1
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
2
|
He L, Meng F, Chen R, Qin J, Sun M, Fan Z, Du J. Precise Regulations at the Subcellular Level through Intracellular Polymerization, Assembly, and Transformation. JACS AU 2024; 4:4162-4186. [PMID: 39610726 PMCID: PMC11600172 DOI: 10.1021/jacsau.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
A living cell is an intricate machine that creates subregions to operate cell functions effectively. Subcellular dysfunction has been identified as a potential druggable target for successful drug design and therapy. The treatments based on intracellular polymerization, self-assembly, or transformation offer various advantages, including enhanced blood circulation of monomers, long-term drug delivery pharmacokinetics, low drug resistance, and the ability to target deep tissues and organelles. In this review, we discuss the latest developments of intracellular synthesis applied to precisely control cellular functions. First, we discuss the design and applications of endogenous and exogenous stimuli-triggered intracellular polymerization, self-assembly, and dynamic morphology transformation of biomolecules at the subcellular level. Second, we highlight the benefits of these strategies applied in cancer diagnosis and treatment and modulating cellular states or cell metabolism of living systems. Finally, we conclude the recent progress in this field, discuss future perspectives, analyze the challenges of the intracellular functional reactions for regulation, and find future opportunities.
Collapse
Affiliation(s)
- Le He
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Fanying Meng
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Min Sun
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Department
of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology
and Brain Functional Modulation, Clinical Research Center for Anesthesiology
and Perioperative Medicine, Translational Research Institute of Brain
and Brain-Like Intelligence, Shanghai Fourth People’s Hospital,
School of Medicine, Tongji University, Shanghai 200434, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
3
|
Wang WJ, Zhang R, Zhang L, Hao L, Cai XM, Wu Q, Qiu Z, Han R, Feng J, Wang S, Alam P, Zhang G, Zhao Z, Tang BZ. Enzymatically catalyzed molecular aggregation. Nat Commun 2024; 15:9999. [PMID: 39557870 PMCID: PMC11574095 DOI: 10.1038/s41467-024-54291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The dynamic modulation of the aggregation process of small molecules represents an important research objective for scientists. However, the complex and dynamic nature of internal environments in vivo impedes controllable aggregation processes of single molecules. In this study, we successfully achieve tumor-targeted aggregation of an aggregation-induced emission photosensitizer (AIE-PS), TBmA, with the catalysis of a tumor-overexpressed enzyme, γ-Glutamyl Transferase (GGT). Mechanistic investigations reveal that TBmA-Glu can be activated by GGT through cleavage of the γ-glutamyl bond and releasing TBmA. The poor water solubility of TBmA induces its aggregation, leading to aggregation-enhanced emission and photodynamic activities. The TBmA-Glu not only induces glutathione (GSH) depletion through GGT photo-degradation but also triggers lipid peroxidation accumulation and ferroptosis in cancer cells through photodynamic therapy. Finally, the in vivo studies conducted on female mice using both tumor xenograft and orthotopic liver cancer models have also demonstrated the significant anti-cancer effects of TBmA-Glu. The exceptional cancer-targeting ability and therapeutic efficiency demonstrated by this GGT activatable AIE-PS highlights enzymatic-mediated modulation as an effective approach for regulating small molecule aggregation intracellularly, thereby advancing innovative therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rongyuan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Liping Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Liang Hao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Qian Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Ruijuan Han
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Jing Feng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Shaojuan Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Guoqing Zhang
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Yu S, Webber MJ. Engineering disease analyte response in peptide self-assembly. J Mater Chem B 2024; 12:10757-10769. [PMID: 39382032 DOI: 10.1039/d4tb01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A need to enhance the precision and specificity of therapeutic nanocarriers inspires the development of advanced nanomaterials capable of sensing and responding to disease-related cues. Self-assembled peptides offer a promising nanocarrier platform with versatile use to create precisely defined nanoscale materials. Disease-relevant cues can range from large biomolecules, such as enzymes, to ubiquitous small molecules with varying concentrations in healthy versus diseased states. Notably, pH changes (i.e., H+ concentration), redox species (e.g., H2O2), and glucose levels are significant spatial and/or temporal indicators of therapeutic need. Self-assembled peptides respond to these cues by altering their solubility, modulating electrostatic interactions, or facilitating chemical transformations through dynamic or labile bonds. This review explores the design and construction of therapeutic nanocarriers using self-assembled peptides, focusing on how peptide sequence engineering along with the inclusion of non-peptidic components can link the assembly state of these nanocarriers to the presence of disease-relevant small molecules.
Collapse
Affiliation(s)
- Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
5
|
Wu C, Jiang P, Su W, Yan Y. Alkaline Phosphatase-Instructed Peptide Assemblies for Imaging and Therapeutic Applications. Biomacromolecules 2024; 25:5609-5629. [PMID: 39185628 DOI: 10.1021/acs.biomac.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Self-assembly, a powerful strategy for constructing highly stable and well-ordered supramolecular structures, widely exists in nature and in living systems. Peptides are frequently used as building blocks in the self-assembly process due to their advantageous characteristics, such as ease of synthesis, tunable mechanical stability, good biosafety, and biodegradability. Among the initiators for peptide self-assembly, enzymes are excellent candidates for guiding this process under mild reaction conditions. As a crucial and commonly used biomarker, alkaline phosphatase (ALP) cleaves phosphate groups, triggering a hydrophilicity-to-hydrophobicity transformation that induces peptide self-assembly. In recent years, ALP-instructed peptide self-assembly has made breakthroughs in biological imaging and therapy, inspiring the development of self-assembly biomaterials for diagnosis and therapeutics. In this review, we highlight the most recent advancements in ALP-instructed peptide assemblies and provide perspectives on their potential impact. Finally, we briefly discuss the ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Su
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Xiao X, Huang J. Enzyme-Responsive Supramolecular Self-Assembly in Small Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018035 DOI: 10.1021/acs.langmuir.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Enzyme-responsive molecular assemblies have recently made remarkable progress, owing to their widespread applications. As a class of catalysts with high specificity and efficiency, enzymes play a critical role in producing new molecules and maintaining metabolic stability in living organisms. Therefore, the study of enzyme-responsive assembly aids in understanding the origin of life and the physiological processes occurring within living bodies, contributing to further advancements across various disciplines. In this Review, we summarize three kinds of enzyme-responsive assembly systems in amphiphiles: enzyme-triggered assembly, disassembly, and structural transformation. Furthermore, motivated by the fact that biological macromolecules and complex structures all originated with small molecules, our focus lies on the small amphiphiles (e.g., peptides, surfactants, fluorescent molecules, and drug molecules). We also provide an outlook on the potential of enzyme-responsive assembly systems for biomimetic development and hope this Review will attract more attention to this emerging research branch at the intersection of assembly chemistry and biological science.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
7
|
Li Y, Zhang C, Wu Q, Peng Y, Ding Y, Zhang Z, Xu X, Xie H. Enzyme-Activatable Near-Infrared Photosensitizer with High Enrichment in Tumor Cells Based on a Multi-Effect Design. Angew Chem Int Ed Engl 2024; 63:e202317773. [PMID: 38116827 DOI: 10.1002/anie.202317773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Enzyme-activatable near-infrared (NIR) fluorescent probes and photosensitizers (PSs) have emerged as promising tools for molecular imaging and photodynamic therapy (PDT). However, in living organisms selective retention or even enrichment of these reagents after enzymatic activation at or near sites of interest remains a challenging task. Herein, we integrate non-covalent and covalent retention approaches to introduce a novel "1-to-3" multi-effect strategy-one enzymatic stimulus leads to three types of effects-for the design of an enzyme-activatable NIR probe or PS. Using this strategy, we have constructed an alkaline phosphatase (ALP)-activatable NIR fluorogenic probe and a NIR PS, which proved to be selectively activated by ALP to switch on NIR fluorescence or photosensitizing ability, respectively. Additionally, these reagents showed significant enrichment (over 2000-fold) in ALP-overexpressed tumor cells compared to the culture medium, accompanied by massive depletion of intracellular thiols, the major antioxidants in cells. The investigation of this ALP-activatable NIR PS in an in vivo PDT model resulted in complete suppression of HeLa tumors and full recovery of all tested mice. Encouragingly, even a single administration of this NIR PS was sufficient to completely suppress tumors in mice, demonstrating the high potential of this strategy in biomedical applications.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237, China
| | - Chaoying Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Qingyi Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiru Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhengwei Zhang
- Department of nuclear medicine & PET center, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai, 200237, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
He H, Yin J, Li M, Dessai CVP, Yi M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping enzyme activity in living systems by real-time mid-infrared photothermal imaging of nitrile chameleons. Nat Methods 2024; 21:342-352. [PMID: 38191931 PMCID: PMC11165695 DOI: 10.1038/s41592-023-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase-phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Chinmayee Vallabh Prabhu Dessai
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA, USA
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
9
|
Sletten ET, Fittolani G, Hribernik N, Dal Colle MCS, Seeberger PH, Delbianco M. Phosphates as Assisting Groups in Glycan Synthesis. ACS CENTRAL SCIENCE 2024; 10:138-142. [PMID: 38292611 PMCID: PMC10823511 DOI: 10.1021/acscentsci.3c00896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.
Collapse
Affiliation(s)
- Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nives Hribernik
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Marlene C. S. Dal Colle
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Lu S, Zhang C, Wang J, Zhao L, Li G. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Biomed Pharmacother 2024; 170:116059. [PMID: 38154273 DOI: 10.1016/j.biopha.2023.116059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
The liver cancer has microenvironmental features such as low pH, M2 tumor-associated macrophage enrichment, low oxygen, rich blood supply and susceptibility to hematotropic metastasis, high chemokine expression, enzyme overexpression, high redox level, and strong immunosuppression, which not only promotes the progression of the disease, but also seriously affects the clinical effectiveness of traditional therapeutic approaches. However, nanotechnology, due to its unique advantages of size effect and functionalized modifiability, can be utilized to develop various responsive nano-drug delivery system (NDDS) by using these characteristic signals of the liver cancer microenvironment as a source of stimulation, which in turn can realize the intelligent release of the drug under the specific microenvironment, and significantly increase the concentration of the drug at the target site. Therefore, researchers have designed a series of stimuli-responsive NDDS based on the characteristics of the liver cancer microenvironment, such as hypoxia, weak acidity, and abnormal expression of proteases, and they have been widely investigated for improving anti-tumor therapeutic efficacy and reducing the related side effects. This paper provides a review of the current application and progress of NDDS developed based on the response and regulation of the microenvironment in the treatment of liver cancer, compares the effects of the microenvironment and the NDDS, and provides a reference for building more advanced NDDS.
Collapse
Affiliation(s)
- Shijia Lu
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Chenxiao Zhang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Jinglong Wang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Limei Zhao
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Guofei Li
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
11
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Hu M, Liu Z, Shen Z. Gel-to-Solution Transition of Sulfhydryl Self-Assembled Peptide Hydrogels Undergoing Oxidative Modulation. ACS APPLIED BIO MATERIALS 2023; 6:5836-5841. [PMID: 38018082 DOI: 10.1021/acsabm.3c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The design of self-assembling biomaterials needs to take into consideration the timing and location of the self-assembly process. In recent decades, the principal strategy has been to control the peptide self-assembly under specific conditions to enable its functional performance. However, few studies have explored the responsive elimination of functional self-assembled peptide hydrogels after their function has been performed. We designed peptide ECAFF (ECF-5), which under reductive conditions can self-assemble into a hydrogel. Upon exposure to oxidizing conditions, disulfide bonds form between the peptides, altering their molecular structure and impacting their self-assembly capability. As a result, the peptide hydrogels transition to a soluble state. This study investigates the utilization of oxidation to induce a gel-to-solution transition in peptide hydrogels and provides an explanation for their degradation following free radical treatment. Self-assembled peptide hydrogel materials can be designed from a fresh perspective by considering the degradation that takes place after functional execution.
Collapse
Affiliation(s)
- Mai Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
| | - Zhengli Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, China
| | - Zhiwei Shen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400014, China
- Zhongyuan Huiji Biotechnology Co., Ltd., Chongqing 400039, China
| |
Collapse
|
13
|
Heo JM, Park J, Kim JM. Retro Diels-Alder-triggered self-assembly of a polymerizable macrocyclic diacetylene. Org Biomol Chem 2023; 21:6302-6306. [PMID: 37490038 DOI: 10.1039/d3ob00953j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
A new triggered self-assembly method, which utilizes retro Diels-Alder (rDA)-promoted self-assembly of a macrocyclic diacetylene, was developed. The steric bulk present in a Diels-Alder (DA) adduct was released by a thermally promoted rDA reaction, resulting in the generation of a linear diacetylene that readily self-assembles to form a supramolecular polymer. The maleimide-containing blue-colored polydiacetylene, which was generated by UV irradiation, was utilized as a thiol specific colorimetric sensor.
Collapse
Affiliation(s)
- Jung-Moo Heo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Jaeyoung Park
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea.
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Liu J, Li RS, Zhang L, Wang J, Dong Q, Xu Z, Kang Y, Xue P. Enzyme-Activatable Polypeptide for Plasma Membrane Disruption and Antitumor Immunity Elicitation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206912. [PMID: 36932931 DOI: 10.1002/smll.202206912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Indexed: 06/15/2023]
Abstract
Enzyme-instructed self-assembly of bioactive molecules into nanobundles inside cells is conceived to potentially disrupt plasma membrane and subcellular structure. Herein, an alkaline phosphatase (ALP)-activatable hybrid of ICG-CF4 KYp is facilely synthesized by conjugating photosensitizer indocyanine green (ICG) with CF4 KYp peptide via classical Michael addition reaction. ALP-induced dephosphorylation of ICG-CF4 KYp enables its transformation from small-molecule precursor into rigid nanofibrils, and such fibrillation in situ causes severe mechanical disruption of cytomembrane. Besides, ICG-mediated photosensitization causes additional oxidative damage of plasma membrane by lipid peroxidation. Hollow MnO2 nanospheres devote to deliver ICG-CF4 KYp into tumorous tissue through tumor-specific acidity/glutathione-triggered degradation of MnO2 , which is monitored by fluorescent probing and magnetic resonance imaging. The burst release of damage-associated molecular patterns and other tumor antigens during therapy effectively triggers immunogenetic cell death and improves immune stimulatory, as demonstrated by the promotion of dendritic cell maturation and CD8+ lymphocyte infiltration, as well as constraint of regulatory T cell population. Taken together, such cytomembrane injury strategy based on peptide fibrillation in situ holds high clinical promise for lesion-specific elimination of primary, abscopal, and metastatic tumors, which may enlighten more bioinspired nanoplatforms for anticancer theranostics.
Collapse
Affiliation(s)
- Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Rong Sheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Chemical Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
15
|
Moroishi K, Nakamoto M, Matsusaki M. Fabrication of Molecular Blocks with High Responsiveness to the Cancer Microenvironment by Ursodeoxycholic Acid. Biomacromolecules 2023; 24:2369-2379. [PMID: 37053088 DOI: 10.1021/acs.biomac.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In cancer therapy, a drug delivery system (DDS) has been widely studied to achieve selective drug accumulation at the tumor site. However, DDS still has a major drawback in that it requires multistep processes for intracellular delivery, resulting in low efficiency of drug delivery. To overcome this problem, we recently reported a molecular block (MB) that disrupts cancer cell membranes in the cancer microenvironment using deoxycholic acid (DCA). However, the MB showed considerable cytotoxicity even at neutral pH, possibly due to the structural hydrophobic property of DCA. Herein, we focused on selecting the most suitable bile acid for an MB that possessed high responsiveness to the cancer microenvironment without cytotoxicity at neutral pH. Cell viabilities of the free bile acids such as DCA, chenodeoxycholic acid (CDCA), cholic acid (CA), and ursodeoxycholic acid (UDCA) were evaluated at neutral pH (pH = 7.4) and a cancer acidic environment (pH = 6.3-6.5). The half-maximal inhibition concentration (IC50) value of UDCA at pH = 7.4 showed an approximately 7.5-fold higher IC50 value than that at pH = 6.3, whereas the other bile acids yielded less than a 4-fold IC50 value difference between the same pHs. Biocompatible poly(vinyl alcohol) (PVA) was functionalized with UDCA (PVA-UDCA) for the synthesis of higher responsiveness to the cancer microenvironment without cytotoxicity at neutral pH. Importantly, 56% pancreatic cancer cell death was observed at pH = 6.5, whereas only 10% was detected at neutral pH by the PVA-UDCA treatment. However, PVA-DCA indicated almost the same cancer cell death property, independent of pH conditions. These results suggest PVA-UDCA shows great potential for a new class of MB.
Collapse
Affiliation(s)
- Kazuki Moroishi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Hu X, Tang R, Bai L, Liu S, Liang G, Sun X. CBT‐Cys click reaction for optical bioimaging in vivo. VIEW 2023. [DOI: 10.1002/viw.20220065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
17
|
Liu X, Zhan W, Gao G, Jiang Q, Zhang X, Zhang H, Sun X, Han W, Wu FG, Liang G. Apoptosis-Amplified Assembly of Porphyrin Nanofiber Enhances Photodynamic Therapy of Oral Tumor. J Am Chem Soc 2023; 145:7918-7930. [PMID: 36987560 DOI: 10.1021/jacs.2c13189] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common oral cancer, having high recurrence and metastasis features. In addition to surgery, photodynamic therapy (PDT) is considered as another effective approach for OSCC treatment. The water solubility of currently available PDT photosensitizers (PSs) is poor, lowering their singlet oxygen (1O2) yield and consequent PDT efficiency. Strategies of PS assembly have been reported to increase 1O2 yield, but it is still possible to further enhance PDT efficiency. In this work, we utilized apoptosis to amplify the assembly of porphyrin nanofibers for enhanced PDT of OSCC. A water-soluble porphyrin derivative, Ac-Asp-Glu-Val-Asp-Asp-TPP (Ac-DEVDD-TPP), was designed for this purpose. Upon caspase-3 (Casp3, an activated enzyme during apoptosis) cleavage and laser irradiation, Ac-DEVDD-TPP was converted to D-TPP, which spontaneously self-assembled into porphyrin nanofibers, accompanied by 1.4-fold and 2.1-fold 1O2 generations in vitro and in cells, respectively. The as-formed porphyrin nanofiber induced efficient cell apoptosis and pyroptosis. In vivo experiments demonstrated that, compared with the scrambled control compound Ac-DEDVD-TPP, Ac-DEVDD-TPP led to 6.2-fold and 1.3-fold expressions of Casp3 in subcutaneous and orthotopic oral tumor models, respectively, and significantly suppressed the tumors. We envision that our strategy of apoptosis-amplified porphyrin assembly might be applied for OSCC treatment in the clinic in the near future.
Collapse
|
18
|
He H, Yin J, Li M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping Enzyme Activity in Living Systems by Real-Time Mid-Infrared Photothermal Imaging of Nitrile Chameleons. RESEARCH SQUARE 2023:rs.3.rs-2592139. [PMID: 36909612 PMCID: PMC10002843 DOI: 10.21203/rs.3.rs-2592139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Enzymes are vital components in a variety of physiological and biochemical processes. Participation of various enzyme species are required for many biological events and signaling networks. Thus, spatially mapping the activity of multiple enzymes in a living system is significant for elucidating enzymatic functions in health and connections to diseases. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons for the shifted peak between substrate and product. By real-time mid-infrared photothermal imaging of the enzymatic substrates and products at 300 nm resolution, our approach can map the activity distribution of different enzymes and quantitate the relative catalytic efficiency in living cancer cells, C. elegans, and brain tissues. An important finding is the direct visualization of caspase-phosphatase cooperation during apoptosis. Our method is generally applicable to a broad category of enzymes and will advance the discovery of potential targets for diagnosis and drug development.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
19
|
Sun W, Gregory DA, Zhao X. Designed peptide amphiphiles as scaffolds for tissue engineering. Adv Colloid Interface Sci 2023; 314:102866. [PMID: 36898186 DOI: 10.1016/j.cis.2023.102866] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Peptide amphiphiles (PAs) are peptide-based molecules that contain a peptide sequence as a head group covalently conjugated to a hydrophobic segment, such as lipid tails. They can self-assemble into well-ordered supramolecular nanostructures such as micelles, vesicles, twisted ribbons and nanofibers. In addition, the diversity of natural amino acids gives the possibility to produce PAs with different sequences. These properties along with their biocompatibility, biodegradability and a high resemblance to native extracellular matrix (ECM) have resulted in PAs being considered as ideal scaffold materials for tissue engineering (TE) applications. This review introduces the 20 natural canonical amino acids as building blocks followed by highlighting the three categories of PAs: amphiphilic peptides, lipidated peptide amphiphiles and supramolecular peptide amphiphile conjugates, as well as their design rules that dictate the peptide self-assembly process. Furthermore, 3D bio-fabrication strategies of PAs hydrogels are discussed and the recent advances of PA-based scaffolds in TE with the emphasis on bone, cartilage and neural tissue regeneration both in vitro and in vivo are considered. Finally, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Weizhen Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
20
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
21
|
Peng X, Hao J, Tao W, Guo D, Liang T, Hu X, Xu H, Fan X, Chen C. Amyloid-like aggregates of short self-assembly peptide selectively induce melanoma cell apoptosis. J Colloid Interface Sci 2023; 640:498-509. [PMID: 36871514 DOI: 10.1016/j.jcis.2023.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
With the rising global incidence of melanoma, new anti-melanoma drugs with low-inducing drug resistance and high selectivity are in urgent need. Inspired by the physiological events in which fibrillar aggregates formed by amyloid proteins are toxic to normal tissues, we here rationally design a tyrosinase responsive peptide, I4K2Y* (Ac-IIIIKKDopa-NH2). Such peptide self-assembled into long nanofibers outside the cells, while it was catalyzed into amyloid-like aggregates by tyrosinase which was rich in melanoma cells. The newly formed aggregates concentrated around the nucleus of melanoma cells, blocking the exchange of biomolecules between the nucleus and cytoplasm and finally leading to cell apoptosis via the S phase arrest in cell cycle distribution and dysfunction of mitochondria. Furthermore, I4K2Y* effectively inhibited B16 melanoma growth in a mouse model but with minimal side effects. We believe that the strategy of combining the usage of toxic amyloid-like aggregates and in-situ enzymatic reactions by specific enzymes in tumor cells will bring profound implications for designing new anti-tumor drugs with high selectivity.
Collapse
Affiliation(s)
- Xiaoting Peng
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Jiachen Hao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Wenwen Tao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Diange Guo
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Tiantian Liang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Xuelei Hu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, China.
| |
Collapse
|
22
|
Zadeh Moslabeh FG, Miar S, Habibi N. In Vitro Self-Assembly of a Modified Diphenylalanine Peptide to Nanofibers Induced by the Eye Absent Enzyme and Alkaline Phosphatase and Its Activity against Breast Cancer Cell Proliferation. ACS APPLIED BIO MATERIALS 2023; 6:164-170. [PMID: 36525564 DOI: 10.1021/acsabm.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug-resistant breast cancers such as Triple negative breast cancer (TNBC) do not respond successfully to chemotherapy treatments because they lack the expression of receptor targets. Drug-resistant anti-cancer treatments require innovative approaches to target these cells without relying on the receptors. Intracellular self-assembly of small molecules induced by enzymes is a nanotechnology approach for inhibiting cancer cell growth. In this approach, enzymes will induce the self-assembly of small molecules to nanofibers, which leads to cell death. Here, we investigate the self-assembly of a modified small peptide induced by two different phosphatases: alkaline phosphatase (ALP) and eye absent tyrosine phosphatase (EYA). ALPs are expressed in many adult human tissues and are critical for many cellular functions. EYAs are embryonic enzymes that are over-expressed in drug-resistant breast cancers. We synthesized a small diphenylalanine-based peptide with a tyrosine phosphate end group as the substrate of phosphatase enzymes. Peptides were synthesized with solid phase techniques and were characterized by HPLC and MALDI-TOF. To characterize the self-assembly of peptides exposed to enzymes, different techniques were used such as scattering light intensity, microscopes, and phosphate detection kit. We then determined the toxicity effect of the peptide against normal breast cancer cells, MCF-7, and drug-resistant breast cancer cells, MDA-MB-231. The results showed that the EYA enzyme is able to initiate self-assembly at lower peptide concentration with higher self-assembling intensity compared to ALP. A significant decrease in the TNBC cell number was observed even with a low peptide concentration of 60 μM. These results collectively support the exploration of enzyme self-assembly to treat TNBC.
Collapse
Affiliation(s)
- Forough Ghasem Zadeh Moslabeh
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Solaleh Miar
- Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Neda Habibi
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
23
|
Zhang Y, Wang C, Zhang W, Li X. Bioactive peptides for anticancer therapies. BIOMATERIALS TRANSLATIONAL 2023; 4:5-17. [PMID: 37206303 PMCID: PMC10189813 DOI: 10.12336/biomatertransl.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/21/2023]
Abstract
Cancer is a serious concern in public health worldwide. Numerous modalities including surgery, radiotherapy, and chemotherapy, have been used for cancer therapies in clinic. Despite progress in anticancer therapies, the usage of these methods for cancer treatment is often related to deleterious side effects and multidrug resistance of conventional anticancer drugs, which have prompted the development of novel therapeutic methods. Anticancer peptides (ACPs), derived from naturally occurring and modified peptides, have received great attention in these years and emerge as novel therapeutic and diagnostic candidates for cancer therapies, because of several advantages over the current treatment modalities. In this review, the classification and properties of ACPs, the mode of action and mechanism of membrane disruption, as well as the natural sources of bioactive peptides with anticancer activities were summarised. Because of their high efficacy for inducing cancer cell death, certain ACPs have been developed to work as drugs and vaccines, evaluated in varied phases of clinical trials. We expect that this summary could facilitate the understanding and design of ACPs with increased specificity and toxicity towards malignant cells and with reduced side effects to normal cells.
Collapse
|
24
|
Mundekkad D, Cho WC. Mitophagy Induced by Metal Nanoparticles for Cancer Treatment. Pharmaceutics 2022; 14:2275. [PMID: 36365094 PMCID: PMC9699542 DOI: 10.3390/pharmaceutics14112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Research on nanoparticles, especially metal nanoparticles, in cancer therapy is gaining momentum. The versatility and biocompatibility of metal nanoparticles make them ideal for various applications in cancer therapy. They can bring about apoptotic cell death in cancer cells. In addition to apoptosis, nanoparticles mediate a special type of autophagy facilitated through mitochondria called mitophagy. Interestingly, nanoparticles with antioxidant properties are capable of inducing mitophagy by altering the levels of reactive oxygen species and by influencing signaling pathways like PINK/Parkin pathway and P13K/Akt/mTOR pathway. The current review presents various roles of metal nanoparticles in inducing mitophagy in cancer cells. We envision this review sheds some light on the blind spots in the research related to mitophagy induced by nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
25
|
Ren X, Hu K, Qin L, Wu D, Guo Z, Wang S, Hu Y. Development of ZnO nanoflowers-assisted DNAzyme-based electrochemical platform for invertase and glucose oxidase-dominated biosensing. Anal Chim Acta 2022; 1232:340438. [DOI: 10.1016/j.aca.2022.340438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
|
26
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
27
|
Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8733-8747. [PMID: 35839338 DOI: 10.1021/acs.langmuir.2c00711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This feature article introduces the design of self-assembling peptides that serve as the basic building blocks for the construction of extracellular matrix (ECM)-like structure in the vicinity of the plasma membrane. By covalently conjugating a bioactive motif, such as membrane protein binding ligand or enzymatic responsive building block, with a self-assembling motif, especially the aromatic peptide, a self-assembling peptide that retains bioactivity is obtained. Instructed by the target membrane protein or enzyme, the bioactive peptides self-assemble into ECM-like structure exerting various stimuli to regulate the cellular response via intracellular signaling, especially mechanotransduction. By briefly summarizing the properties and applications (e.g., wound healing, controlling cell motility and cell fate) of these peptides, we intend to illustrate the basic requirements and promises of the peptide assembly as a true bottom-up approach in the construction of artificial ECM.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Qizheng Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
28
|
Yuan Y, Bulte JWM. Enzyme-mediated intratumoral self-assembly of nanotheranostics for enhanced imaging and tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1786. [PMID: 35229485 PMCID: PMC9437863 DOI: 10.1002/wnan.1786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/09/2023]
Abstract
Enzyme-mediated intratumoral self-assembled (EMISA) nanotheranostics represent a new class of smart agents for combined imaging and therapy of cancer. Cancer cells overexpress various enzymes that are essential for high metabolism, fast proliferation, and tissue invasion and metastasis. By conjugating small molecules that contain an enzyme-specific cleavage site to appropriate chemical linkers, it is possible to induce self-assembly of nanostructures in tumor cells having the target enzyme. This approach of injecting small theranostic molecules that eventually become larger nanotheranostics in situ avoids some of the major limitations that are encountered when injecting larger, pre-assembled nanotheranostics. The advantage of EMISA nanotheranostics include the avoidance of nonspecific uptake and rapid clearance by phagocytic cells, increased cellular accumulation, reduced drug efflux and prolonged cellular exposure time, all of which lead to an amplified imaging signal and therapeutic efficacy. We review here the different approaches that can be used for preparing EMISA-based organic, inorganic, or organic/inorganic hybrid nanotheranostics based on noncovalent interactions and/or covalent bonding. Imaging examples are shown for fluorescence imaging, nuclear imaging, photoacoustic imaging, Raman imaging, computed tomography imaging, bioluminescent imaging, and magnetic resonance imaging. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Localized Enzyme-Assisted Self-Assembly of low molecular weight hydrogelators. Mechanism, applications and perspectives. Adv Colloid Interface Sci 2022; 304:102660. [PMID: 35462266 DOI: 10.1016/j.cis.2022.102660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 01/31/2023]
Abstract
Nature uses systems of high complexity coordinated by the precise spatial and temporal control of associated processes, working from the molecular to the macroscopic scale. This living organization is mainly ensured by enzymatic actions. Herein, we review the concept of Localized Enzyme-Assisted Self-Assembly (LEASA). It is defined and presented as a straightforward and insightful strategy to achieve high levels of control in artificial systems. Indeed, the use of immobilized enzymes to drive self-assembly events leads not only to the local formation of supramolecular structures but also to tune their kinetics and their morphologies. The possibility to design tailored complex systems taking advantage of self-assembled networks through their inherent and emergent properties offers new perspectives for the design of novel, more adaptable materials. As a result, some applications have already been developed and are gathered in this review. Finally, challenges and perspectives of LEASA are introduced and discussed.
Collapse
|
30
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
31
|
Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022; 43:510-521. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/23/2023]
Abstract
Advancements in the development of nanomaterials have led to the creation of a plethora of functional constructs as drug delivery vehicles to address many dire medical needs. The emerging prodrug strategy provides an alternative solution to create nanomedicines of extreme simplicity by directly using the therapeutic agents as molecular building blocks. This Review outlines different prodrug-based drug delivery systems, highlights the advantages of the prodrug strategy for therapeutic delivery, and demonstrates how combinations of different functionalities - such as stimuli responsiveness, targeting propensity, and multidrug conjugation - can be incorporated into designed prodrug delivery systems. Furthermore, we discuss the opportunities and challenges facing this rapidly growing field.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Center of Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Chen Y, Xue C, Wang J, Xu M, Li Y, Ding Y, Song H, Xu W, Xie H. High-contrast and real-time visualization of membrane proteins in live cells with malachite green-based fluorogenic probes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Kim BJ. Enzyme-Instructed Self-Assembly of Peptides: From Concept to Representative Applications. Chem Asian J 2022; 17:e202200094. [PMID: 35213091 DOI: 10.1002/asia.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Enzyme-instructed self-assembly, integrating enzymatic reaction and molecular self-assembly, has drawn noticeable attention over the last decade with the intension of being used in valuable applications. Recent advances in the field allow it possible to spatiotemporally control peptide self-assembly in cellular milieu, broadening the potential applications of peptide assemblies to cancer therapy and subcellular delivery. In this minireview, the concept of enzyme-instructed self-assembly of peptide, containing enzymatic trigger and spatiotemporal control, is described. Representative applications in cells are also discussed, followed by outlook on the field of enzyme-instructed self-assembly.
Collapse
Affiliation(s)
- Beom Jin Kim
- University of Ulsan, Chemistry, 12, Techno Industrial Complex-ro, 55 beon-gil, 4776, Ulsan, KOREA, REPUBLIC OF
| |
Collapse
|
34
|
Wang Y, Zhen W, Jiang X, Li J. Driving Forces Sorted In Situ Size‐Increasing Strategy for Enhanced Tumor Imaging and Therapy. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yue Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinghong Li
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
35
|
Qiao L, Yang H, Gao S, Li L, Fu X, Wei Q. Research progress on self-assembled nanodrug delivery systems. J Mater Chem B 2022; 10:1908-1922. [DOI: 10.1039/d1tb02470a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, nanodrug delivery systems have attracted increasing attention due to their advantages, such as the high drug loading, low toxicity and side effects, improved bioavailability, long half-life, well...
Collapse
|
36
|
Song J, Wu C, Zhao Y, Yang M, Yao Q, Gao Y. Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104772. [PMID: 34843166 DOI: 10.1002/smll.202104772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Supramolecular assemblies are an emerging class of nanomaterials for drug delivery systems (DDS), while their unintended retention in the biological milieu remains largely unsolved. To realize the prompt clearance of supramolecular assemblies, the bioorthogonal reaction to disassemble and clear the supramolecular assemblies within living cells is investigated here. A series of tetrazine-capped assembly precursors which can self-assemble into nanofibers and hydrogels upon enzymatic dephosphorylation are designed. Such an enzyme-instructed supramolecular assembly process can perform intracellularly. The time-dependent accumulation of assemblies elicits oxidative stress and induces cellular toxicity. Tetrazine-bearing assemblies react with trans-cyclooctene derivatives, which lead to the disruption of π-π stacking and induce disassembly. In this way, the intracellular self-assemblies disassemble and are deprived of potency. This bioorthogonal disassembly strategy leverages the biosafety aspect in developing nanomaterials for DDSs.
Collapse
Affiliation(s)
- Jialei Song
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengling Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Min Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Yi M, Tan W, Guo J, Xu B. Enzymatic noncovalent synthesis of peptide assemblies generates multimolecular crowding in cells for biomedical applications. Chem Commun (Camb) 2021; 57:12870-12879. [PMID: 34817487 PMCID: PMC8711086 DOI: 10.1039/d1cc05565h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymatic noncovalent synthesis enables the spatiotemporal control of multimolecular crowding in cells, thus offering a unique opportunity for modulating cellular functions. This article introduces some representative enzymes and molecular building blocks for generating peptide assemblies as multimolecular crowding in cells, highlights the relevant biomedical applications, such as anticancer therapy, molecular imaging, trafficking proteins, genetic engineering, artificial intracellular filaments, cell morphogenesis, and antibacterial, and briefly discusses the promises of ENS as a multistep molecular process in biology and medicine.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| |
Collapse
|
38
|
Xiang J, Liu X, Yuan G, Zhang R, Zhou Q, Xie T, Shen Y. Nanomedicine from amphiphilizedprodrugs: Concept and clinical translation. Adv Drug Deliv Rev 2021; 179:114027. [PMID: 34732344 DOI: 10.1016/j.addr.2021.114027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Nanomedicines generally consisting of carrier materials with small fractions of active pharmaceutical ingredients (API) have long been used to improve the pharmacokinetics and biodistributions, augment the therapeutic efficacies and mitigate the side effects. Amphiphilizing hydrophobic/hydrophilic drugs to prodrugs capable of self-assembly into well-defined nanostructures has emerged as a facile approach to fabricating nanomedicines because this amphiphilized prodrug (APD) strategy presents many advantages, including minimized use of inert carrier materials, well-characterized prodrug structures, fixed and high drug loading contents, 100% loading efficiency, and burst-free but controlled drug release. This review comprehensively summarizes recent advances in APDs and their nanomedicines, from the rationale and the stimuli-responsive linker chemistry for on-demand drug release to their progress to the clinics, clinical performance of APDs, as well as the challenges and perspective on future development.
Collapse
|
39
|
Sun X, Dong Y, Liu Y, Song N, Li F, Yang D. Self-assembly of artificial architectures in living cells — design and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Yi M, Guo J, He H, Tan W, Harmon N, Ghebreyessus K, Xu B. Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides. SOFT MATTER 2021; 17:8590-8594. [PMID: 34545895 PMCID: PMC8600407 DOI: 10.1039/d1sm01221e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Enzyme-instructed self-assembly (EISA) and hydrogelation is a versatile approach for generating soft materials. Most of the substrates for alkaline phosphatase catalysed EISA utilize phosphotyrosine (pTyr) as the enzymatic trigger for EISA and hydrogelation. Here we show the first example of phosphonaphthyl (pNP) and phosphobiphenyl (pBP) motifs acting as faster enzymatic triggers than phosphotyrosine for EISA and hydrogelation. This work illustrates novel enzyme triggers for rapid enzymatic self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Nya Harmon
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, 23668, USA
| | - Kesete Ghebreyessus
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, 23668, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| |
Collapse
|
41
|
Hu L, Li Y, Lin X, Huo Y, Zhang H, Wang H. Structure‐Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liangbo Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Xinhui Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Yucheng Huo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
42
|
Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. NANOSCALE 2021; 13:15142-15150. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathological stimuli-responsive self-assembly of peptide nanofibers enables selective accumulation of imaging agent cargos in the stimuli-rich regions of interest. It provides enhanced imaging signals, biocompatibility, and tumor/disease accessibility and retention, thereby promoting smart, precise, and sensitive tumor/disease imaging both in vitro and in vivo. Considering the remarkable significance and recent encouraging breakthroughs of self-assembled peptide nanofibers in tumor/disease diagnosis, this reivew is herein proposed. We emphasize the recent advances particularly in the past three years, and provide an outlook in this field.
Collapse
Affiliation(s)
- Qiaochu Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China.
| |
Collapse
|
43
|
Abstract
Despite their great utility in synthetic and materials chemistry, Diels-Alder (DA) and retro Diels-Alder (rDA) reactions have been vastly unexplored in promoting self-assembly processes. Herein we describe the first example of a retro Diels-Alder (rDA) reaction-triggered self-assembly method. Release of the steric bulkiness associated with the bridged bicyclic DA adduct by the rDA reaction allowed generation of two building blocks that spontaneously self-assembled to form a supramolecular polymer. By employing photopolymerizable lipid building blocks, we demonstrated the efficiency of the rDA-based self-assembly strategy. Generation of reactive functional groups (maleimide and furan) that can be used for further modification of the supramolecular polymer is an additional meritorious feature of the rDA-based approach. Advantage was taken of reactive functional groups to fabricate stimulus-responsive selective and tunable colorimetric sensors. The strategy developed in this study should be useful for the design of systems that participate in triggered molecular assembly. Despite their great utility in synthetic and materials chemistry, Diels-Alder and retro Diels-Alder reactions have been vastly unexplored in promoting self-assembly processes. Here the authors show the release of steric bulkiness associated with a bridged bicyclic Diels Alder adduct by the retro Diels-Alder reaction that allowed generation of two building blocks that spontaneously self-assembled to form a supramolecular polymer.
Collapse
|
44
|
Hu L, Li Y, Lin X, Huo Y, Zhang H, Wang H. Structure-Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angew Chem Int Ed Engl 2021; 60:21807-21816. [PMID: 34189812 DOI: 10.1002/anie.202103507] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Here we report on the design, synthesis, and assembly of an enzymatic programmable peptide system inspired by endocytic processes to induce molecular assemblies formation spatiotemporally in living cancer cells, resulting in glioblastoma cell death mainly in necroptosis. Our results indicate the stability and glycosylation of molecules play an essential role in determining the final bioactivity. Detailed mechanistic studies by CLSM, Flow cytometry, western blot, and Bio-EM suggest the site-specific formation of assemblies, which could induce the LMP and activate the downstream cell death pathway. Moreover, we also demonstrate that our strategy can boost the activity of commercial chemotherapy drug by escaping lysosome sequestration. We expected this work would be expanded towards artificial intelligent biomaterials for cancer therapy and imaging precisely.
Collapse
Affiliation(s)
- Liangbo Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Ying Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xinhui Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yucheng Huo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
45
|
Kimura S, Yokoya M, Yamanaka M. Biological-stimuli-responsive Supramolecular Hydrogels toward Medicinal and Pharmaceutical Applications. CHEM LETT 2021. [DOI: 10.1246/cl.200765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shinya Kimura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masashi Yokoya
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
46
|
Yang D, Kim BJ, He H, Xu B. Enzymatically Forming Cell Compatible Supramolecular Assemblies of Tryptophan-Rich Short Peptides. Pept Sci (Hoboken) 2021; 113:e24173. [PMID: 35445163 PMCID: PMC9017786 DOI: 10.1002/pep2.24173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 10/27/2023]
Abstract
Here we report a new type of tryptophan-rich short peptides, which act as hydrogelators, form supramolecular assemblies via enzymatic dephosphorylation, and exhibit cell compatibility. The facile synthesis of the peptides starts with the production of phosphotyrosine, then uses solid phase peptide synthesis (SPPS) to build the phosphopeptides that contain multiple tryptophan residues. Besides exhibiting excellent solubility, these phosphopeptides, unlike the previously reported cytotoxic phenylalanine-rich phosphopeptides, are largely compatible toward mammalian cells. Our preliminary mechanistic study suggests that the tryptophan-rich peptides, instead of forming pericellular assemblies, largely accumulate in lysosomes. Such lysosomal localization may account for their cell compatibility. Moreover, these tryptophan-rich peptides are able to transiently reduce the cytotoxicity of phenylalanine-rich peptide assemblies. This rather unexpected result implies that tryptophan may act as a useful aromatic building block for developing cell compatible supramolecular assemblies for soft materials and find applications for protecting cells from cytotoxic peptide assemblies.
Collapse
Affiliation(s)
- Dongsik Yang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Beom Jin Kim
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
47
|
Kim BJ, Fang Y, He H, Xu B. Trypsin-Instructed Self-Assembly on Endoplasmic Reticulum for Selectively Inhibiting Cancer Cells: Dedicated to Professor George M. Whitesides on the occasion of his 80th birthday. Adv Healthc Mater 2021; 10:e2000416. [PMID: 32342647 PMCID: PMC7725443 DOI: 10.1002/adhm.202000416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Selectively targeting the endoplasmic reticulum (ER) of cancer cells, though promising a new strategy for cancer therapy, remains underdeveloped. Enzyme-instructed self-assembly (EISA) is emerging as a promising approach for selectively targeting ER of cancer cells. This work reports an easily accessible branched peptide that consists of a D-tetrapeptide backbone and a branch with the sequence of KYDKKKKDG (K: lysine; Y: tyrosine; D: aspratic acid; G: glycine), being an EISA substrate of typsin-1 (PRSS1), selectively inhibits cancer cells. Depending on the type of cells, the level of PRSS1 expression dictates the cytotoxicity of the branched peptide. Moreover, immunostaining and fluorescent imaging reveal that PRSS1 overexpresses on the ER of a high-grade serous ovarian cancer cell line (OVSAHO). The overexpression of PRSS1 renders the branched peptide to exhibit high selectivity against OVSAHO by the in situ formation of the peptide assemblies on the ER of OVSAHO cells, which causes ER stress and eventual cell death. This work, illustrating trypsin-guided EISA for inhibiting cancer cells by enzymatic reaction on ER for the first time, offers a new way to target the subcellular organelles of cancer cells for potential cancer therapy.
Collapse
Affiliation(s)
- Beom Jin Kim
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Yu Fang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
48
|
Deng Y, Zhan W, Liang G. Intracellular Self-Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Adv Healthc Mater 2021; 10:e2001211. [PMID: 32902191 DOI: 10.1002/adhm.202001211] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Intracellular self-assembly (ISA) is a versatile and powerful strategy for in situ constructing sophisticated and functional supramolecular nanostructures, which has been widely applied in biomedicine and biomedical engineering. Among the common building blocks for ISA, peptides have attracted increasingly attention due to their intrinsic bioactivity, biocompatibility, and biodegradability. Particularly, by conjugating functional motifs (e.g., probes or drugs) to peptides to yield the peptide conjugates, the latter show enhanced stability and efficiency, and probably new functions. In recent years, employing ISA of peptide conjugates for tumor imaging and treatment has achieved great progresses. Therefore, the recent progress of ISA of peptide conjugates is summarized in this progress report. Moreover, several examples of ISA of peptide conjugates for other important imaging or therapeutic applications are also introduced. Finally, a brief perspective on remaining challenges and potential directions for future research in this area is presented.
Collapse
Affiliation(s)
- Yu Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| |
Collapse
|
49
|
Liu X, Sun X, Liang G. Peptide-based supramolecular hydrogels for bioimaging applications. Biomater Sci 2021; 9:315-327. [DOI: 10.1039/d0bm01020k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-based supramolecular hydrogels have unique merits in bioimaging applications.
Collapse
Affiliation(s)
- Xiaoyang Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
50
|
Li Y, Xue C, Fang Z, Xu W, Xie H. In Vivo Visualization of γ-Glutamyl Transpeptidase Activity with an Activatable Self-Immobilizing Near-Infrared Probe. Anal Chem 2020; 92:15017-15024. [DOI: 10.1021/acs.analchem.0c02954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenghong Xue
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijun Fang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weipan Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hexin Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|