1
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Guan S, Tang M. Exposure of quantum dots in the nervous system: Central nervous system risks and the blood-brain barrier interface. J Appl Toxicol 2024; 44:936-952. [PMID: 38062852 DOI: 10.1002/jat.4568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 07/21/2024]
Abstract
Quantum dots currently possess significant importance in the field of biomedical science. Upon introduction into the body, quantum dots exhibit a tendency to accumulate in diverse tissues including the central nervous system (CNS). Consequently, it becomes imperative to devote specific attention to their potential toxic effects. Moreover, the preservation of optimal CNS function relies heavily on blood-brain barrier (BBB) integrity, thereby necessitating its prioritization in neurotoxicological investigations. A more comprehensive understanding of the BBB and CNS characteristics, along with the underlying mechanisms that may contribute to neurotoxicity, will greatly aid researchers in the development of effective design strategies. This article offers an in-depth look at the methods used to reduce the harmful effects of quantum dots on the nervous system, alongside the progression of effective treatments for brain-related conditions. The focal point of this discussion is the BBB and its intricate association with the CNS and neurotoxicology. The discourse commences by recent advancements in the medical application of quantum dots are examined. Subsequently, elucidating the mechanisms through which quantum dots infiltrate the human body and traverse into the brain. Additionally, the discourse delves into the factors that facilitate the passage of quantum dots across the BBB, primarily encompassing the physicochemical properties of quantum dots and the BBB's inherent capacity for self-permeability alteration. Furthermore, a concluding summary is presented, emphasizing existing research deficiencies and identifying promising avenues for further investigation within this field.
Collapse
Affiliation(s)
- Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Kumar M, Pandey SK, Lalhall A, Sharma R, Sharma RK, Wangoo N. Targeting bacterial biofilms using vancomycin and multivalent cell-penetrating peptide labeled quantum dots. J Biomed Mater Res B Appl Biomater 2023; 111:284-294. [PMID: 36056808 DOI: 10.1002/jbm.b.35150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Bacterial biofilms are highly resilient microbial musters that are difficult to eradicate, driving the development of novel therapeutic strategies. The current study aims to investigate the therapeutic efficacy of cell-penetrating peptide-based targeted delivery of vancomycin functionalized quantum dots in eradicating biofilm formation in gram-positive and gram-negative bacterial strains. The conjugate was characterized using fluorimetry, UV-visible spectroscopy, gel electrophoresis, and zeta potential. The conjugate was then tested for antimicrobial and antibiofilm activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, and it demonstrated excellent antimicrobial as well as antibiofilm activity against all the tested strains. The findings indicated that the conjugate was capable of overcoming bacterial resistance of bacteria in addition to the eradication of biofilms at effective concentrations.
Collapse
Affiliation(s)
- Munish Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Satish Kumar Pandey
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl, India
| | - Alisha Lalhall
- Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, India.,Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Chandigarh, India
| | - Rohit Sharma
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Kasparis G, Sangnier AP, Wang L, Efstathiou C, LaGrow AP, Sergides A, Wilhelm C, Thanh NTK. Zn doped iron oxide nanoparticles with high magnetization and photothermal efficiency for cancer treatment. J Mater Chem B 2023; 11:787-801. [PMID: 36472454 PMCID: PMC9890495 DOI: 10.1039/d2tb01338j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic nanoparticles (NPs) are powerful agents to induce hyperthermia in tumours upon the application of an alternating magnetic field or an infrared laser. Dopants have been investigated to alter different properties of materials. Herein, the effect of zinc doping into iron oxide NPs on their magnetic properties and structural characteristics has been investigated in-depth. A high temperature reaction with autogenous pressure was used to prepare iron oxide and zinc ferrite NPs of same size and morphology for direct comparison. Pressure was key in obtaining high quality nanocrystals with reduced lattice strain (27% less) and enhanced magnetic properties. Zn0.4Fe2.6O4 NPs with small size of 10.2 ± 2.5 nm and very high saturation magnetisation of 142 ± 9 emu gFe+Zn-1 were obtained. Aqueous dispersion of the NPs showed long term magnetic (up to 24 months) and colloidal stability (at least 6 d) at physiologically mimicking conditions. The samples had been kept in the fridge and had been stable for four years. The biocompatibility of Zn0.4Fe2.6O4 NPs was next evaluated by metabolic activity, membrane integrity and clonogenic assays, which show an equivalence to that of iron oxide NPs. Zinc doping decreased the bandgap of the material by 22% making it a more efficient photothermal agent than iron oxide-based ones. Semiconductor photo-hyperthermia was shown to outperform magneto-hyperthermia in cancer cells, reaching the same temperature 17 times faster whilst using 20 times less material (20 mgFe+Zn ml-1vs. 1 mgFe+Zn ml-1). Magnetothermal conversion was minimally hindered in the cellular confinement whilst photothermal efficiency remained unchanged. Photothermia treatment alone achieved 100% cell death after 10 min of treatment compared to only 30% cell death achieved with magnetothermia at clinically relevant settings for each at their best performing concentration. Altogether, these results suggest that the biocompatible and superparamagnetic zinc ferrite NPs could be a next biomaterial of choice for photo-hyperthermia, which could outperform current iron oxide NPs for magnetic hyperthermia.
Collapse
Affiliation(s)
- Georgios Kasparis
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| | - Anouchka Plan Sangnier
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.,Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, Bobigny F-93017, France.
| | - Lilin Wang
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| | - Christoforos Efstathiou
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle streetLondon W1S 4BSUK
| | - Alec P. LaGrow
- Biophysics Group, Department of Physics and Astronomy, University College LondonGower streetLondon WC1E 6BTUK,UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle streetLondon W1S 4BSUK
| | - Andreas Sergides
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University75005 ParisFrance
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK. .,UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK
| |
Collapse
|
6
|
Liu YY, Sun ZX, Liu J, Zhang Q, Liu Y, Cao A, Sun YP, Wang H. On the Cellular Uptake and Exocytosis of Carbon Dots─Significant Cell Type Dependence and Effects of Cell Division. ACS APPLIED BIO MATERIALS 2022; 5:4378-4389. [PMID: 36044400 DOI: 10.1021/acsabm.2c00542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the cellular uptake and exocytosis processes of nanoparticles (NPs) is essential for developing the nanomedicines and assessing the health risk of nanomaterials. Considerable efforts have been made to reveal how physicochemical properties of NPs influence these processes. However, little attention has been paid to how cell type impacts these processes, especially exocytosis. Herein, the uptake and exocytosis of the carbon dots (CDs) obtained from the carbonization of citric acid with polyethylenimine (PEI) oligomers (CDs-PEI) in five human cell lines (HeLa, A549, BEAS-2B, A431, and MDA-MB-468) are analyzed to understand how cell type influences the fate of CDs in cells. The cell division is taken into account by the correction of cell number for accurate quantification of the uptake and exocytosis of CDs-PEI. The results indicate that the cell type significantly affects the cellular uptake, trafficking, and exocytosis of CDs-PEI. Among the cell types investigated, MDA-MB-468 cells have the greatest capacity for both uptake and exocytosis, and HeLa cells have the least capacity. The kinetics of the exocytosis largely follows a single exponential decay function, with the remaining CDs-PEI in cells reaching plateaus within 24 h. The kinetic parameters are cell-dependent but insensitive to the initial intracellular CDs-PEI content. Generally, the Golgi apparatus pathways are more important in exocytosis than the lysosomal pathway, and the locations of CDs-PEI in the beginning of exocytosis are not correlated with their exocytosis pathways. The findings on the cell type-dependent cellular uptake and exocytosis reported here may be valuable to the future design of high-performance and safe CDs and related nanomaterials in general.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Lenders V, Escudero R, Koutsoumpou X, Armengol Álvarez L, Rozenski J, Soenen SJ, Zhao Z, Mitragotri S, Baatsen P, Allegaert K, Toelen J, Manshian BB. Modularity of RBC hitchhiking with polymeric nanoparticles: testing the limits of non-covalent adsorption. J Nanobiotechnology 2022; 20:333. [PMID: 35842697 PMCID: PMC9287723 DOI: 10.1186/s12951-022-01544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
Red blood cell (RBC) hitchhiking has great potential in enhancing drug therapy, by improving targeting and reducing rapid clearance of nanoparticles (NPs). However, to improve the potential for clinical translation of RBC hitchhiking, a more thorough understanding of the RBC-NP interface is needed. Here, we evaluate the effects of NP surface parameters on the success and biocompatibility of NP adsorption to extracted RBCs from various species. Major differences in RBC characteristics between rabbit, mouse and human were proven to significantly impact NP adsorption outcomes. Additionally, the effects of NP design parameters, including NP hydrophobicity, zeta potential, surfactant concentration and drug encapsulation, on RBC hitchhiking are investigated. Our studies demonstrate the importance of electrostatic interactions in balancing NP adsorption success and biocompatibility. We further investigated the effect of varying the anti-coagulant used for blood storage. The results presented here offer new insights into the parameters that impact NP adsorption on RBCs that will assist researchers in experimental design choices for using RBC hitchhiking as drug delivery strategy.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000, Louvain, Belgium
| | - Remei Escudero
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000, Louvain, Belgium
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000, Louvain, Belgium
| | - Laura Armengol Álvarez
- Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000, Louvain, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000, Louvain, Belgium
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000, Louvain, Belgium
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000, Louvain, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA02115, USA
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain and Disease Research Electron Microscopy Platform of the VIB Bioimaging Core, Louvain, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, B3000, Louvain, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015, CN, Rotterdam, the Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000, Louvain, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000, Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000, Louvain, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000, Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000, Louvain, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000, Louvain, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000, Louvain, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000, Louvain, Belgium.
| |
Collapse
|
8
|
Vyshnava SS, Kanderi DK, Dowlathabad MR. Confocal laser scanning microscopy study of intercellular events in filopodia using 3-mercaptopropoinc acid capped CdSe/ZnS quantum dots. Micron 2022; 153:103200. [PMID: 34973488 DOI: 10.1016/j.micron.2021.103200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
Physico-chemical mobility of cells in three dimensions is dependent on the development of filipodia, which is the fundamental instinct for survival and other cellular functions in live cells. Specifically, our present research paper describes the synthesis of 3-Mercaptopropoinc acid (MPA) capped CdSe/ZnS quantum dots (QDs), which are biocompatible and utilized for cellular bioimaging applications. Using the pancreatic cell lines BXCP3 cells, we successfully demonstrated the applicability of MPA-capped QDs for intercellular filopodia imaging. Employing these QDs, we examined the dynamics of filopodia formation in real-time along the Z-axis by using confocal laser microscopy.
Collapse
Affiliation(s)
| | - Dileep Kumar Kanderi
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuram, A.P, India.
| | | |
Collapse
|
9
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
10
|
Hu L, Zhong H, He Z. Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity. Colloids Surf B Biointerfaces 2021; 200:111609. [PMID: 33588242 DOI: 10.1016/j.colsurfb.2021.111609] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Fluorescent quantum dots (QDs) have received extensive attention because of their excellent optical properties and wide utilization in biological and biomedical areas. Nonetheless, there have been intense concerns on the cytotoxicity assessment of cadmium-containing QDs due to free cadmium ions release and nano-size effects. This paper reviews the representative synthetic strategies for preparation of cadmium-containing QDs and their applications. Then the toxicity assessments of QDs from cell studies to animal models are discussed, which can aid in improving our understanding of the cytotoxicity of QDs, and the toxicity mechanism is proposed. Several critical physicochemical properties of QDs are discussed and suggestions are provided for optimizing QDs design in view of minimal cytotoxicity. Finally, accurate detection techniques and systematic methodologies for the toxicity assessment of QDs are expected to achieve further breakthroughs in the future, especially in-situ, real-time, and rapid quantitative analysis methods.
Collapse
Affiliation(s)
- Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
11
|
Gorshkov K, Susumu K, Chen J, Xu M, Pradhan M, Zhu W, Hu X, Breger JC, Wolak M, Oh E. Quantum Dot-Conjugated SARS-CoV-2 Spike Pseudo-Virions Enable Tracking of Angiotensin Converting Enzyme 2 Binding and Endocytosis. ACS NANO 2020; 14:12234-12247. [PMID: 32845122 PMCID: PMC7482579 DOI: 10.1021/acsnano.0c05975] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 05/04/2023]
Abstract
The first step of SARS-CoV-2 infection is binding of the spike protein's receptor binding domain to the host cell's ACE2 receptor on the plasma membrane. Here, we have generated a versatile imaging probe using recombinant Spike receptor binding domain conjugated to fluorescent quantum dots (QDs). This probe is capable of engaging in energy transfer quenching with ACE2-conjugated gold nanoparticles to enable monitoring of the binding event in solution. Neutralizing antibodies and recombinant human ACE2 blocked quenching, demonstrating a specific binding interaction. In cells transfected with ACE2-GFP, we observed immediate binding of the probe on the cell surface followed by endocytosis. Neutralizing antibodies and ACE2-Fc fully prevented binding and endocytosis with low nanomolar potency. Importantly, we will be able to use this QD nanoparticle probe to identify and validate inhibitors of the SARS-CoV-2 Spike and ACE2 receptor binding in human cells. This work enables facile, rapid, and high-throughput cell-based screening of inhibitors for coronavirus Spike-mediated cell recognition and entry.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National
Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Kimihiro Susumu
- Optical
Sciences Division, Code 5600, Naval Research
Laboratory, 4555 Overlook
Avenue S.W., Washington, D.C. 20375, United
States
- Jacobs
Corporation, Hanover, Maryland 21076, United
States
| | - Jiji Chen
- Advanced
Imaging and Microscopy Resource, National
Institutes of Health, 13 South Drive, Bethesda, Maryland 20892, United
States
| | - Miao Xu
- National
Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Manisha Pradhan
- National
Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zhu
- National
Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Hu
- National
Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Joyce C. Breger
- Center
for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Avenue S.W., Washington, D.C. 20375, United States
| | - Mason Wolak
- Optical
Sciences Division, Code 5600, Naval Research
Laboratory, 4555 Overlook
Avenue S.W., Washington, D.C. 20375, United
States
| | - Eunkeu Oh
- Optical
Sciences Division, Code 5600, Naval Research
Laboratory, 4555 Overlook
Avenue S.W., Washington, D.C. 20375, United
States
| |
Collapse
|
12
|
Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. NANOSCALE ADVANCES 2020; 2:3734-3763. [PMID: 36132767 PMCID: PMC9417516 DOI: 10.1039/d0na00286k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/25/2020] [Indexed: 05/10/2023]
Abstract
Nanomaterials are currently widely exploited for their potential in the development of novel cancer therapies, and so far, mainly nanoparticles (NPs) consisting of liposomes and polymers have made their way into the clinic. However, major bottlenecks for the clinical translation of other types of NPs (i.e. inorganic) are the lack of knowledge concerning their long-term distribution in vivo and their potential toxicity. To counter this, various research groups have worked on soluble NPs, such as zinc oxide (ZnO), copper oxide (CuO), and silver (Ag), which tend to dissolve spontaneously into their ionic form, releasing toxic metal ions and leading to reactive oxygen species (ROS) generation when exposed to cellular environments. By fine-tuning the dissolution kinetics of these NPs, it is possible to control the level of ROS production and thus cytotoxicity to selectively destroy tumor tissue. Specifically, cancer cells tend to exhibit a higher basal level of oxidative stress compared to normal cells due to their higher metabolic rates, and therefore, by engineering NPs that generate sufficient ROS that barely exceed toxic thresholds in cancer cells, normal cells will only experience reversible transient damage. This review focuses on the use of these soluble inorganic NPs for selective cancer therapy and on the various in vitro and in vivo studies that have aimed to control the dissolution kinetics of these NPs, either through particle doping or surface modifications.
Collapse
Affiliation(s)
- Christy Maksoudian
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Neshat Saffarzadeh
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Evelien Hesemans
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Nora Dekoning
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Kiana Buttiens
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| | - Stefaan J Soenen
- Department of Imaging and Pathology, KU Leuven, NanoHealth and Optical Imaging Group Herestraat 49 B3000 Belgium +32 16 330034
| |
Collapse
|
13
|
Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors. SENSORS 2020; 20:s20102909. [PMID: 32455561 PMCID: PMC7284562 DOI: 10.3390/s20102909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Bioluminescence resonance energy transfer (BRET) is the non-radiative transfer of energy from a bioluminescent protein donor to a fluorophore acceptor. It shares all the formalism of Förster resonance energy transfer (FRET) but differs in one key aspect: that the excited donor here is produced by biochemical means and not by an external illumination. Often the choice of BRET source is the bioluminescent protein Renilla luciferase, which catalyzes the oxidation of a substrate, typically coelenterazine, producing an oxidized product in its electronic excited state that, in turn, couples with a proximal fluorophore resulting in a fluorescence emission from the acceptor. The acceptors pertinent to this discussion are semiconductor quantum dots (QDs), which offer some unrivalled photophysical properties. Amongst other advantages, the QD's large Stokes shift is particularly advantageous as it allows easy and accurate deconstruction of acceptor signal, which is difficult to attain using organic dyes or fluorescent proteins. QD-BRET systems are gaining popularity in non-invasive bioimaging and as probes for biosensing as they don't require external optical illumination, which dramatically improves the signal-to-noise ratio by avoiding background auto-fluorescence. Despite the additional advantages such systems offer, there are challenges lying ahead that need to be addressed before they are utilized for translational types of research.
Collapse
|