1
|
Cao L, Teo D, Wang Y, Ye Q, Liu C, Ding C, Li X, Chang M, Han Y, Li Z, Sun X, Huang Q, Zhang CY, Foo JL, Wong A, Yu A. Advancements in Microbial Cell Engineering for Benzylisoquinoline Alkaloid Production. ACS Synth Biol 2024; 13:3842-3856. [PMID: 39579377 DOI: 10.1021/acssynbio.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a class of natural compounds found in plants of the Ranunculaceae family, known for their diverse pharmacological activities. However, the extraction yields of BIAs from plants are limited, and the cost of chemical synthesis is prohibitively high. Recent advancements in systems metabolic engineering and genomics have made it feasible to use microbes as bioreactors for BIAs production. This review explores recent progress in enhancing the production and yields of BIAs in two microbial systems: Escherichia coli and Saccharomyces cerevisiae. It covers various BIAs, including (S)-reticuline, morphinane, protoberberine, and aporphine alkaloids. The review provides strategies and technologies for BIAs synthesis, analyzes current challenges in BIAs research, and offers recommendations for future research directions.
Collapse
Affiliation(s)
- Liyan Cao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Desmond Teo
- Food Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 828608, Singapore
| | - Yuyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingqing Ye
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chen Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Xiangyu Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Mingxin Chang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Xu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingeng Huang
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan 500112, PR China
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Centre for Engineering Biology (NCEB), 119077Singapore, Singapore
| | - Adison Wong
- Food Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 828608, Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
2
|
Yu F, Wang Z, Zhang Z, Zhou J, Li J, Chen J, Du G, Zhao X. Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. Crit Rev Biotechnol 2024; 44:1422-1438. [PMID: 38228501 DOI: 10.1080/07388551.2023.2291339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.
Collapse
Affiliation(s)
- Fei Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Ziwei Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Zihan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Chen H, Xiong P, Guo N, Liu Z. Metabolic Engineering of Escherichia coli for Production of a Bioactive Metabolite of Bilirubin. Int J Mol Sci 2024; 25:9741. [PMID: 39273688 PMCID: PMC11396004 DOI: 10.3390/ijms25179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. In this study, we assembled an efficient pathway for BR production by metabolic engineering of Escherichia coli. First, heme oxygenase (HO1) and biliverdin reductase were co-expressed in E. coli. HPLC and LC-MS confirmed the accumulation of BR in the recombinant E. coli cells. To improve BR production, the catalytic abilities of HO1 from different species were investigated. In addition, the outermembrane-bound heme receptor (ChuA) and the enzymes involved in heme biosynthesis were overexpressed among which ChuA, 5-aminolevulinic acid dehydratase (HemB), protoporphyrin oxidase (HemG), and ferrochelatase (HemH) were found to enhance BR accumulation in E. coli. In addition, expression of ferredoxin (Fd) was shown to contribute to efficient conversion of heme to BR in E. coli. To increase supply of NADPH, isocitrate dehydrogenase (IDH), NAD kinase (nadK), NADP-specific glutamate dehydrogenase (gdhA), and glucose-6-phosphate 1-dehydrogenase (ZWF) were overexpressed and were found to enhance BR accumulation when these proteins were expressed with a low-copy plasmid pACYCduet-1. Modular optimization of the committed genes led to a titer of 17.2 mg/L in strain M1BHG. Finally, fed-batch fermentation was performed for the strains M1BHG and M1, resulting in accumulation of 75.5 mg/L and 25.8 mg/L of BR, respectively. This is the first report on biosynthesis of BR through metabolic engineering in a heterologous host.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Ning Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Zhe Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
4
|
Zhang Z, Hu B, Zhang T, Luo Z, Zhou J, Li J, Chen J, Du G, Zhao X. The modification of heme special importer to improve the production of active hemoglobins in Escherichia coli. Biotechnol Lett 2024; 46:545-558. [PMID: 38717663 DOI: 10.1007/s10529-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 07/03/2024]
Abstract
To enhance the import of heme for the production of active hemoproteins in Escherichia coli C41 (DE3) lacking the special heme import system, heme receptor ChuA from E. coli Nissle 1917 was modified through molecular docking and the other components (ChuTUV) for heme import was overexpressed, while heme import was tested through growth assay and heme sensor HS1 detection. A ChuA mutant G360K was selected, which could import 3.91 nM heme, compared with 2.92 nM of the wild-type ChuA. In addition, it presented that the expression of heme transporters ChuTUV was not necessary for heme import. Based on the modification of ChuA (G360K), the titer of human hemoglobin and the peroxidase activity of leghemoglobin reached 1.19 μg g-1 DCW and 24.16 103 U g-1 DCW, compared with 1.09 μg g-1 DCW and 21.56 103 U g-1 DCW of the wild-type ChuA, respectively. Heme import can be improved through the modification of heme receptor and the engineered strain with improved heme import has a potential to efficiently produce high-active hemoproteins.
Collapse
Affiliation(s)
- Zihan Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
5
|
Travaglini L, Lam NT, Sawicki A, Cha HJ, Xu D, Micolich AP, Clark DS, Glover DJ. Fabrication of Electronically Conductive Protein-Heme Nanowires for Power Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311661. [PMID: 38597694 DOI: 10.1002/smll.202311661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Electronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity. The heme-incorporated protein nanowires demonstrate electron transfer over micrometer distances, with conductive atomic force microscopy showing individual nanowires having comparable conductance to other previously characterized heme-based bacterial nanowires. Exposure of multilayer nanowire films to humidity produces an electrical current, presumably through water molecules ionizing carboxyl groups in the filament and creating an unbalanced total charge distribution that is enhanced by the heme. Incorporation of heme and potentially other metal-center porphyrin molecules into protein nanostructures could pave the way for structurally- and electrically-defined protein-based bioelectronic devices.
Collapse
Affiliation(s)
- Lorenzo Travaglini
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nga T Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Artur Sawicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hee-Jeong Cha
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Dawei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Adam P Micolich
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Xu Y, Li F, Xie H, Liu Y, Han W, Wu J, Cheng L, Wang C, Li Z, Wang L. Directed evolution of Escherichia coli surface-displayed Vitreoscilla hemoglobin as an artificial metalloenzyme for the synthesis of 5-imino-1,2,4-thiadiazoles. Chem Sci 2024; 15:7742-7748. [PMID: 38784746 PMCID: PMC11110144 DOI: 10.1039/d4sc00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Artificial metalloenzymes (ArMs) are constructed by anchoring organometallic catalysts to an evolvable protein scaffold. They present the advantages of both components and exhibit considerable potential for the in vivo catalysis of new-to-nature reactions. Herein, Escherichia coli surface-displayed Vitreoscilla hemoglobin (VHbSD-Co) that anchored the cobalt porphyrin cofactor instead of the original heme cofactor was used as an artificial thiourea oxidase (ATOase) to synthesize 5-imino-1,2,4-thiadiazoles. After two rounds of directed evolution using combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy, the evolved six-site mutation VHbSD-Co (6SM-VHbSD-Co) exhibited significant improvement in catalytic activity, with a broad substrate scope (31 examples) and high yields with whole cells. This study shows the potential of using VHb ArMs in new-to-nature reactions and demonstrates the applicability of E. coli surface-displayed methods to enhance catalytic properties through the substitution of porphyrin cofactors in hemoproteins in vivo.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Yuyang Liu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Weiwei Han
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130023 P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| |
Collapse
|
7
|
Fuchs H, Ullrich SR, Hedrich S. Vibrio natriegens as a superior host for the production of c-type cytochromes and difficult-to-express redox proteins. Sci Rep 2024; 14:6093. [PMID: 38480761 PMCID: PMC10937671 DOI: 10.1038/s41598-024-54097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
C-type cytochromes fulfil many essential roles in both aerobic and anaerobic respiration. Their characterization requires large quantities of protein which can be obtained through heterologous production. Heterologous production of c-type cytochromes in Escherichia coli is hindered since the ccmABCDEFGH genes necessary for incorporation of heme c are only expressed under anaerobic conditions. Different strategies were devised to bypass this obstacle, such as co-expressing the ccm genes from the pEC86 vector. However, co-expression methods restrict the choice of expression host and vector. Here we describe the first use of Vibrio natriegens Vmax X2 for the recombinant production of difficult-to-express redox proteins from the extreme acidophile Acidithiobacillus ferrooxidans CCM4253, including three c-type cytochromes. Co-expression of the ccm genes was not required to produce holo-c-type cytochromes in Vmax X2. E. coli T7 Express only produced holo-c-type cytochromes during co-expression of the ccm genes and was not able to produce the inner membrane cytochrome CycA. Additionally, Vmax X2 cell extracts contained higher portions of recombinant holo-proteins than T7 Express cell extracts. All redox proteins were translocated to the intended cell compartment in both hosts. In conclusion, V. natriegens represents a promising alternative for the production of c-type cytochromes and difficult-to-express redox proteins.
Collapse
Affiliation(s)
- Helena Fuchs
- TU Bergakademie Freiberg, Institute of Biosciences, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Sophie R Ullrich
- TU Bergakademie Freiberg, Institute of Biosciences, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Sabrina Hedrich
- TU Bergakademie Freiberg, Institute of Biosciences, Leipziger Straße 29, 09599, Freiberg, Germany.
| |
Collapse
|
8
|
Sun C, Hu B, Li Y, Wu Z, Zhou J, Li J, Chen J, Du G, Zhao X. Efficient stereoselective hydroxylation of deoxycholic acid by the robust whole-cell cytochrome P450 CYP107D1 biocatalyst. Synth Syst Biotechnol 2023; 8:741-748. [PMID: 38107826 PMCID: PMC10722395 DOI: 10.1016/j.synbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Deoxycholic acid (DCA) has been authorized by the Federal Drug Agency for cosmetic reduction of redundant submental fat. The hydroxylated product (6β-OH DCA) was developed to improve the solubility and pharmaceutic properties of DCA for further applications. Herein, a combinatorial catalytic strategy was applied to construct a powerful Cytochrome P450 biocatalyst (CYP107D1, OleP) to convert DCA to 6β-OH DCA. Firstly, the weak expression of OleP was significantly improved using pRSFDuet-1 plasmid in the E. coli C41 (DE3) strain. Next, the supply of heme was enhanced by the moderate overexpression of crucial genes in the heme biosynthetic pathway. In addition, a new biosensor was developed to select the appropriate redox partner. Furthermore, a cost-effective whole-cell catalytic system was constructed, resulting in the highest reported conversion rate of 6β-OH DCA (from 4.8% to 99.1%). The combinatorial catalytic strategies applied in this study provide an efficient method to synthesize high-value-added hydroxylated compounds by P450s.
Collapse
Affiliation(s)
- Chixiang Sun
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yanchun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
9
|
Kalkan Ö, Kantamneni S, Brings L, Han H, Bean R, Mancuso AP, Koua FHM. Heterologous expression, purification and structural features of native Dictyostelium discoideum dye-decolorizing peroxidase bound to a natively incorporated heme. Front Chem 2023; 11:1220543. [PMID: 37593106 PMCID: PMC10427876 DOI: 10.3389/fchem.2023.1220543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The Dictyostelium discoideum dye-decolorizing peroxidase (DdDyP) is a newly discovered peroxidase, which belongs to a unique class of heme peroxidase family that lacks homology to the known members of plant peroxidase superfamily. DdDyP catalyzes the H2O2-dependent oxidation of a wide-spectrum of substrates ranging from polycyclic dyes to lignin biomass, holding promise for potential industrial and biotechnological applications. To study the molecular mechanism of DdDyP, highly pure and functional protein with a natively incorporated heme is required, however, obtaining a functional DyP-type peroxidase with a natively bound heme is challenging and often requires addition of expensive biosynthesis precursors. Alternatively, a heme in vitro reconstitution approach followed by a chromatographic purification step to remove the excess heme is often used. Here, we show that expressing the DdDyP peroxidase in ×2 YT enriched medium at low temperature (20°C), without adding heme supplement or biosynthetic precursors, allows for a correct native incorporation of heme into the apo-protein, giving rise to a stable protein with a strong Soret peak at 402 nm. Further, we crystallized and determined the native structure of DdDyP at a resolution of 1.95 Å, which verifies the correct heme binding and its geometry. The structural analysis also reveals a binding of two water molecules at the distal site of heme plane bridging the catalytic residues (Arg239 and Asp149) of the GXXDG motif to the heme-Fe(III) via hydrogen bonds. Our results provide new insights into the geometry of native DdDyP active site and its implication on DyP catalysis.
Collapse
Affiliation(s)
- Özlem Kalkan
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | | | - Lea Brings
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Huijong Han
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Richard Bean
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | |
Collapse
|
10
|
Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, Deshpande A, Hevener KE, Freeman J, Wilcox MH, Palmer KL, Garey KW, Pepperell CS, Hurdle JG. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun 2023; 14:4130. [PMID: 37438331 DOI: 10.1038/s41467-023-39429-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Madison A Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline A Topf
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Wan-Jou Shen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aditi Deshpande
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jane Freeman
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Kelli L Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.
| |
Collapse
|
11
|
Hu B, Yu H, Zhou J, Li J, Chen J, Du G, Lee SY, Zhao X. Whole-Cell P450 Biocatalysis Using Engineered Escherichia coli with Fine-Tuned Heme Biosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205580. [PMID: 36526588 PMCID: PMC9951570 DOI: 10.1002/advs.202205580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Indexed: 05/14/2023]
Abstract
By exploiting versatile P450 enzymes, whole-cell biocatalysis can be performed to synthesize valuable compounds in Escherichia coli. However, the insufficient supply of heme limits the whole-cell P450 biocatalytic activity. Here a strategy for improving intracellular heme biosynthesis to enhance the catalytic efficiencies of P450s is reported. After comparing the effects of improving heme transport and biosynthesis on P450 activities, intracellular heme biosynthesis is optimized through the integrated expression of necessary synthetic genes at proper ratios and the assembly of rate-limiting enzymes using DNA-guided scaffolds. The intracellular heme level is fine-tuned by the combined use of mutated heme-sensitive biosensors and small regulatory RNA systems. The catalytic efficiencies of three different P450s, BM3, sca-2, and CYP105D7, are enhanced through fine-tuning heme biosynthesis for the synthesis of hydroquinone, pravastatin, and 7,3',4'-trihydroxyisoflavone as example products of chemical intermediate, drug, and natural product, respectively. This strategy of fine-tuned heme biosynthesis will be generally useful for developing whole-cell biocatalysts involving hemoproteins.
Collapse
Affiliation(s)
- Baodong Hu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Haibo Yu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jingwen Zhou
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jianghua Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jian Chen
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Guocheng Du
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)BioProcess Engineering Research CenterBioinformatics Research Center, and Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonYuseong‐gu34141Republic of Korea
| | - Xinrui Zhao
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| |
Collapse
|
12
|
Bloomer BJ, Clark DS, Hartwig JF. Progress, Challenges, and Opportunities with Artificial Metalloenzymes in Biosynthesis. Biochemistry 2023; 62:221-228. [PMID: 35195998 DOI: 10.1021/acs.biochem.1c00829] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this Perspective, we present progress, outstanding challenges, and opportunities for the incorporation of artificial metalloenzymes (ArMs) into biosynthetic pathways. We first explain discoveries within the field of ArMs that led to the potential inclusion of these enzymes in biosynthesis. We then describe the specific barriers that our laboratory, in collaboration with the laboratories of Keasling and Mukhopadhyay, addressed to establish a biosynthetic pathway containing an ArM. This biosynthesis produced an unnatural cyclopropyl terpenoid by combining heterologous production of the terpene with modification of its terminal alkene by an ArM built from a cytochrome P450. Finally, we describe the remaining challenges and opportunities related to the application of ArMs in synthetic biology.
Collapse
Affiliation(s)
- Brandon J Bloomer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Douglas S Clark
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Meng T, Ma W, Fan M, Tang W, Duan X. Enhancing the Contrast of Tumor Imaging for Image-Guided Surgery Using a Tumor-Targeting Probiotic with the Continuous Expression of a Biomarker. Anal Chem 2022; 94:10109-10117. [PMID: 35802615 DOI: 10.1021/acs.analchem.2c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor recurrence commonly results from tumor-positive resection margins and metastatic lesions. The complete removal of tumor-positive margins is particularly essential in clinics. Thus, we designed a strategy based on Escherichia coli Nissle 1917 (EcN) nitroreductase (NTR) with a polyethylene glycol (PEG) polymer coating (PC-EcN-NTR) to specifically target and colonize in tumors for high-contrast tumor imaging by providing a large amount of NTR as biomarkers in situ. NTR is a favorable biomarker for tumor detection and imaging. The nfsB-encoding plasmid with a 16S promoter was transfected into EcN for the continuous and stable expression of NTR (E. coli. NfsB). PC-EcN-NTR can accumulate and proliferate for a long time in tumors to substantially express NTR. When the NTR-activated fluorescence (FL) probe was sprayed on the tumor, the tumor region showed fluorescence signals within 5 min. Compared to the tumor without colonization with bacteria, the PC-EcN-NTR-colonized tumors displayed 3.15× enhanced fluorescence signals. Furthermore, the fluorescence signals of the whole tumor can last at least 3 h, which is suitable for a long and meticulous surgical operation. More importantly, in the PC-EcN-NTR-harboring tumor, obvious FL appeared even at the very edge (approximately 200 μm away from the edge) of the tumor tissue. A TCF-Based near-infrared-II fluorescent probe (probe 2) was designed and synthesized. Results similar to those of probe 1 were observed when probe 2 was used for in vivo tumor imaging, which further proved the generality of the enhancing ability of the tumor-targeting probiotic. This strategy will hopefully guide the surgical resection of tumors via monitoring intense NTR activity. It may spur the use of tumor-targeting probiotic and enzyme-activated fluorescent probes for the processes of tumor diagnosis and image-guided surgery.
Collapse
Affiliation(s)
- Tianjiao Meng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wenbo Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Mengyue Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
14
|
Richardson KH, Seif-Eddine M, Sills A, Roessler MM. Controlling and exploiting intrinsic unpaired electrons in metalloproteins. Methods Enzymol 2022; 666:233-296. [PMID: 35465921 DOI: 10.1016/bs.mie.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.
Collapse
Affiliation(s)
| | - Maryam Seif-Eddine
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Adam Sills
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Maxie M Roessler
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
| |
Collapse
|
15
|
Kim IJ, Bayer T, Terholsen H, Bornscheuer U. α-Dioxygenases (α-DOXs): Promising biocatalysts for the environmentally friendly production of aroma compounds. Chembiochem 2022; 23:e202100693. [PMID: 35107200 PMCID: PMC9305512 DOI: 10.1002/cbic.202100693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Indexed: 11/14/2022]
Abstract
Fatty aldehydes (FALs) can be derived from fatty acids (FAs) and related compounds and are frequently used as flavors and fragrances. Although chemical methods have been conventionally used, their selective biotechnological production aiming at more efficient and eco‐friendly synthetic routes is in demand. α‐Dioxygenases (α‐DOXs) are heme‐dependent oxidative enzymes biologically involved in the initial step of plant FA α‐oxidation during which molecular oxygen is incorporated into the Cα‐position of a FA (Cn) to generate the intermediate FA hydroperoxide, which is subsequently converted into the shortened corresponding FAL (Cn‐1). α‐DOXs are promising biocatalysts for the flavor and fragrance industries, they do not require NAD(P)H as cofactors or redox partner proteins, and they have a broad substrate scope. Here, we highlight recent advances in the biocatalytic utilization of α‐DOXs with emphasis on newly discovered cyanobacterial α‐DOXs as well as analytical methods to measure α‐DOX activity in vitro and in vivo.
Collapse
Affiliation(s)
- In Jung Kim
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Thomas Bayer
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Henrik Terholsen
- Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Uwe Bornscheuer
- Greifswald University, Dept. of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|
16
|
Liu Z, Huang J, Gu Y, Clark DS, Mukhopadhyay A, Keasling JD, Hartwig JF. Assembly and Evolution of Artificial Metalloenzymes within E. coli Nissle 1917 for Enantioselective and Site-Selective Functionalization of C─H and C═C Bonds. J Am Chem Soc 2022; 144:883-890. [PMID: 34985270 PMCID: PMC11620735 DOI: 10.1021/jacs.1c10975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The potential applications afforded by the generation and reactivity of artificial metalloenzymes (ArMs) in microorganisms are vast. We show that a non-pathogenic E. coli strain, Nissle 1917 (EcN), is a suitable host for the creation of ArMs from cytochrome P450s and artificial heme cofactors. An outer-membrane receptor in EcN transports an iridium porphyrin into the cell, and the Ir-CYP119 (CYP119 containing iridium porphyrin) assembled in vivo catalyzes carbene insertions into benzylic C-H bonds enantioselectively and site-selectively. The application of EcN as a whole-cell screening platform eliminates the need for laborious processing procedures, drastically increases the ease and throughput of screening, and accelerates the development of Ir-CYP119 with improved catalytic properties. Studies to identify the transport machinery suggest that a transporter different from the previously assumed ChuA receptor serves to usher the iridium porphyrin into the cytoplasm.
Collapse
Affiliation(s)
- Zhennan Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jing Huang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
| | - Yang Gu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aindrila Mukhopadhyay
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, China
- Center for Biosustainability, Danish Technical University, Lyngby 2800 Kgs, Denmark
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Robinson EA, Frankenberg-Dinkel N, Xue F, Wilks A. Recombinant Production of Biliverdin IXβ and δ Isomers in the T7 Promoter Compatible Escherichia coli Nissle. Front Microbiol 2021; 12:787609. [PMID: 34956154 PMCID: PMC8692735 DOI: 10.3389/fmicb.2021.787609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The ability to obtain purified biliverdin IX (BVIX) isomers other than the commercially available BVIXα is limited due to the low yields obtained by the chemical coupled oxidation of heme. Chemical oxidation requires toxic chemicals, has very poor BVIX yields (<0.05%), and is not conducive to scalable production. Alternative approaches utilizing recombinant E. coli BL21 expressing a cyanobacterial heme oxygenase have been employed for the production BVIXα, but yields are limited by the rate of endogenous heme biosynthesis. Furthermore, the emerging roles of BVIXβ and BVIXδ in biology and their lack of commercial availability has led to a need for an efficient and scalable method with the flexibility to produce all three physiologically relevant BVIX isomers. Herein, we have taken advantage of an optimized non-pathogenic E. coli Nissle (EcN(T7)) strain that encodes an endogenous heme transporter and an integrated T7 polymerase gene. Protein production of the Pseudomonas aeruginosa BVIXβ and BVIXδ selective heme oxygenase (HemO) or its BVIXα producing mutant (HemOα) in the EcN(T7) strain provides a scalable method to obtain all three isomers, that is not limited by the rate of endogenous heme biosynthesis, due to the natural ability of EcN(T7) to transport extracellular heme. Additionally, we have optimized our previous LC-MS/MS protocol for semi-preparative separation and validation of the BVIX isomers. Utilizing this new methodology for scalable production and separation we have increased the yields of the BVIXβ and -δ isomers >300-fold when compared to the chemical oxidation of heme.
Collapse
Affiliation(s)
- Elizabeth A. Robinson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Nicole Frankenberg-Dinkel
- Fachbereich Biologie, Abt. Mikrobiologie, Technische Universität Kaiserlautern, Kaiserslautern, Germany
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| |
Collapse
|
18
|
Protein engineering of the aldoxime dehydratase from Bacillus sp. OxB-1 based on a rational sequence alignment approach. Sci Rep 2021; 11:14316. [PMID: 34253740 PMCID: PMC8275659 DOI: 10.1038/s41598-021-92749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, the program INTMSAlign_HiSol for identifying aggregation hotspots in proteins only requiring secondary structure data was introduced. We explored the utility of this program further and applied it for engineering of the aldoxime dehydratase from Bacillus sp. OxB-1. Towards this end, the effect of inverting the hydropathy at selected positions of the amino acid sequence on the enzymatic activity was studied leading to 60% of our constructed variants, which showed improved activity. In part, this activity increase can be rationalised by an improved heme incorporation of the variants. For example, a single mutation gave a 1.8 fold increased enzymatic activity and 30% improved absolute heme incorporation.
Collapse
|
19
|
Ishchuk OP, Frost AT, Muñiz-Paredes F, Matsumoto S, Laforge N, Eriksson NL, Martínez JL, Petranovic D. Improved production of human hemoglobin in yeast by engineering hemoglobin degradation. Metab Eng 2021; 66:259-267. [PMID: 33984513 DOI: 10.1016/j.ymben.2021.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022]
Abstract
With the increasing demand for blood transfusions, the production of human hemoglobin (Hb) from sustainable sources is increasingly studied. Microbial production is an attractive option, as it may provide a cheap, safe, and reliable source of this protein. To increase the production of human hemoglobin by the yeast Saccharomyces cerevisiae, the degradation of Hb was reduced through several approaches. The deletion of the genes HMX1 (encoding heme oxygenase), VPS10 (encoding receptor for vacuolar proteases), PEP4 (encoding vacuolar proteinase A), ROX1 (encoding heme-dependent repressor of hypoxic genes) and the overexpression of the HEM3 (encoding porphobilinogen deaminase) and the AHSP (encoding human alpha-hemoglobin-stabilizing protein) genes - these changes reduced heme and Hb degradation and improved heme and Hb production. The reduced hemoglobin degradation was validated by a bilirubin biosensor. During glucose fermentation, the engineered strains produced 18% of intracellular Hb relative to the total yeast protein, which is the highest production of human hemoglobin reported in yeast. This increased hemoglobin production was accompanied with an increased oxygen consumption rate and an increased glycerol yield, which (we speculate) is the yeast's response to rebalance its NADH levels under conditions of oxygen limitation and increased protein-production.
Collapse
Affiliation(s)
- Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| | - August T Frost
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Facundo Muñiz-Paredes
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Saki Matsumoto
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Nathalie Laforge
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Nélida Leiva Eriksson
- Department of Chemistry, Division of Biotechnology, Lund University, 221 00, Lund, Sweden
| | - José L Martínez
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden; Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden; Novo Nordisk Foundation Centre for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| |
Collapse
|
20
|
Gamiz-Arco G, Gutierrez-Rus LI, Risso VA, Ibarra-Molero B, Hoshino Y, Petrović D, Justicia J, Cuerva JM, Romero-Rivera A, Seelig B, Gavira JA, Kamerlin SCL, Gaucher EA, Sanchez-Ruiz JM. Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nat Commun 2021; 12:380. [PMID: 33452262 PMCID: PMC7810902 DOI: 10.1038/s41467-020-20630-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosidases are phylogenetically widely distributed enzymes that are crucial for the cleavage of glycosidic bonds. Here, we present the exceptional properties of a putative ancestor of bacterial and eukaryotic family-1 glycosidases. The ancestral protein shares the TIM-barrel fold with its modern descendants but displays large regions with greatly enhanced conformational flexibility. Yet, the barrel core remains comparatively rigid and the ancestral glycosidase activity is stable, with an optimum temperature within the experimental range for thermophilic family-1 glycosidases. None of the ∼5500 reported crystallographic structures of ∼1400 modern glycosidases show a bound porphyrin. Remarkably, the ancestral glycosidase binds heme tightly and stoichiometrically at a well-defined buried site. Heme binding rigidifies this TIM-barrel and allosterically enhances catalysis. Our work demonstrates the capability of ancestral protein reconstructions to reveal valuable but unexpected biomolecular features when sampling distant sequence space. The potential of the ancestral glycosidase as a scaffold for custom catalysis and biosensor engineering is discussed. Family 1 glycosidases (GH1) are present in the three domains of life and share classical TIM-barrel fold. Structural and biochemical analyses of a resurrected ancestral GH1 enzyme reveal heme binding, not known in its modern descendants. Heme rigidifies the TIM-barrel and allosterically enhances catalysis.
Collapse
Affiliation(s)
- Gloria Gamiz-Arco
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Luis I Gutierrez-Rus
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Valeria A Risso
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Yosuke Hoshino
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Dušan Petrović
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden.,Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, 431 50, Gothenburg, Sweden
| | - Jose Justicia
- Departamento de Quimica Organica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Juan Manuel Cuerva
- Departamento de Quimica Organica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Adrian Romero-Rivera
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America, & BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Jose A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Avenida de las Palmeras 4, Granada, 18100, Armilla, Spain
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden.
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
21
|
Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins. Microb Cell Fact 2020; 19:190. [PMID: 33023596 PMCID: PMC7542351 DOI: 10.1186/s12934-020-01447-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Heme proteins and heme-derived molecules are essential in numerous cellular processes. Research into their in vitro functionality requires the production of large amounts of protein. Unfortunately, high yield expression is hampered by the lack of E. coli strains naturally capable of taking up heme from the medium. We recently reported the use of the probiotic E. coli strain Nissle 1917 (EcN) to sufficiently produce heme containing proteins, as it encodes the outer membrane heme receptor, ChuA, which allows for natural uptake of heme. The EcN strain however lacks the gene for T7 RNA polymerase, which is necessary for the expression of genes under the control of the T7-promotor, widely used in expression vectors like the pET or pDuet series. Results A new T7-promoter compatible EcN strain was constructed by integrating the gene for T7-RNA polymerase under the control of a lacUV5 promoter into the malEFG operon of EcN. Test expressions of genes via T7 promoter-based vectors in the new EcN(T7) strain were successful. Expression in EcN(T7) resulted in the efficient production of recombinant heme proteins in which the heme cofactor was incorporated during protein production. In addition, the new EcN(T7) strain can be used to co-express genes for the production of heme-derived molecules like biliverdin or other linear tetrapyrroles. We demonstrate the successful recombinant production of the phytochromes BphP, from Pseudomonas aeruginosa, and Cph1, from Synechocystis sp. PCC6803, loaded with their linear tetrapyrrole cofactors, biliverdin and phycocyanobilin, respectively. Conclusion We present a new E. coli strain for efficient production of heme proteins and heme-derived molecules using T7-promoter based expression vectors. The new EcN(T7) strain enables the use of a broader spectrum of expression vectors, as well as the co-expression of genes using the pDuet expression vectors, for expressing heme containing proteins. By utilizing E. coli strains EcN and EcN(T7), capable of being fed heme, the rate limiting step of heme biosynthesis in E. coli is eliminated, thereby permitting higher heme saturation of heme proteins and also higher yields of heme-derived molecules.
Collapse
|
22
|
Li M, Gašparovič H, Weng X, Chen S, Korduláková J, Jessen-Trefzer C. The Two-Component Locus MSMEG_0244/0246 Together With MSMEG_0243 Affects Biofilm Assembly in M. smegmatis Correlating With Changes in Phosphatidylinositol Mannosides Acylation. Front Microbiol 2020; 11:570606. [PMID: 33013801 PMCID: PMC7516205 DOI: 10.3389/fmicb.2020.570606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.
Collapse
Affiliation(s)
- Miaomaio Li
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Henrich Gašparovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Xing Weng
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Si Chen
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
24
|
Fiege K, Twittenhoff C, Kwiatkowski K, Frankenberg-Dinkel N. Spectroscopic characterization of the heme binding (GAF) domain of two sensor kinases from Methanosarcina acetivorans. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sensor kinases MsmS and RdmS from the methanogenic archaeon Methanosarcina acetivorans are multidomain proteins containing a covalently linked heme cofactor. This cofactor is connected via a single cysteine residue in a GAF domain. Although both proteins were shown to display a redox-dependent control of the downstream kinase module, this property appears to be independent of the heme cofactor. We therefore envision an additional sensor role for the heme cofactor. In order to learn more about the heme binding pocket and its constitution, UV-vis spectroscopy in combination with site-directed mutagenesis was performed on the isolated heme-binding sGAF2 domain and the full-length protein. The data indicate a 6-coordinated heme with a proximal histidine ligand and a smaller ligand, likely a water molecule on the distal site. The latter is also thought to be the sensory site and is shown to easily undergo ligand exchange.
Collapse
Affiliation(s)
- Kerstin Fiege
- Technische Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, Paul-Ehrlich-Str., 23, D-67663 Kaiserslautern, Germany
- Ruhr-Universität Bochum, Physiologie der Mikroorganismen, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Christian Twittenhoff
- Ruhr-Universität Bochum, Physiologie der Mikroorganismen, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Kathrin Kwiatkowski
- Ruhr-Universität Bochum, Physiologie der Mikroorganismen, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Nicole Frankenberg-Dinkel
- Technische Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, Paul-Ehrlich-Str., 23, D-67663 Kaiserslautern, Germany
- Ruhr-Universität Bochum, Physiologie der Mikroorganismen, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
25
|
Fiege K, Frankenberg‐Dinkel N. Thiol‐based redox sensing in the methyltransferase associated sensor kinase RdmS in
Methanosarcina acetivorans. Environ Microbiol 2019; 21:1597-1610. [DOI: 10.1111/1462-2920.14541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kerstin Fiege
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| | - Nicole Frankenberg‐Dinkel
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| |
Collapse
|
26
|
Spectroscopic evidence supporting neutral thiol ligation to ferrous heme iron. J Biol Inorg Chem 2018; 23:1085-1092. [DOI: 10.1007/s00775-018-1611-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
27
|
Johnson EA, Russo MM, Nye DB, Schlessman JL, Lecomte JTJ. Lysine as a heme iron ligand: A property common to three truncated hemoglobins from Chlamydomonas reinhardtii. Biochim Biophys Acta Gen Subj 2018; 1862:2660-2673. [PMID: 30251657 DOI: 10.1016/j.bbagen.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The nuclear genome of Chlamydomonas reinhardtii encodes a dozen hemoglobins of the truncated lineage. Four of these, named THB1-4, contain a single ~130-residue globin unit. THB1, which is cytoplasmic and capable of nitric oxide dioxygenation activity, uses a histidine and a lysine as axial ligands to the heme iron. In the present report, we compared THB2, THB3, and THB4 to THB1 to gain structural and functional insights into algal globins. METHODS We inspected properties of the globin domains prepared by recombinant means through site-directed mutagenesis, electronic absorption, CD, and NMR spectroscopies, and X-ray crystallography. RESULTS Recombinant THB3, which lacks the proximal histidine but has a distal histidine, binds heme weakly. NMR data demonstrate that the recombinant domains of THB2 and THB4 coordinate the ferrous heme iron with the proximal histidine and a lysine from the distal helix. An X-ray structure of ferric THB4 confirms lysine coordination. THB1, THB2, and THB4 have reduction potentials between -65 and -100 mV, are capable of nitric oxide dioxygenation, are reduced at different rates by the diaphorase domain of C. reinhardtii nitrate reductase, and show different response to peroxide treatment. CONCLUSIONS Three single-domain C. reinhardtii hemoglobins use lysine as a distal heme ligand in both Fe(III) and Fe(II) oxidation states. This common feature is likely related to enzymatic activity in the management of reactive oxygen species. GENERAL SIGNIFICANCE Primary structure analysis of hemoglobins has limited power in the prediction of heme ligation. Experimental determination reveals variations in this essential property across the superfamily.
Collapse
Affiliation(s)
- Eric A Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Miranda M Russo
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Dillon B Nye
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Jamie L Schlessman
- Chemistry Department, U.S. Naval Academy, Annapolis, MD 21402, United States
| | - Juliette T J Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|