks arose from Ni(II) coordinated to oxidized glutathione, histidine, aspartate, and ATP. Surprisingly, Ni complexes with reduced glutathione or citrate were not members of the LNiP under the conditions examined. Aqueous Ni(II) ions were absent in the FTS. Detected complexes were stable in chelator-free buffer but were disrupted by treatment with 1,10-phenanthroline or citrate. Titrating FTS with additional NiSO4 suggested that the total nickel-binding capacity of cytosol is approximately 20-45 μM. Members of the LNiP are probably in rapid equilibrium. Previously reported binding constants to various metalloregulators may have overestimated the relevant binding strength in the cell because aqueous metal salts were used in those determinations. The LNiP may serve as both a Ni reservoir and buffer, allowing cells to accommodate a range of Ni concentrations. The composition of the LNiP may change with cellular metabolism and nutrient status.
Collapse
Affiliation(s)
- Hayley N Brawley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Biochem J 2021; 478:3281-3295. [PMID: 34409988 PMCID: PMC8454700 DOI: 10.1042/bcj20210224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The [4Fe-4S] cluster containing scaffold complex HypCD is the central construction site for the assembly of the [Fe](CN)2CO cofactor precursor of [NiFe]-hydrogenase. While the importance of the HypCD complex is well established, not much is known about the mechanism by which the CN- and CO ligands are transferred and attached to the iron ion. We report an efficient expression and purification system producing the HypCD complex from E. coli with complete metal content. This enabled in-depth spectroscopic characterizations. The results obtained by EPR and Mössbauer spectroscopy demonstrate that the [Fe](CN)2CO cofactor and the [4Fe-4S] cluster of the HypCD complex are redox active. The data indicate a potential-dependent interconversion of the [Fe]2+/3+ and [4Fe-4S]2+/+ couple, respectively. Moreover, ATR FTIR spectroscopy reveals potential-dependent disulfide formation, which hints at an electron confurcation step between the metal centers. MicroScale thermophoresis indicates preferable binding between the HypCD complex and its in vivo interaction partner HypE under reducing conditions. Together, these results provide comprehensive evidence for an electron inventory fit to drive multi-electron redox reactions required for the assembly of the CN- and CO ligands on the scaffold complex HypCD.
Collapse
|
16
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Li L, Xu Z, Huang X. Whole-Cell-Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. Chempluschem 2021; 86:1021-1036. [PMID: 34286914 DOI: 10.1002/cplu.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Indexed: 12/17/2022]
Abstract
With the increasing awareness of sustainable development, energy and environment are becoming two of the most important issues of concern to the world today. Whole-cell-based photosynthetic biohybrid systems (PBSs), an emerging interdisciplinary field, are considered as attractive biosynthetic platforms with great prospects in energy and environment, combining the superiorities of semiconductor materials with high energy conversion efficiency and living cells with distinguished biosynthetic capacity. This review presents a systematic discussion on the synthesis strategies of whole-cell-based PBSs that demonstrate a promising potential for applications in sustainable solar-to-chemical conversion, including light-facilitated carbon dioxide reduction and biohydrogen production. In the end, the explicit perspectives on the challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| |
Collapse
|
18
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
19
|
|
20
|
Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins. Acc Chem Res 2020; 53:875-886. [PMID: 32227866 DOI: 10.1021/acs.accounts.0c00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[NiFe] hydrogenases catalyze reversible hydrogen production/consumption. The core unit of [NiFe] hydrogenase consists of a large and a small subunit. The active site of the large subunit of [NiFe] hydrogenases contains a NiFe(CN)2CO cluster. The biosynthesis/maturation of these hydrogenases is a complex and dynamic process catalyzed primarily by six Hyp proteins (HypABCDEF), which play central roles in the maturation process. HypA and HypB are involved in the Ni insertion, whereas HypC, D, E, and F are required for the biosynthesis, assembly, and insertion of the Fe(CN)2CO group. HypE and HypF catalyze the synthesis of the CN group through the carbamoylation and cyanation of the C-terminus cysteine of HypE. HypC and HypD form a scaffold for the assembly of the Fe(CN)2CO moiety.Over the last decades, a large number of biochemical studies on maturation proteins have been performed, revealing basic functions of each Hyp protein and the overall framework of the maturation pathway. However, it is only in the last 10 years that structural insight has been gained, and our group has made significant contributions to the structural biology of hydrogenase maturation proteins.Since our first publication, where crystal structures of three Hyp proteins have been determined, we have performed a series of structural studies of all six Hyp proteins from a hyperthermophilic archaeon Thermococcus kodakarensis, providing molecular details of each Hyp protein. We have also determined the crystal structures of transient complexes between Hyp proteins that are formed during the maturation process to sequentially incorporate the components of the NiFe(CN)2CO cluster to immature large subunits of [NiFe] hydrogenases. Such complexes, whose crystal structures are determined, include HypA-HypB, HypA-HyhL (hydrogenase large subunit), HypC-HypD, and HypC-HypD-HypE. The structures of the HypC-HypD, and HypCDE complexes reveal a sophisticated process of transient formation of the HypCDE complex, providing insight into the molecular basis of Fe atom cyanation. The high-resolution structures of the carbamoylated and cyanated forms of HypE reveal a structural basis for the biological conversion of primary amide to nitrile. The structure of the HypA-HypB complex elucidates nucleotide-dependent transient complex formation between these two proteins and the molecular basis of acquisition and release of labile Ni. Furthermore, our recent structure analysis of a complex between HypA and immature HyhL reveals that spatial rearrangement of both the N- and C-terminal tails of HyhL will occur upon the [NiFe] cluster insertion, which function as a key checkpoint for the maturation completion. This Account will focus on recent advances in structural studies of the Hyp proteins and on mechanistic insights into the [NiFe] hydrogenase maturation.
Collapse
|
21
|
Anderl A, Kolmar H, Fuchsbauer HL. The metal-binding properties of the long chaplin from Streptomyces mobaraensis: A bioinformatic and biochemical approach. J Inorg Biochem 2019; 202:110878. [PMID: 31698184 DOI: 10.1016/j.jinorgbio.2019.110878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
Chaplins are amphiphilic proteins coating the surface of aerial hyphae under formation of amyloid-like rodlet layers in streptomycetes. The long chaplin from Streptomyces mobaraensis, Sm-Chp1, harbors extended histidine-rich stretches allowing protein attachment to metal affinity resins. A comprehensive BLASTP search revealed similarity with many putative metal-binding proteins but the deduced sequence motifs were not shared by histidine-rich domains of well-studied proteins. Biochemical analyses showed affinity of Sm-Chp1 for Ni2+, Cu2+ and Zn2+, a binding capacity of 7-8 metal ions, and dissociation constants in a double digit micromolar range. The occurrence of genes for membrane-bound metal transporters and several intra- and extracellular metalloenzymes in the genome of S. mobaraensis suggests that Sm-Chp1 may be a novel type of translocase shifting metals across the rodlet layer from the environment into the cell wall.
Collapse
Affiliation(s)
- Anita Anderl
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany; Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiß-Straße 12, 64287 Darmstadt, Germany
| | - Harald Kolmar
- Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiß-Straße 12, 64287 Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany.
| |
Collapse
|
22
|
Fernández-Bravo A, López-Fernández L, Figueras MJ. The Metallochaperone Encoding Gene hypA Is Widely Distributed among Pathogenic Aeromonas spp. and Its Expression Is Increased under Acidic pH and within Macrophages. Microorganisms 2019; 7:microorganisms7100415. [PMID: 31581740 PMCID: PMC6843854 DOI: 10.3390/microorganisms7100415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/09/2023] Open
Abstract
Metallochaperones are essential proteins that insert metal ions or metal cofactors into specific enzymes, that after maturation will become metalloenzymes. One of the most studied metallochaperones is the nickel-binding protein HypA, involved in the maturation of nickel-dependent hydrogenases and ureases. HypA was previously described in the human pathogens Escherichia coli and Helicobacter pylori and was considered a key virulence factor in the latter. However, nothing is known about this metallochaperone in the species of the emerging pathogen genus Aeromonas. These bacteria are native inhabitants of aquatic environments, often associated with cases of diarrhea and wound infections. In this study, we performed an in silico study of the hypA gene on 36 Aeromonas species genomes, which showed the presence of the gene in 69.4% (25/36) of the Aeromonas genomes. The similarity of Aeromonas HypA proteins with the H. pylori orthologous protein ranged from 21−23%, while with that of E. coli it was 41−45%. However, despite this low percentage, Aeromonas HypA displays the conserved characteristic metal-binding domains found in the other pathogens. The transcriptional analysis enabled the determination of hypA expression levels under acidic and alkaline conditions and after macrophage phagocytosis. The transcriptional regulation of hypA was found to be pH-dependent, showing upregulation at acidic pH. A higher upregulation occurred after macrophage infection. This is the first study that provided evidence that the HypA metallochaperone in Aeromonas might play a role in acid tolerance and in the defense against macrophages.
Collapse
Affiliation(s)
- Ana Fernández-Bravo
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain.
| | - Loida López-Fernández
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain.
| | - Maria José Figueras
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain.
| |
Collapse
|
23
|
Lacasse MJ, Sebastiampillai S, Côté JP, Hodkinson N, Brown ED, Zamble DB. A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity. J Biol Chem 2019; 294:15373-15385. [PMID: 31455635 DOI: 10.1074/jbc.ra119.008101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
[NiFe]-hydrogenases have attracted attention as potential therapeutic targets or components of a hydrogen-based economy. [NiFe]-hydrogenase production is a complicated process that requires many associated accessory proteins that supply the requisite cofactors and substrates. Current methods for measuring hydrogenase activity have low throughput and often require specialized conditions and reagents. In this work, we developed a whole-cell high-throughput hydrogenase assay based on the colorimetric reduction of benzyl viologen to explore the biological networks of these enzymes in Escherichia coli We utilized this assay to screen the Keio collection, a set of nonlethal single-gene knockouts in E. coli BW25113. The results of this screen highlighted the assay's specificity and revealed known components of the intricate network of systems that underwrite [NiFe]-hydrogenase activity, including nickel homeostasis and formate dehydrogenase activities as well as molybdopterin and selenocysteine biosynthetic pathways. The screen also helped identify several new genetic components that modulate hydrogenase activity. We examined one E. coli strain with undetectable hydrogenase activity in more detail (ΔeutK), finding that nickel delivery to the enzyme active site was completely abrogated, and tracked this effect to an ancillary and unannotated lack of the fumarate and nitrate reduction (FNR) anaerobic regulatory protein. Collectively, these results demonstrate that the whole-cell assay developed here can be used to uncover new information about bacterial [NiFe]-hydrogenase production and to probe the cellular components of microbial nickel homeostasis.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Jean-Philippe Côté
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicholas Hodkinson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
24
|
Abstract
Nickel is essential for the survival of many pathogenic bacteria. E. coli and H. pylori require nickel for [NiFe]-hydrogenases. H. pylori also requires nickel for urease. At high concentrations nickel can be toxic to the cell, therefore, nickel concentrations are tightly regulated. Metalloregulators help to maintain nickel concentration in the cell by regulating the expression of the genes associated with nickel import and export. Nickel import into the cell, delivery of nickel to target proteins, and export of nickel from the cell is a very intricate and well-choreographed process. The delivery of nickel to [NiFe]-hydrogenase and urease is complex and involves several chaperones and accessory proteins. A combination of biochemical, crystallographic, and spectroscopic techniques has been utilized to study the structures of these proteins, as well as protein-protein interactions resulting in an expansion of our knowledge regarding how these proteins sense and bind nickel. In this review, recent advances in the field will be discussed, focusing on the metal site structures of nickel bound to metalloregulators and chaperones.
Collapse
|
25
|
Abstract
Maturation of urease involves post-translational insertion of nickel ions to form an active site with a carbamylated lysine ligand and is assisted by urease accessory proteins UreD, UreE, UreF and UreG. Here, we review our current understandings on how these urease accessory proteins facilitate the urease maturation. The urease maturation pathway involves the transfer of Ni2+ from UreE → UreG → UreF/UreD → urease. To avoid the release of the toxic metal to the cytoplasm, Ni2+ is transferred from one urease accessory protein to another through specific protein–protein interactions. One central theme depicts the role of guanosine triphosphate (GTP) binding/hydrolysis in regulating the binding/release of nickel ions and the formation of the protein complexes. The urease and [NiFe]-hydrogenase maturation pathways cross-talk with each other as UreE receives Ni2+ from hydrogenase maturation factor HypA. Finally, the druggability of the urease maturation pathway is reviewed.
Collapse
|
26
|
Lacasse MJ, Summers KL, Khorasani-Motlagh M, George GN, Zamble DB. Bimodal Nickel-Binding Site on Escherichia coli [NiFe]-Hydrogenase Metallochaperone HypA. Inorg Chem 2019; 58:13604-13618. [PMID: 31273981 DOI: 10.1021/acs.inorgchem.9b00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[NiFe]-hydrogenase enzymes catalyze the reversible oxidation of hydrogen at a bimetallic cluster and are used by bacteria and archaea for anaerobic growth and pathogenesis. Maturation of the [NiFe]-hydrogenase requires several accessory proteins to assemble and insert the components of the active site. The penultimate maturation step is the delivery of nickel to a primed hydrogenase enzyme precursor protein, a process that is accomplished by two nickel metallochaperones, the accessory protein HypA and the GTPase HypB. Recent work demonstrated that nickel is rapidly transferred to HypA from GDP-loaded HypB within the context of a protein complex in a nickel selective and unidirectional process. To investigate the mechanism of metal transfer, we examined the allosteric effects of nucleotide cofactors and partner proteins on the nickel environments of HypA and HypB by using a combination of biochemical, microbiological, computational, and spectroscopic techniques. We observed that loading HypB with either GDP or a nonhydrolyzable GTP analogue resulted in a similar nickel environment. In addition, interaction with a mutant version of HypA with disrupted nickel binding, H2Q-HypA, does not induce substantial changes to the HypB G-domain nickel site. Instead, the results demonstrate that HypB modifies the acceptor site of HypA. Analysis of a peptide maquette derived from the N-terminus of HypA revealed that nickel is predominately coordinated by atoms from the N-terminal Met-His motif. Furthermore, HypA is capable of two nickel-binding modes at the N-terminus, a HypB-induced mode and a binding mode that mirrors the peptide maquette. Collectively, these results reveal that HypB brings about changes in the nickel coordination of HypA, providing a mechanism for the HypB-dependent control of the acquisition and release of nickel by HypA.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Kelly L Summers
- Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | | | - Graham N George
- Department of Geological Sciences , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5E2 , Canada
| | - Deborah B Zamble
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada.,Department of Biochemistry , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| |
Collapse
|
27
|
Keegan BC, Ocampo D, Shearer J. pH Dependent Reversible Formation of a Binuclear Ni 2 Metal-Center Within a Peptide Scaffold. INORGANICS 2019; 7:90. [PMID: 38046130 PMCID: PMC10691859 DOI: 10.3390/inorganics7070090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
A disulfide-bridged peptide containing two Ni2+ binding sites based on the nickel superoxide dismutase protein, {Ni2(SODmds)}, has been prepared. At physiological pH (7.4) it was found that the metal sites are mononuclear with a square planar NOS2 coordination environment with the two sulfur-based ligands derived from cysteinate residues, the nitrogen ligand derived from the amide backbone and a water ligand. Furthermore, S K-edge X-ray absorption spectroscopy indicated that the two cysteinate sulfur atoms ligated to nickel are each protonated. Elevation of the pH to 9.6 results in the deprotonation of the cysteinate sulfur atoms, and yields a binuclear, cysteinate bridged Ni22+ center with each nickel contained in a distorted square planar geometry. At both pH = 7.4 and 9.6 the nickel sites are moderately air sensitive, yielding intractable oxidation products. However, at pH = 9.6 {Ni2(SODmds)} reacts with O2 at an ~3.5-fold faster rate than at pH = 7.4. Electronic structure calculations indicate the reduced reactivity at pH = 7.4 is a result of a reduction in S(3p) character and deactivation of the nucleophilic frontier molecular orbitals upon cysteinate sulfur protonation.
Collapse
Affiliation(s)
- Brenna C. Keegan
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, TX 78212, U.S.A
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, TX 78212, U.S.A
| | - Jason Shearer
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, TX 78212, U.S.A
| |
Collapse
|
28
|
Jordan MR, Wang J, Weiss A, Skaar EP, Capdevila DA, Giedroc DP. Mechanistic Insights into the Metal-Dependent Activation of Zn II-Dependent Metallochaperones. Inorg Chem 2019; 58:13661-13672. [PMID: 31247880 DOI: 10.1021/acs.inorgchem.9b01173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the COG0523 subfamily of candidate GTPase metallochaperones function in bacterial transition-metal homeostasis, but the nature of the cognate metal, mechanism of metal transfer, and identification of target protein(s) for metal delivery remain open questions. Here, we explore the multifunctionality of members of the subfamily linked to delivering ZnII to apoprotein targets under conditions of host-imposed transition-metal depletion. We examine two zinc-uptake repressor (Zur)-regulated COG0523 family members, each from a major human pathogen, Acinetobacter baumannii (AbZigA) and Staphylococcus aureus (SaZigA), in an effort to develop a model for ZnII metallochaperone activity. ZnII chelator competition experiments reveal one high-affinity (KZn1 ≈ 1010-1011 M-1) metal-binding site in each GTPase, while AbZigA and SaZigA are characterized by an additional one and two (lower-affinity) metal-binding sites, respectively. CoII titrations reveal that both metallochaperones have similar electronic absorption characteristics that indicate the presence of two tetrahedral metal coordination sites. High-affinity metal binding at the CXCC motif activates the GTPase activity of both enzymes, with ZnII more effective than CoII. Both GTPases bind the product, GDP, more tightly in the apoprotein than the ZnII-bound state and exhibit what is best described as a "locked" conformation around the GTP substrate. Negative thermodynamic linkage is observed between nucleotide binding and metal binding, leading to a new mechanistic model for COG0523-catalyzed metal delivery.
Collapse
Affiliation(s)
| | | | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | | | | |
Collapse
|
29
|
Alfano M, Pérard J, Carpentier P, Basset C, Zambelli B, Timm J, Crouzy S, Ciurli S, Cavazza C. The carbon monoxide dehydrogenase accessory protein CooJ is a histidine-rich multidomain dimer containing an unexpected Ni(II)-binding site. J Biol Chem 2019; 294:7601-7614. [PMID: 30858174 DOI: 10.1074/jbc.ra119.008011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/09/2019] [Indexed: 01/14/2023] Open
Abstract
Activation of nickel enzymes requires specific accessory proteins organized in multiprotein complexes controlling metal transfer to the active site. Histidine-rich clusters are generally present in at least one of the metallochaperones involved in nickel delivery. The maturation of carbon monoxide dehydrogenase in the proteobacterium Rhodospirillum rubrum requires three accessory proteins, CooC, CooT, and CooJ, dedicated to nickel insertion into the active site, a distorted [NiFe3S4] cluster coordinated to an iron site. Previously, CooJ from R. rubrum (RrCooJ) has been described as a nickel chaperone with 16 histidines and 2 cysteines at its C terminus. Here, the X-ray structure of a truncated version of RrCooJ, combined with small-angle X-ray scattering data and a modeling study of the full-length protein, revealed a homodimer comprising a coiled coil with two independent and highly flexible His tails. Using isothermal calorimetry, we characterized several metal-binding sites (four per dimer) involving the His-rich motifs and having similar metal affinity (KD = 1.6 μm). Remarkably, biophysical approaches, site-directed mutagenesis, and X-ray crystallography uncovered an additional nickel-binding site at the dimer interface, which binds Ni(II) with an affinity of 380 nm Although RrCooJ was initially thought to be a unique protein, a proteome database search identified at least 46 bacterial CooJ homologs. These homologs all possess two spatially separated nickel-binding motifs: a variable C-terminal histidine tail and a strictly conserved H(W/F)X 2HX 3H motif, identified in this study, suggesting a dual function for CooJ both as a nickel chaperone and as a nickel storage protein.
Collapse
Affiliation(s)
- Marila Alfano
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Julien Pérard
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Philippe Carpentier
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Christian Basset
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Barbara Zambelli
- the Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy
| | - Jennifer Timm
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Serge Crouzy
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| | - Stefano Ciurli
- the Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy
| | - Christine Cavazza
- From the Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France and
| |
Collapse
|
30
|
Complex formation between the Escherichia coli [NiFe]-hydrogenase nickel maturation factors. Biometals 2019; 32:521-532. [DOI: 10.1007/s10534-019-00173-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/18/2019] [Indexed: 11/26/2022]
|
31
|
Albareda M, Pacios LF, Palacios JM. Computational analyses, molecular dynamics, and mutagenesis studies of unprocessed form of [NiFe] hydrogenase reveal the role of disorder for efficient enzyme maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:325-340. [PMID: 30703364 DOI: 10.1016/j.bbabio.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Biological production and oxidation of hydrogen is mediated by hydrogenases, key enzymes for these energy-relevant reactions. Synthesis of [NiFe] hydrogenases involves a complex series of biochemical reactions to assemble protein subunits and metallic cofactors required for enzyme function. A final step in this biosynthetic pathway is the processing of a C-terminal tail (CTT) from its large subunit, thus allowing proper insertion of nickel in the unique NiFe(CN)2CO cofactor present in these enzymes. In silico modelling and Molecular Dynamics (MD) analyses of processed vs. unprocessed forms of Rhizobium leguminosarum bv. viciae (Rlv) hydrogenase large subunit HupL showed that its CTT (residues 582-596) is an intrinsically disordered region (IDR) that likely provides the required flexibility to the protein for the final steps of proteolytic maturation. Prediction of pKa values of ionizable side chains in both forms of the enzyme's large subunit also revealed that the presence of the CTT strongly modify the protonation state of some key residues around the active site. Furthermore, MD simulations and mutant analyses revealed that two glutamate residues (E27 in the N-terminal region and E589 inside the CTT) likely contribute to the process of nickel incorporation into the enzyme. Computational analysis also revealed structural details on the interaction of Rlv hydrogenase LSU with the endoprotease HupD responsible for the removal of CTT.
Collapse
Affiliation(s)
- Marta Albareda
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jose M Palacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
32
|
Robinson AE, Lowe JE, Koh EI, Henderson JP. Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. J Biol Chem 2018; 293:14953-14961. [PMID: 30108176 DOI: 10.1074/jbc.ra118.004483] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Invasive Gram-negative bacteria often express multiple virulence-associated metal ion chelators to combat host-mediated metal deficiencies. Escherichia coli, Klebsiella, and Yersinia pestis isolates encoding the Yersinia high pathogenicity island (HPI) secrete yersiniabactin (Ybt), a metallophore originally shown to chelate iron ions during infection. However, our recent demonstration that Ybt also scavenges copper ions during infection led us to question whether it might be capable of retrieving other metals as well. Here, we find that uropathogenic E. coli also use Ybt to bind extracellular nickel ions. Using quantitative MS, we show that the canonical metal-Ybt import pathway internalizes the resulting Ni-Ybt complexes, extracts the nickel, and releases metal-free Ybt back to the extracellular space. We find that E. coli and Klebsiella direct the nickel liberated from this pathway to intracellular nickel enzymes. Thus, Ybt may provide access to nickel that is inaccessible to the conserved NikABCDE permease system. Nickel should be considered alongside iron and copper as a plausible substrate for Ybt-mediated metal import by enterobacteria during human infections.
Collapse
Affiliation(s)
- Anne E Robinson
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Jessica E Lowe
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Eun-Ik Koh
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Jeffrey P Henderson
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| |
Collapse
|
33
|
Saylor Z, Maier R. Helicobacter pylori nickel storage proteins: recognition and modulation of diverse metabolic targets. Microbiology (Reading) 2018; 164:1059-1068. [DOI: 10.1099/mic.0.000680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Zachary Saylor
- Department of Microbiology and Center for Metalloprotein Studies, University of Georgia, Athens, GA, USA
| | - Robert Maier
- Department of Microbiology and Center for Metalloprotein Studies, University of Georgia, Athens, GA, USA
| |
Collapse
|
34
|
Khorasani-Motlagh M, Lacasse MJ, Zamble DB. High-affinity metal binding by the Escherichia coli [NiFe]-hydrogenase accessory protein HypB is selectively modulated by SlyD. Metallomics 2018; 9:482-493. [PMID: 28352890 DOI: 10.1039/c7mt00037e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[NiFe]-hydrogenase, which catalyzes the reversible conversion between hydrogen gas and protons, is a vital component of the metabolism of many pathogens. Maturation of [NiFe]-hydrogenase requires selective nickel insertion that is completed, in part, by the metallochaperones SlyD and HypB. Escherichia coli HypB binds nickel with sub-picomolar affinity, and the formation of the HypB-SlyD complex activates nickel release from the high-affinity site (HAS) of HypB. In this study, the metal selectivity of this process was investigated. Biochemical experiments revealed that the HAS of full length HypB can bind stoichiometric zinc. Moreover, in contrast to the acceleration of metal release observed with nickel-loaded HypB, SlyD blocks the release of zinc from the HypB HAS. X-ray absorption spectroscopy (XAS) demonstrated that SlyD does not impact the primary coordination sphere of nickel or zinc bound to the HAS of HypB. Instead, computational modeling and XAS of HypB loaded with nickel or zinc indicated that zinc binds to HypB with a different coordination sphere than nickel. The data suggested that Glu9, which is not a nickel ligand, directly coordinates zinc. These results were confirmed through the characterization of E9A-HypB, which afforded weakened zinc affinity compared to wild-type HypB but similar nickel affinity. This mutant HypB fully supports the production of [NiFe]-hydrogenase in E. coli. Altogether, these results are consistent with the model that the HAS of HypB functions as a nickel site during [NiFe]-hydrogenase enzyme maturation and that the metal selectivity is controlled by activation of metal release by SlyD.
Collapse
|
35
|
Senger M, Stripp ST, Soboh B. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. J Biol Chem 2017; 292:11670-11681. [PMID: 28539366 DOI: 10.1074/jbc.m117.788125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Indexed: 01/07/2023] Open
Abstract
Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H2). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN)2CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN)2CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Basem Soboh
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|
36
|
Metallochaperones and metalloregulation in bacteria. Essays Biochem 2017; 61:177-200. [PMID: 28487396 DOI: 10.1042/ebc20160076] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Bacterial transition metal homoeostasis or simply 'metallostasis' describes the process by which cells control the intracellular availability of functionally required metal cofactors, from manganese (Mn) to zinc (Zn), avoiding both metal deprivation and toxicity. Metallostasis is an emerging aspect of the vertebrate host-pathogen interface that is defined by a 'tug-of-war' for biologically essential metals and provides the motivation for much recent work in this area. The host employs a number of strategies to starve the microbial pathogen of essential metals, while for others attempts to limit bacterial infections by leveraging highly competitive metals. Bacteria must be capable of adapting to these efforts to remodel the transition metal landscape and employ highly specialized metal sensing transcriptional regulators, termed metalloregulatory proteins,and metallochaperones, that allocate metals to specific destinations, to mediate this adaptive response. In this essay, we discuss recent progress in our understanding of the structural mechanisms and metal specificity of this adaptive response, focusing on energy-requiring metallochaperones that play roles in the metallocofactor active site assembly in metalloenzymes and metallosensors, which govern the systems-level response to metal limitation and intoxication.
Collapse
|
37
|
Zeer-Wanklyn CJ, Zamble DB. Microbial nickel: cellular uptake and delivery to enzyme centers. Curr Opin Chem Biol 2017; 37:80-88. [PMID: 28213182 DOI: 10.1016/j.cbpa.2017.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 01/29/2023]
Abstract
Nickel enzymes allow microorganisms to access chemistry that can be vital for survival and virulence. In this review we highlight recent work on several systems that import nickel ions and deliver them to the active sites of these enzymes. Small molecules, in particular l-His and derivatives, may chelate nickel ions before import at TonB-dependent outer-membrane and ABC-type inner-membrane transporters. Inside the cell, nickel ions are used by maturation factors required to produce nickel enzymes such as [NiFe]-hydrogenase, urease and lactate racemase. These accessory proteins often exhibit metal selectivity and frequently include an NTP-hydrolyzing metallochaperone protein. The research described provides a deeper understanding of the processes that allow microorganisms to access nickel ions from the environment and incorporate them into nickel proteins.
Collapse
Affiliation(s)
- Conor J Zeer-Wanklyn
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|