1
|
Moglia I, Santiago M, Arellano A, Salazar Sandoval S, Olivera-Nappa Á, Kogan MJ, Soler M. Synthesis of dumbbell-like heteronanostructures encapsulated in ferritin protein: Towards multifunctional protein based opto-magnetic nanomaterials for biomedical theranostic. Colloids Surf B Biointerfaces 2024; 245:114332. [PMID: 39486373 DOI: 10.1016/j.colsurfb.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Dumbbell-like hetero nanostructures based on gold and iron oxides is a promising material for biomedical applications, useful as versatile theranostic agents due the synergistic effect of their optical and magnetic properties. However, achieving precise control on their morphology, size dispersion, colloidal stability, biocompatibility and cell targeting remains as a current challenge. In this study, we address this challenge by employing biomimetic routes, using ferritin protein nanocages as template for these nanoparticles' synthesis. We present the development of an opto-magnetic nanostructures using the ferritin protein, wherein gold and iron oxide nanostructures were produced within its cavity. Initially, we investigated the synthesis of gold nanostructures within the protein, generating clusters and plasmonic nanoparticles. Subsequently, we optimized the conditions for the superparamagnetic nanoparticles synthesis through controlled iron oxidation, thereby enhancing the magnetic properties of the resulting system. Finally, we produce magnetic nanoparticles in the protein with gold clusters, achieving the coexistence of both nanostructures within a single protein molecule, a novel material unprecedented to date. We observed that factors such as temperature, metal/protein ratios, pH, dialysis, and purification processes all have an impact on protein recovery, loading efficiency, morphology, and nanoparticle size. Our findings highlight the development of ferritin-based nanomaterials as versatile platforms for potential biomedical use as multifunctional theranostic agents.
Collapse
Affiliation(s)
- Italo Moglia
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, Universidad Tecnológica Metropolitana-UTEM, Chile.
| | | | - Andreas Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico-IDT, Universidad Tecnológica Metropolitana-UTEM, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Millennium Nucleus in NanoBioPhysics-N2BP, Chile
| | | | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering-CEBiB, Chile; Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases-ACCDiS, Chile
| | - Mónica Soler
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| |
Collapse
|
2
|
Temur N, Dadi S, Nisari M, Ucuncuoglu N, Avan I, Ocsoy I. UV light promoted dihydrolipoic acid and its alanine derivative directed rapid synthesis of stable gold nanoparticles and their catalytic activity. Sci Rep 2024; 14:24697. [PMID: 39433872 PMCID: PMC11494073 DOI: 10.1038/s41598-024-76772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
In general, colloidal gold nanoparticles (AuNPs) have been synthesized in heated or boiling water containing HAuCl4 precursor with sodium citrate as reducing stabilizing reagent. Although temperature plays a driving for synthesis of AuNPs, elevated temperature in thermal reduction method causes aggregation of the AuNPs. The preferential, rapid and strong binding of dihydro-lipoic acid and its derivatives on surface of AuNPs via thiol - Au chemistry promote the production of very stable AuNPs. In this study, we have developed citric acid (CA), dihydrolipoic acid (DHLA) and DHLA-Alanine (DHLA-Ala) directed rapid synthesis of ultra-stable AuNPs, DHLA@AuNPs and DHLA-Ala@AuNPs, under the UV (311 nm) irradiation at room temperature (RT: 25 °C) in around 10 min (min). CA is used as a potential reducing agent to expedite both reduction of Au3+ ion and AuNP formation, DHLA and DHLA-Ala act as stabilizing agents by replacing CA molecules on surface of AuNPs in order to produce quite stable AuNP. It is worthy to mention that reduction of Au3+ ion, formation and surface stabilization of AuNPs are consequently occurred in one step. We also investigated how experimental parameters including reaction time and temperature, pH of reaction solution, affect formation of the AuNPs. The effects of salt concentration and storage temperature were studied to show stability of the AuNPs. The synthesized DHLA@AuNPs and DHLA-Alanine@AuNPs were characterized via UV-Vis spectrophotometer (UV-Vis), scanning transmission electron microscope (STEM), dynamic light scattering (DLS) and Zeta potential (ZT) devices. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was efficiently catalyzed by the AuNPs in the presence of sodium borohydride in aqueous solution.
Collapse
Affiliation(s)
- Nimet Temur
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Seyma Dadi
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, 38080, Turkey
| | - Mustafa Nisari
- Department of Medical Biochemistry, Faculty of Dentistry, University of Nuh Naci Yazgan, Kayseri, 38090, Turkey
| | - Neslihan Ucuncuoglu
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Ilker Avan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, 26470, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
3
|
Cao K, Luo K, Zheng Y, Xue L, Huo W, Ruan P, Wang Y, Xue Y, Yao X, Xia D, Gao X. Disturbing microtubule-endoplasmic reticulum dynamics by gold nanoclusters for improved triple-negative breast cancer treatment. J Mater Chem B 2024. [PMID: 39415636 DOI: 10.1039/d4tb01492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Microtubules are highly dynamic structures, and their dynamic instability is indispensable for not only cell growth and movement, but also stress responses, such as endoplasmic reticulum (ER) stress. Docetaxel, a microtubule targeting agent (MTA), is the first-line drug for cancer treatment by simultaneously promoting microtubule dysregulation- and ER stress-induced cell death. However, it also causes adverse effects and drug resistance, especially in triple-negative breast cancer (TNBC) with a poor prognosis and high mortality rate. In this study, we developed a peptide-templated gold nanocluster, namely GA. GA significantly sensitizes TNBC cells to docetaxel, causing severe cell death. This effect is further validated by a 3D tumor spheroid model. Mechanistically, GA disrupted microtubule dynamic instability, meanwhile promoting PERK-mediated ER stress. Interestingly, ER stress inhibitors profoundly suppressed microtubule dysregulation, suggesting a retrograde regulation of ER stress on microtubules. In vivo, the combined administration of docetaxel and GA significantly suppresses tumor growth while docetaxel alone cannot. GA similarly elevated the level of caspases and PERK within tumors as in vitro. Importantly, GA treatment also profoundly promoted the production of anti-tumor inflammatory cytokines. Collectively, we developed an ER-microtubule regulatory nanomaterial that enhanced the therapeutic effect of docetaxel by elevating tumor cell death and anti-tumor cytokine production, providing a potential supplemental strategy for TNBC treatment.
Collapse
Affiliation(s)
- Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Kaidi Luo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yichen Zheng
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Liyuan Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Wendi Huo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Panpan Ruan
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yuchen Wang
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yilin Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Xiuxiu Yao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Dongfang Xia
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Rajeev A, Bhatia D. DNA-templated fluorescent metal nanoclusters and their illuminating applications. NANOSCALE 2024; 16:18715-18731. [PMID: 39292491 DOI: 10.1039/d4nr03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
After the discovery of DNA during the mid-20th century, a multitude of novel methodologies have surfaced which exploit DNA for its various properties. One such recently developed application of DNA is as a template in metal nanocluster formation. In the early years of the new millennium, a group of researchers found that DNA can be adopted as a template for the binding of metal nanoparticles that ultimately form nanoclusters. Three metal nanoclusters have been studied so far, including silver, gold, and copper, which have a plethora of biological applications. This review focuses on the synthesis, mechanisms, and novel applications of DNA-templated metal nanoclusters, including the therapies that have employed them for their wide range of fluorescent properties, and the future perspectives related to their development by exploiting machine learning algorithms and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
5
|
Krishnendu MR, Bhagat S, Jain V, Mehta D, Singh S. Paper immobilized BSA-decorated gold nanoclusters for single-step optical sensing of glucose and cholesterol without cross-reactivity. Colloids Surf B Biointerfaces 2024; 245:114303. [PMID: 39413484 DOI: 10.1016/j.colsurfb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Minimally invasive methods for detecting glucose, cholesterol and hydrogen peroxide are crucial for monitoring the nutritional and health status of humans and animals. The peroxidase mimetic activity by nanozymes is one of the versatile methods for detecting glucose, cholesterol, hydrogen peroxide, and other biomolecules. However, the strict requirement of acidic pH limits their sensing and interfacing ability with natural enzymes. The present study developed bovine serum albumin (BSA) coated gold nanoclusters (AuNC) immobilized on paper fabric to enable single-step visual detection of glucose, cholesterol and hydrogen peroxide in complex biological fluids like serum and milk. The BSA-AuNC suspension and immobilized paper fabric synergistically interface with the natural oxidative enzymes, glucose oxidase or cholesterol oxidase, at physiological pH. The concomitant loss in the fluorescent intensity of BSA-AuNC-loaded paper fabric exposed to the generated hydrogen peroxide (glucose/glucose oxidase or cholesterol/cholesterol oxidase) was directly proportional to the concentration of glucose or cholesterol. These reactions enabled simple visual detection as well as quantification of hydrogen peroxide, glucose and cholesterol using Image-J software and common smartphone-based mobile applications. The detection ability of BSA-AuNC-embedded paper fabric is specific and remains unaltered in the presence of similar oxidase enzymes or similar substrate analogues. With these unique features, the BSA-AuNC embedded paper fabric stands out as a prominent analytical device with enormous potential as a simple, user-friendly detection tool for monitoring biomolecules that are important to health, nutrition, and environmental safeguarding.
Collapse
Affiliation(s)
- M R Krishnendu
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Stuti Bhagat
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India; Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Vidhi Jain
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Divya Mehta
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sanjay Singh
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India; Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India.
| |
Collapse
|
6
|
Xue L, Luo K, Hou K, Huo W, Ruan P, Xue Y, Yao X, Meng C, Xia D, Tang Y, Zhao W, Yuan H, Zhao L, Gao L, Yuan Q, Gao X, Cao K. Targeted Gold Nanoclusters for Synergistic High-Risk Neuroblastoma Therapy through Noncanonical Ferroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53555-53566. [PMID: 39327976 DOI: 10.1021/acsami.4c11979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Children with extracranial high-risk neuroblastoma (NB) have a poor prognosis due to resistance against apoptosis. Recently, ferroptosis, another form of programmed cell death, has been tested in clinical trials for high-risk NB; however, drug resistance and side effects have also been observed. Here, we find that the gold element in gold nanoclusters can significantly affect iron metabolism and sensitize high-risk NB cells to ferroptosis. Accordingly, we developed a gold nanocluster conjugated with a modified NB-targeting peptide. This gold nanocluster, namely, NANT, shows excellent NB targeting efficiency and dramatically promotes ferroptosis. Surprisingly, this effect is exerted by elevating the noncanonical ferroptosis pathway, which is dependent on heme oxygenase-1-regulated Fe(II) accumulation. Furthermore, NANT dramatically inhibits the growth of high-risk NB in both tumor spheroid and xenograft models by promoting noncanonical ferroptosis evidenced by enhanced intratumoral Fe(II) and heme oxygenase-1. Importantly, this strategy shows excellent cardiosafety, offering a promising strategy to overcome ferroptosis resistance for the efficient and safe treatment of children with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Liyuan Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kaidi Luo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kaixiao Hou
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Panpan Ruan
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yilin Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiuxiu Yao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yuhua Tang
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Wencong Zhao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Hui Yuan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Lima AF, Justo GZ, Sousa AA. Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1208-1226. [PMID: 39376728 PMCID: PMC11457047 DOI: 10.3762/bjnano.15.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- André F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
8
|
Cao K, Xue L, Luo K, Huo W, Ruan P, Xia D, Yao X, Zhao W, Gao L, Gao X. Induction of Non-Canonical Ferroptosis by Targeting Clusters Suppresses Glioblastoma. Pharmaceutics 2024; 16:1205. [PMID: 39339241 PMCID: PMC11434859 DOI: 10.3390/pharmaceutics16091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor. There is a pressing need to develop novel treatment strategies due to the poor targeting effect of current therapeutics. Here, a gold cluster coated with optimized GBM-targeting peptide is engineered, namely NA. NA can efficiently target GBM both in vitro and in vivo. Interestingly, the uptake of NA significantly sensitizes GBM cells to ferroptosis, a form of programmed cell death that can bypass the tumor resistance to apoptosis. This effect is exerted through regulating the HO-1-dependent iron ion metabolism, which is the non-canonical pathway of ferroptosis. The combined treatment of a ferroptosis inducer and NA profoundly inhibited tumor growth in both the GBM spheroid model and a syngeneic mouse model with enhanced ferroptosis levels and excellent biosafety. Importantly, the infiltration of tumoricidal lymphocytes is also significantly increased within tumor. Therefore, NA presents a potential novel nanomaterial-based strategy for GBM treatment.
Collapse
Affiliation(s)
- Kai Cao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Xue
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Kaidi Luo
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Panpan Ruan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiuxiu Yao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wencong Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Chen F, Ruan F, Xie X, Lu J, Sun W, Shao D, Chen M. Gold Nanocluster: A Photoelectric Converter for X-Ray-Activated Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402966. [PMID: 39044607 DOI: 10.1002/adma.202402966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Despite the promise of activatable chemotherapy, the development of a spatiotemporally controllable strategy for prodrug activation in deep tissues remains challenging. Herein, a proof-of-concept is proposed for a gold nanocluster-based strategy that utilizes X-ray irradiation to trigger the liberation of platinum (Pt)-based prodrug conjugates, thus enabling radiotherapy-directed chemotherapy. Mechanistically, the irradiated activation of prodrugs is achieved through direct photoelectron transfer from the excited-state gold nanoclusters to the Pt(IV) center, resulting in the release of cytotoxic Pt(II) agents. Compared to the traditional combination of chemotherapy and radiotherapy, this radiotherapy-directed chemotherapy strategy offers superior antitumor efficacy and safety benefits through spatiotemporal synergy at the tumor site. Additionally, this strategy elicits robust immunogenic cell death and yields profound outcomes for combined immunotherapy of breast cancer. This versatile strategy is ushering in a new era of radiation-mediated chemistry for controlled drug delivery and the precise regulation of biological processes.
Collapse
Affiliation(s)
- Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Feixia Ruan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Junna Lu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| |
Collapse
|
10
|
Chen H, Zou L, Hossain E, Li Y, Liu S, Pu Y, Mao X. Functional structures assembled based on Au clusters with practical applications. Biomater Sci 2024; 12:4283-4300. [PMID: 39028030 DOI: 10.1039/d4bm00455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The advancement of gold nanoclusters (Au NCs) has given rise to a new era in fabricating functional materials due to their controllable morphology, stable optical properties, and excellent biocompatibility. Assemblies based on Au NCs demonstrate significant potentiality in constructing multiple structures as acceptable agents in applications such as sensing, imaging technology, and drug delivery systems. In addition, the assembled strategies illustrate the integration mechanism between each component while facing material requirement. It is necessary to provide supplementary and comprehensive reviews on the assembled functional structures (based Au NCs), which hold promise for applications and could expand their functional range and potential applications. This review focuses on the assembled structures of Au NCs in combination with metals, metal oxides, and non-metal materials, which are intricately arranged through various interaction forces including covalent bonds and metal coordination, resulting in a diverse array of multifunctional Au NC assemblies. These assemblies have widespread applications in fields such as biological imaging, drug delivery, and optical devices. The review concludes by highlighting the challenges and future prospects of Au NC assemblies, emphasizing the importance of continued research to advance nanomaterial assembly innovation.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ligang Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ekram Hossain
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yixin Li
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shaojun Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yaoyang Pu
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
11
|
Parvin N, Kumar V, Mandal TK, Joo SW. Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics. J Funct Biomater 2024; 15:226. [PMID: 39194664 DOI: 10.3390/jfb15080226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
This review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold. The synthesis method for each material, their current research trends, and prospects are discussed in detail. Furthermore, this review delves into the functionalization and surface modification techniques employed to tailor nanoporous materials for specific biomedical imaging applications. This section covers chemical functionalization, bioconjugation strategies, and surface coating and encapsulation methods. Additionally, this review examines the diverse biomedical imaging techniques enabled by nanoporous materials, such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT) imaging, ultrasound imaging, and multimodal imaging. The mechanisms underlying these imaging techniques, their diagnostic applications, and their efficacy in clinical settings are thoroughly explored. Through an extensive analysis of recent research findings and emerging trends, this review underscores the transformative potential of nanoporous materials in advancing biomedical imaging and diagnostics. The integration of interdisciplinary approaches, innovative synthesis techniques, and functionalization strategies offers promising avenues for the development of next-generation imaging agents and diagnostic tools with enhanced sensitivity, specificity, and biocompatibility.
Collapse
Affiliation(s)
- Nargish Parvin
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
12
|
Gu W, Zhou Y, Wang W, You Q, Fan W, Zhao Y, Bian G, Wang R, Fang L, Yan N, Xia N, Liao L, Wu Z. Concomitant Near-Infrared Photothermy and Photoluminescence of Rod-Shaped Au 52(PET) 32 and Au 66(PET) 38 Synthesized Concurrently. Angew Chem Int Ed Engl 2024; 63:e202407518. [PMID: 38752452 DOI: 10.1002/anie.202407518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Gold nanoclusters exhibiting concomitant photothermy (PT) and photoluminescence (PL) under near-infrared (NIR) light irradiation are rarely reported, and some fundamental issues remain unresolved for such materials. Herein, we concurrently synthesized two novel rod-shaped Au nanoclusters, Au52(PET)32 and Au66(PET)38 (PET = 2-phenylethanethiolate), and precisely revealed that their kernels were 4 × 4 × 6 and 5 × 4 × 6 face-centered cubic (fcc) structures, respectively, based on the numbers of Au layers in the [100], [010], and [001] directions. Following the structural growth mode from Au52(PET)32 to Au66(PET)38, we predicted six more novel nanoclusters. The concurrent synthesis provides rational comparison of the two nanoclusters on the stability, absorption, emission and photothermy, and reveals the aspect ratio-related properties. An interesting finding is that the two nanoclusters exhibit concomitant PT and PL under 785 nm light irradiation, and the PT and PL are in balance, which was explained by the qualitative evaluation of the radiative and non-radiative rates. The ligand effects on PT and PL were also investigated.
Collapse
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wenying Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| |
Collapse
|
13
|
Liu H, Yang Y, Ma Z, Pei Y. Chiral Inversion of Au 40(SR) 24 Nanocluster Driven by Rotation of Gold Tetrahedra in the Kekulé-like Core. J Phys Chem A 2024; 128:5481-5489. [PMID: 38978476 DOI: 10.1021/acs.jpca.4c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Studying the chiral characteristics and chiral inversion mechanisms of gold nanoclusters is important to promote their applications in the field of chiral catalysis and chiral recognition. Herein, we investigated the chiral inversion process of the Au40(SR)24 nanocluster and its derivatives using density functional theory calculations. The results showed that the chiral inversion process can be achieved by rotation of tetrahedra units in the gold core without breaking the Au-S bond. This work found that Au40 nanoclusters protected by different ligands have different chiral inversion mechanisms, and the difference is mainly attributable to the steric effects of the ligands. Moreover, the chiral inversion of the derivative clusters (Au34, Au28, and Au22) of the Au40 nanocluster can also be accomplished by the rotation of the Au4 tetrahedra units in the gold core. The energy barrier in the chiral inversion process of gold nanoclusters increases with the decrease of Au4 tetrahedra units in the gold core. This work identifies a chiral inversion mechanism with lower reaction energy barriers and provided a theoretical basis for the study of gold nanocluster chirality.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Ying Yang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Zhongyun Ma
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, China
| |
Collapse
|
14
|
Roy J, Marathe I, Wysocki V, Pradeep T. Observing atomically precise nanocluster aggregates in solution by mass photometry. Chem Commun (Camb) 2024; 60:6655-6658. [PMID: 38856910 DOI: 10.1039/d4cc00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We report the first mass photometric characterization of nanoaggregates of atomically precise nanoclusters (NCs) in solution. The differently-sized nanoaggregates of silver-gold alloy NCs, [Ag11-xAux(DPPB)5Cl5O2]2+ [x = 1-5 and DPPB = 1,4-bis(diphenylphosphino)butane], formed in solution, were examined by mass photometry (MP) with a protein calibration. In addition, we conducted MP studies of varying solvent composition to understand the structural evolution of nanoaggregates. The masses of nanoaggregates were correlated to structures of 15 to 50 nm diameter observed in cryo-electron microscopy.
Collapse
Affiliation(s)
- Jayoti Roy
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Ila Marathe
- Department of Chemistry and Biochemistry and Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vicki Wysocki
- Department of Chemistry and Biochemistry and Native Mass Spectrometry Guided Structural Biology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
- International Centre for Clean Water, 2nd Floor, B-Block, IIT Madras Research Park, Kanagam Road, Taramani, Chennai 600113, India
| |
Collapse
|
15
|
Gong Y, Zhao X, Yan X, Zheng W, Chen H, Wang L. Gold nanoclusters cure implant infections by targeting biofilm. J Colloid Interface Sci 2024; 674:490-499. [PMID: 38943910 DOI: 10.1016/j.jcis.2024.06.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The biofilm-mediated implant infections pose a huge threat to human health. It is urgent to explore strategies to reverse this situation. Herein, we design 3-amino-1,2,4-triazole-5-thiol (ATT)-modified gold nanoclusters (AGNCs) to realize biofilm-targeting and near-infrared (NIR)-II light-responsive antibiofilm therapy. The AGNCs can interact with the bacterial extracellular DNA through the formation of hydrogen bonds between the amine groups on the ATT and the hydroxyl groups on the DNA. The AGNCs show photothermal properties even at a low power density (0.5 W/cm2) for a short-time (5 min) irradiation, making them highly effective in eradicating the biofilm with a dispersion rate up to 90 %. In vivo infected catheter implantation model demonstrates an exceptional high ability of the AGNCs to eradicate approximately 90 % of the bacteria encased within the biofilms. Moreover, the AGNCs show no detectable toxicity or systemic effects in mice. Our study suggests the great potential of the AGNCs for long-term prevention and elimination of the biofilm-mediated infections.
Collapse
Affiliation(s)
- Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China
| | - Xueying Zhao
- Department of Blood Transfusion, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China
| | - XiaoJie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China.
| | - Huanwen Chen
- Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China; The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China.
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China; The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, PR China.
| |
Collapse
|
16
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
17
|
Guido V, Olivieri PH, Brito ML, Prezoto BC, Martinez DST, Oliva MLV, Sousa AA. Stealth and Biocompatible Gold Nanoparticles through Surface Coating with a Zwitterionic Derivative of Glutathione. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12167-12178. [PMID: 38808371 PMCID: PMC11171461 DOI: 10.1021/acs.langmuir.4c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Gold nanoparticles (AuNPs) hold promise in biomedicine, but challenges like aggregation, protein corona formation, and insufficient biocompatibility must be thoroughly addressed before advancing their clinical applications. Designing AuNPs with specific protein corona compositions is challenging, and strategies for corona elimination, such as coating with polyethylene glycol (PEG), have limitations. In this study, we introduce a commercially available zwitterionic derivative of glutathione, glutathione monoethyl ester (GSHzwt), for the surface coating of colloidal AuNPs. Particles coated with GSHzwt were investigated alongside four other AuNPs coated with various ligands, including citrate ions, tiopronin, glutathione, cysteine, and PEG. We then undertook a head-to-head comparison of these AuNPs to assess their behavior in biological fluid. GSHzwt-coated AuNPs exhibited exceptional resistance to aggregation and protein adsorption. The particles could also be readily functionalized with biotin and interact with streptavidin receptors in human plasma. Additionally, they exhibited significant blood compatibility and noncytotoxicity. In conclusion, GSHzwt provides a practical and easy method for the surface passivation of AuNPs, creating "stealth" particles for potential clinical applications.
Collapse
Affiliation(s)
- Vinicius
S. Guido
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| | - Paulo H. Olivieri
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| | - Milena L. Brito
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Benedito C. Prezoto
- Laboratory
of Pharmacology, the Butantan Institute, São Paulo 05503-900, Brazil
| | - Diego S. T. Martinez
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Maria Luiza V. Oliva
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| | - Alioscka A. Sousa
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo 04044-020, Brazil
| |
Collapse
|
18
|
Mattioli EJ, Cipriani B, Zerbetto F, Marforio TD, Calvaresi M. Interaction of Au(III) with amino acids: a vade mecum for medicinal chemistry and nanotechnology. J Mater Chem B 2024; 12:5162-5170. [PMID: 38687242 DOI: 10.1039/d4tb00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Au(III) is highly reactive. At odds with its reduced counterpart, Au(I), it is hardly present in structural databases. And yet, it is the starting reactant to form gold nanoclusters (AuNCs) and the constitutive component of a new class of drugs. Its reactivity is a world apart from that of the iso-electronic Pt(II) species. Rather than DNA, it targets proteins. Its interaction with amino acid residues is manifold. It can strongly interact with the residue backbones, amino acid side chains and protein ends, it can form appropriate complexes whose stabilization energy reaches up to more than 40 kcal mol-1, it can affect the pKa of amino acid residues, and it can promote charge transfer from the residues to the amount that it is reduced. Here, quantum chemical calculations provide quantitative information on all the processes where Au(III) can be involved. A myriad of structural arrangements are examined in order to determine the strongest interactions and quantify the amount of charge transfer between protonated and deprotonated residues and Au(III). The calculated interaction energies of the amino acid side chains with Au(III) quantitatively reproduce the experimental tendency of Au(III) to interact with selenocysteine, cysteine and histidine and negatively charged amino acids such as Glu and Asp. Also, aromatic residues such as tyrosine and tryptophan strongly interact with Au(III). In proteins, basic pH plays a role in the deprotonation of cysteine, lysine and tyrosine and strongly increases the binding affinity of Au(III) toward these amino acids. The amino acid residues in the protein can also trigger the reduction of Au(III) ions. Sulfur-containing amino acids (cysteine and methionine) and selenocysteine provide almost one electron to Au(III) upon binding. Tyrosine also shows a considerable tendency to act as a reductant. Other amino acids, commonly identified in Au-protein adducts, such as Ser, Trp, Thr, Gln, Glu, Asn, Asp, Lys, Arg and His, possess a notable reducing power toward Au(III). These results and their discussion form a vade mecum that can find application in medicinal chemistry and nanotech applications of Au(III).
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Beatrice Cipriani
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Tainah Dorina Marforio
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica ''G. Ciamician'', Alma Mater Studiorum - Universita di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
19
|
Tapia-Arellano A, Cabrera P, Cortés-Adasme E, Riveros A, Hassan N, Kogan MJ. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J Nanobiotechnology 2024; 22:248. [PMID: 38741193 DOI: 10.1186/s12951-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Collapse
Affiliation(s)
- Andreas Tapia-Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Pablo Cabrera
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Elizabeth Cortés-Adasme
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Ana Riveros
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Natalia Hassan
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Marcelo J Kogan
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
| |
Collapse
|
20
|
Han Y, Wang M, Xie H, Zhou Y, Wang S, Wang G. Fabrication of Au nanoclusters confined on hydroxy double salt-based intelligent biosensor for on-site monitoring of urease and its inhibitors. Talanta 2024; 271:125725. [PMID: 38295444 DOI: 10.1016/j.talanta.2024.125725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Sensitive and convenient sensing of urease and its inhibitors is exceptionally urgent in clinical diagnosis and new drug development. In this study, the gold nanoclusters (AuNCs) and hydroxyl double salt (HDS) were composited by a simple confinement effect to prepare highly fluorescent AuNCs@HDS composites to monitor urease and its drug inhibitors. HDS was used as a matrix to confine AuNCs (AuNCs@HDS), facilitating the emission intensity of AuNCs. However, acidic conditions (low pH) can disrupt the structure of HDS to break the confinement effect, and quench the fluorescence of AuNCs. Therefore, a sensing platform for pH-related enzyme urease detection was constructed based on the sensitive response of AuNCs@HDS to pH. This sensing platform had a linear response range of 0.5-22.5 U/L and a low limit of detection (LOD) of 0.19 U/L for urease. Moreover, this sensing platform was also applied to monitor urease inhibitors and urease in human saliva samples. Additionally, a portable hydrogel kit combined with a smartphone was developed for urease detection to achieve portable, low-cost, instrument-free, and on-site monitoring of urease.
Collapse
Affiliation(s)
- Yaqing Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China; College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Mengke Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Han Xie
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes, School of Pharmacy, Shenyang Medical University, Shenyang, 110034, PR China
| | - Yitong Zhou
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes, School of Pharmacy, Shenyang Medical University, Shenyang, 110034, PR China
| | - Shun Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China.
| | - Guannan Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China; Shenyang Key Laboratory of Medical Molecular Theranostic Probes, School of Pharmacy, Shenyang Medical University, Shenyang, 110034, PR China.
| |
Collapse
|
21
|
Wang M, Tian F, Xin Q, Ma H, Liu L, Yang S, Sun S, Song N, Tan K, Li Z, Zhang L, Wang Q, Feng L, Wang H, Wang Z, Zhang XD. In Vivo Toxicology of Metabolizable Atomically Precise Au 25 Clusters at Ultrahigh Doses. Bioconjug Chem 2024; 35:540-550. [PMID: 38557019 DOI: 10.1021/acs.bioconjchem.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.
Collapse
Affiliation(s)
- Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuyu Yang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - KeXin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhenhua Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Liefeng Feng
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Marinova P, Tamahkyarova K. Synthesis and Biological Activities of Some Metal Complexes of Peptides: A Review. BIOTECH 2024; 13:9. [PMID: 38651489 PMCID: PMC11036290 DOI: 10.3390/biotech13020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Peptides, both natural and synthetic, are well suited for a wide range of purposes and offer versatile applications in different fields such as biocatalysts, injectable hydrogels, tumor treatment, and drug delivery. The research of the better part of the cited papers was conducted using various database platforms such as MetalPDB. The rising prominence of therapeutic peptides encompasses anticancer, antiviral, antimicrobial, and anti-neurodegenerative properties. The metals Na, K, Mg, Ca, Fe, Mn, Co, Cu, Zn, and Mo are ten of the twenty elements that are considered essential for life. Crucial for understanding the biological role of metals is the exploration of metal-bound proteins and peptides. Aside from essential metals, there are other non-essential metals that also interact biologically, exhibiting either therapeutic or toxic effects. Irregularities in metal binding contribute to diseases like Alzheimer's, neurodegenerative disorders, Wilson's, and Menkes disease. Certain metal complexes have potential applications as radiopharmaceuticals. The examination of these complexes was achieved by preforming UV-Vis, IR, EPR, NMR spectroscopy, and X-ray analysis. This summary, although unable to cover all of the studies in the field, offers a review of the ongoing experimentation and is a basis for new ideas, as well as strategies to explore and gain knowledge from the extensive realm of peptide-chelated metals and biotechnologies.
Collapse
Affiliation(s)
- Petja Marinova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, “Tzar Assen” Str. 24, 4000 Plovdiv, Bulgaria;
| | | |
Collapse
|
23
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Zhang L, Li HW, Wu Y. Ag(I) Ion-Concentration-Dependent Dynamic Mechanism of Thiolactic-Acid-Capped Gold Nanoclusters Revealed by Fluorescence Spectra and Two-Dimensional Correlation Spectroscopy. APPLIED SPECTROSCOPY 2024:37028241241325. [PMID: 38556929 DOI: 10.1177/00037028241241325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Based on fluorescence spectroscopy, being combined with several spectral analysis techniques including principal component analysis (PCA), two-dimensional correlation spectroscopy (2D-COS), and moving window 2D-COS, the study disclosed the structural variations of gold nanoclusters capped by thiolactic acid (AuNCs@TLA) induced by Ag(I) ions. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were applied to monitor the morphology evolution of the surface and composition of the nanoclusters induced by Ag(I) ions. Several spectral components, centered at (790, 607) nm, (670, 590) nm, and (740, 670) nm were revealed by 2D-COS analysis, suggesting new luminescent species or groups were generated with the introduction of Ag(I) ions. A two-stage mechanism was revealed for the photoluminescence variations of AuNCs@TLA induced by Ag(I) ion. The first stage was characterized by the emission quench of 790 nm followed by the emerging emission of 607 nm, which was attributed to the anti-galvanic reaction; and the second stage featured by the noticeable growth of the emission's intensity around 670 nm as result of the AuNCs' size effect. The present study will attract more focuses on near-infrared (NIR)-emitted metal nanoclusters and promote their synthesis and utilities.
Collapse
Affiliation(s)
- Liping Zhang
- Foundation Department, Jilin Business and Technology College, Jiutai, Changchun, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
25
|
Deleuziere M, Benoist É, Quelven I, Gras E, Amiens C. [ 18F]-Radiolabelled Nanoplatforms: A Critical Review of Their Intrinsic Characteristics, Radiolabelling Methods, and Purification Techniques. Molecules 2024; 29:1537. [PMID: 38611815 PMCID: PMC11013168 DOI: 10.3390/molecules29071537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A wide range of nano-objects is found in many applications of our everyday life. Recognition of their peculiar properties and ease of functionalization has prompted their engineering into multifunctional platforms that are supposed to afford efficient tools for the development of biomedical applications. However, bridging the gap between bench to bedside cannot be expected without a good knowledge of their behaviour in vivo, which can be obtained through non-invasive imaging techniques, such as positron emission tomography (PET). Their radiolabelling with [18F]-fluorine, a technique already well established and widely used routinely for PET imaging, with [18F]-FDG for example, and in preclinical investigation using [18F]-radiolabelled biological macromolecules, has, therefore, been developed. In this context, this review highlights the various nano-objects studied so far, the reasons behind their radiolabelling, and main in vitro and/or in vivo results obtained thereof. Then, the methods developed to introduce the radioelement are presented. Detailed indications on the chemical steps involved are provided, and the stability of the radiolabelling is discussed. Emphasis is then made on the techniques used to purify and analyse the radiolabelled nano-objects, a point that is rarely discussed despite its technical relevance and importance for accurate imaging. The pros and cons of the different methods developed are finally discussed from which future work can develop.
Collapse
Affiliation(s)
- Maëlle Deleuziere
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Éric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
| | - Isabelle Quelven
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée, UMR 5069, CNRS—Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Catherine Amiens
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
26
|
Luty-Błocho M, Cyndrowska J, Rutkowski B, Hessel V. Synthesis of Gold Clusters and Nanoparticles Using Cinnamon Extract-A Mechanism and Kinetics Study. Molecules 2024; 29:1426. [PMID: 38611706 PMCID: PMC11013221 DOI: 10.3390/molecules29071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, UV-Vis spectrophotometry, High Resolution Scanning Transmission Electron Microscopes and selected experimental conditions were used to screen the colloidal system. The obtained results complement the established knowledge regarding the mechanism of nanoparticle formation. The process of gold nanoparticles formation involves a two-step reduction of Au ions to Au(0); atom association and metastable cluster formation; autocatalytic cluster growth; ultra-small particle formation (1-2 nm, in diameter); particle growth and larger particles formation; and further autocatalytic crystal growth (D > 100 nm). As a reductant of Au(III) ions, a cinnamon extract was used. It was confirmed that eugenol as one of the cinnamon extract compounds is responsible for fast Au(III) ion reduction, whereas cinnamaldehyde acts as a gold-particle stabilizer. Spectrophotometry studies were carried out to track kinetic traces of gold nanoparticle (D > 2 nm) formation in the colloidal solution. Using the Watzky-Finke model, the rate constants of nucleation and autocatalytic growth were determined. Moreover, the values of energy, enthalpy and entropy of activation for stages related to the process of nanoparticle formation (Index 1 relates to nucleation, and Index 2 relates to the growth) were determined and found to be E1 = 70.6 kJ, E2 = 19.6 kJ, ΔH1 = 67.9 kJ/mol, ΔH2 = 17 kJ/mol, ΔS1 = -76.2 J/(K·mol), ΔS2 = -204.2 J/(K·mol), respectively. In this work the limitation of each technique (spectrophotometry vs. HRSTEM) as a complex tool to understand the dynamic of the colloidal system was discussed.
Collapse
Affiliation(s)
- Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jowita Cyndrowska
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Bogdan Rutkowski
- AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Volker Hessel
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
27
|
Bhunia S, Mukherjee M, Purkayastha P. Fluorescent metal nanoclusters: prospects for photoinduced electron transfer and energy harvesting. Chem Commun (Camb) 2024; 60:3370-3378. [PMID: 38444358 DOI: 10.1039/d4cc00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Research on noble metal nanoclusters (MNCs) (elements with filled electron d-bands) is progressing forward because of the extensive and extraordinary chemical, optical, and physical properties of these materials. Because of the ultrasmall size of the MNCs (typically within 1-3 nm), they can be applied in areas of nearly all possible scientific domains. The greatest advantage of MNCs is the tunability that can be imposed, not only on their structures, but also on their chemical, physical, and biological properties. Nowadays, MNCs are very effectively used as energy donors and acceptors under suitable conditions and hence act as energy harvesters in solar cells, semiconductors, and biomarkers. In addition, ultrafast photoinduced electron transfer (PET) can be practised using MNCs under various circumstances. Herein, we have focused on the energy harvesting phenomena of Au-, Ag-, and Cu-based MNCs and elaborated on different ways to apply them.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Israel.
| | - Manish Mukherjee
- Department of Chemistry & Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
28
|
Motamedisade A, Johnston MR, Alotaibi AEH, Andersson GA. Au 9 nanocluster adsorption and agglomeration control through sulfur modification of mesoporous TiO 2. Phys Chem Chem Phys 2024; 26:9500-9509. [PMID: 38450597 DOI: 10.1039/d3cp05353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In the present work phenyl phosphine-protected Au9 nanoclusters were deposited onto (3-mercaptopropyl) trimethoxysilane (MPTMS) modified and unmodified mesoporous screen printed TiO2. The removal of the cluster ligands by annealing was applied to enhance the interaction between Au cluster cores and semiconductor surfaces in the creation of efficient photocatalytic systems. The heat treatment could lead to undesired agglomeration of Au clusters, affecting their unique properties as size specific clusters. To address this challenge, the semiconductor surfaces were modified by MPTMS. Characterization techniques confirm the effectiveness of the modification processes, and XPS demonstrates that S functionalized MTiO2 is more efficient than MTiO2 in increasing Au9 NCs adsorption by a factor of 10 and preventing Au cluster agglomeration even after annealing. Overall, this work contributes valuable insights into photocatalytic systems through controlled modification of semiconductor surfaces and Au nanocluster deposition.
Collapse
Affiliation(s)
- Anahita Motamedisade
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| | - Martin R Johnston
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| | - Amjad E H Alotaibi
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| | - Gunther A Andersson
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
29
|
Zhao D, Wang J, Gao L, Huang X, Zhu F, Wang F. Visualizing the intracellular aggregation behavior of gold nanoclusters via structured illumination microscopy and scanning transmission electron microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169153. [PMID: 38072282 DOI: 10.1016/j.scitotenv.2023.169153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Given the growing concerns about nanotoxicity, numerous studies have focused on providing mechanistic insights into nanotoxicity by imaging the intracellular fate of nanoparticles. A suitable imaging strategy is necessary to uncover the intracellular behavior of nanoparticles. Although each conventional technique has its own limitations, scanning transmission electron microscopy (STEM) and three-dimensional structured illumination microscopy (3D-SIM) combine the advantages of chemical element mapping, ultrastructural analysis, and cell dynamic tracking. Gold nanoclusters (AuNCs), synthesized using 6-aza-2 thiothymine (ATT) and L-arginine (Arg) as reducing and protecting ligands, referred to as Arg@ATT-AuNCs, have been widely used in biological sensing and imaging, medicine, and catalyst yield. Based on their intrinsic fluorescence and high electron density, Arg@ATT-AuNCs were selected as a model. STEM imaging showed that both the single-particle and aggregated states of Arg@ATT-AuNCs were compartmentally distributed within a single cell. Real-time 3D-SIM imaging showed that the fluorescent Arg@ATT-AuNCs gradually aggregated after being located in the lysosomes of living cells, causing lysosomal damage. The aggregate formation of Arg@ATT-AuNCs was triggered by the low-pH medium, particularly in the lysosomal acidic environment. The proposed dual imaging strategy was verified using other types of AuNCs, which is valuable for studying nano-cell interactions and any associated cytotoxicity, and has the potential to be a useful approach for exploring the interaction of cells with various nanoparticles.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jing Wang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200052, China.
| | - Fu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
30
|
Watanabe K, Mao Q, Zhang Z, Hata M, Kodera M, Kitagishi H, Niwa T, Hosoya T. Clickable bisreactive small gold nanoclusters for preparing multifunctionalized nanomaterials: application to photouncaging of an anticancer molecule. Chem Sci 2024; 15:1402-1408. [PMID: 38274077 PMCID: PMC10806826 DOI: 10.1039/d3sc04365g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, we successfully synthesized a small-sized gold nanocluster (2 nm) coated with homogeneous tripeptides bearing azido and amino groups that enable facile multifunctionalizations. Using sodium phenoxide to reduce tetrachloroauric(iii) acid in the presence of the cysteine-containing tripeptide, we efficiently prepared the gold nanoclusters without damaging the azido group. We then utilized this clickable bisreactive nanocluster as a versatile platform for synthesizing multifunctionalized gold nanomaterials. The resulting nanoclusters were conjugated with an anticancer compound connected to an indolizine moiety for photoinduced uncaging, a photodynamic therapy agent acting as a photosensitizer for uncaging, and a cyclic RGD peptide. The cytotoxicity of the multifunctionalized gold nanoclusters was demonstrated through red light irradiation of human lung cancer-derived A549 cells treated with the synthesized nanomaterials. The significant cytotoxicity exhibited by the cells underscores the potential utility of this method in advanced cancer therapies.
Collapse
Affiliation(s)
- Kenji Watanabe
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Zhouen Zhang
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
| | - Machi Hata
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
- Laboratory for Molecular Transformation Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University Higashi-ku Fukuoka 812-8582 Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research Kobe 650-0047 Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
31
|
Zhu Y, Tang Y, Miao P. Intramolecular Charge Transfer of Gold Nanoclusters for pH Indicating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1130-1136. [PMID: 38149375 DOI: 10.1021/acs.langmuir.3c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The investigation of the intramolecular charge transfer (ICT) process of gold nanoclusters (AuNCs) is critical to understand the unique features of the nanomaterials, which also benefits their further applications. Herein, 6-methyl-2-thiouracil (CH3-2-TU) and polyvinylpyrrolidone (PVP)-stabilized AuNCs are prepared, and the ICT behaviors are carefully studied. Protonation or deprotonation of the ligands around AuNCs could be used to regulate the ICT state, influencing the electron distribution and band gap. Shifted fluorescence emission phenomena are thus observed, which respond to external pH stimuli. In addition, the AuNCs are developed as color-switchable indicators for the highly sensitive detection of biogenic amines. As a proof of concept, the performance of this strategy in the evaluation of food spoilage by probing pH conditions is validated with satisfactory results. The discoveries in this work offer a convenient route to regulate the optical properties of AuNCs and the design of pH-based sensing applications.
Collapse
Affiliation(s)
- Yulin Zhu
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai 264200, China
| |
Collapse
|
32
|
Chakraborty S, Kolay S, Maity S, Patra A. Copper Nanoclusters as Multienzymes Mimic Activities of Oxidase and Ascorbic Acid Oxidase in the Presence of Imidazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:317-324. [PMID: 38103254 DOI: 10.1021/acs.langmuir.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Artificial nanoenzymes based on metal nanoclusters have received great attention for multienzyme activities nowadays. In this work, pepsin-capped copper NCs (Cu-Pep NCs) are used as oxidase, ascorbic acid oxidase (AAO), and peroxidase mimics, and their activities are enhanced by the introduction of imidazole. The oxidase activity increased almost 7.5-fold, while 5-fold and 2-fold increases were observed for the peroxidase and AAO-like activity, respectively. The enhanced radical formation in the presence of imidazole moieties facilitates the enzymatic activity of the Cu-Pep-NCs/Imid system. This work describes the different enzymatic activities of the NCs, paving a new way for artificial nanoenzymes having enhanced activities.
Collapse
Affiliation(s)
- Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
33
|
Chen L, Wu Y, Zhang W, Shen W, Song J. Imaging-Guided Antibacterial Based on Gold Nanocrystals and Assemblies. SMALL METHODS 2024; 8:e2301165. [PMID: 37798919 DOI: 10.1002/smtd.202301165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Bacterial infection becomes a severe threat to human life and health worldwide. Antibiotics with the ability to resist pathogenic bacteria are therefore widely used, but the misuse or abuse of antibiotics can generate multidrug-resistant bacteria or resistant biofilms. Advanced antibacterial technologies are needed to counter the rapid emergence of drug-resistant bacteria. With the excellent optical properties, engineerable surface chemistry, neglectable biotoxicity, gold nanocrystals are particularly attractive in biomedicine for cancer therapy and antibacterial therapy, as well as nanoprobes for bioimaging and disease diagnosis. In this perspective, gold nanocrystal-based antibacterial performance and deep-tissue imaging are summarized, including near-infrared-light excited photoacoustic imaging and fluorescence imaging through deep tissue infections. On the basis of integrating "imaging-therapy-targeting" in single nanotheranostic, the current challenges of imaging-guided antibacterial and therapy based on gold nanocrystals are discussed, and some insights are provided into the gold nanocrystal-based nanoplatform that integrates antibacterial activity and therapy. This perspective is expected to provide comprehensive guidance for diagnosing and combating bacterial infections based on gold nanostructures.
Collapse
Affiliation(s)
- Ling Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Hexi, Tianjin, 300060, China
| | - Wenbin Shen
- Department of Radiotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
34
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
35
|
Yoshida K, Arima D, Mitsui M. Dissecting the Triplet-State Properties and Intersystem Crossing Mechanism of the Ligand-Protected Au 13 Superatom. J Phys Chem Lett 2023:10967-10973. [PMID: 38038710 DOI: 10.1021/acs.jpclett.3c02977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Icosahedral Au13 nanoclusters are among the most typical superatoms and are of great interest as promising building blocks for nanocluster-assembled materials. Herein, the key parameters involved in the intersystem crossing (ISC) process of [Au13(dppe)5Cl2]3+ (Au13; dppe = 1,2-bis(diphenylphosphino)ethane) were characterized. Quenching experiments using aromatic compounds revealed that the T1 energy of Au13 is 1.63 eV. An integrative interpretation of our experimental results and the relevant literature uncovered important facts concerning the Au13 superatom: the ISC quantum yield is unity due to the ultrafast ISC (∼1012 s-1), the lowest absorption band includes contributions of direct singlet-triplet transitions, and there exists a large S1-T1 gap of 0.73 eV. To explain the efficient ISC, the El-Sayed rule was applied to the superatomic orbitals corresponding to the excited-state hole/electron distributions obtained from theoretical calculations. The strong spin-orbit coupling between the S1 and T2-T4 states offers a reasonable explanation for the ultrafast ISC.
Collapse
Affiliation(s)
- Kouta Yoshida
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Daichi Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
36
|
Juhász Á, Gombár G, Várkonyi EF, Wojnicki M, Ungor D, Csapó E. Thermodynamic Characterization of the Interaction of Biofunctionalized Gold Nanoclusters with Serum Albumin Using Two- and Three-Dimensional Methods. Int J Mol Sci 2023; 24:16760. [PMID: 38069083 PMCID: PMC10706308 DOI: 10.3390/ijms242316760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fluorescent gold nanoclusters have been successfully used as fluorescent markers for imaging of cells and tissues, and their potential role in drug delivery monitoring is coming to the fore. In addition, the development of biosensors using structure-tunable fluorescent nanoclusters is also a prominent research field. In the case of these sensor applications, the typical goal is the selective identification of, e.g., metal ions, small molecules having neuroactive or antioxidant effects, or proteins. During these application-oriented developments, in general, there is not enough time to systematically examine the interaction between nanoclusters and relevant biomolecules/proteins from a thermodynamic viewpoint. In this way, the primary motivation of this article is to carry out a series of tests to partially fill this scientific gap. Besides the well-known fluorescent probes, the mentioned interactions were investigated using such unique measurement methods as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). These two-dimensional (at the solid/liquid interface) and three-dimensional (in the bulk phase) measuring techniques provide a unique opportunity for the thermodynamic characterization of the interaction between different gold nanoclusters containing various surface functionalizing ligands and bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Ádám Juhász
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Gyöngyi Gombár
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Egon F. Várkonyi
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland;
| | - Ditta Ungor
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| |
Collapse
|
37
|
Sharma S, Das S, Kaushik K, Yadav A, Patra A, Nandi CK. Unveiling the Long-Lived Emission of Copper Nanoclusters Embedded in a Protein Scaffold. J Phys Chem Lett 2023; 14:8979-8987. [PMID: 37773588 DOI: 10.1021/acs.jpclett.3c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Protein-conjugated coinage metal nanoclusters have become promising materials for optoelectronics and biomedical applications. However, the origin of the photoluminescence, especially the long-lived excited state emission in these metal nanoclusters, is still elusive. Here, we unveiled the underlying mechanism of long-lived emission in albumin protein-conjugated copper nanoclusters (Cu NCs) using steady state and time-resolved spectroscopic techniques. Our findings reveal room-temperature phosphorescence (RTP) in protein-conjugated Cu NCs. Time-resolved area-normalized spectra distinguished short- and long-lived components, where the former arises from the singlet state and the latter from the triplet state, thus resulting in RTP. The similarity of the emission spectra at room (298 K) and cryogenic (77 K) temperature ascertains the RTP phenomenon by harvesting the higher-lying triplet states. Time-gated bioimaging of A549 cells using the long-lived emission not only supports RTP emission in the cellular environment but also provides exciting avenues in long-term bioimaging using bovine serum albumin-conjugated Cu NCs.
Collapse
Affiliation(s)
- Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP 462066, India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| | - Aditya Yadav
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP 462066, India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology (IIT), Mandi, HP 175075, India
- Advanced Materials Research Centre (AMRC), IIT, Mandi, HP 175075, India
| |
Collapse
|
38
|
Dinakaran D, Wilson BC. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Front Bioeng Biotechnol 2023; 11:1250804. [PMID: 37849983 PMCID: PMC10577272 DOI: 10.3389/fbioe.2023.1250804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Photodynamic therapy (PDT) has been under development for at least 40 years. Multiple studies have demonstrated significant anti-tumor efficacy with limited toxicity concerns. PDT was expected to become a major new therapeutic option in treating localized cancer. However, despite a shifting focus in oncology to aggressive local therapies, PDT has not to date gained widespread acceptance as a standard-of-care option. A major factor is the technical challenge of treating deep-seated and large tumors, due to the limited penetration and variability of the activating light in tissue. Poor tumor selectivity of PDT sensitizers has been problematic for many applications. Attempts to mitigate these limitations with the use of multiple interstitial fiberoptic catheters to deliver the light, new generations of photosensitizer with longer-wavelength activation, oxygen independence and better tumor specificity, as well as improved dosimetry and treatment planning are starting to show encouraging results. Nanomaterials used either as photosensitizers per se or to improve delivery of molecular photosensitizers is an emerging area of research. PDT can also benefit radiotherapy patients due to its complementary and potentially synergistic mechanisms-of-action, ability to treat radioresistant tumors and upregulation of anti-tumoral immune effects. Furthermore, recent advances may allow ionizing radiation energy, including high-energy X-rays, to replace external light sources, opening a novel therapeutic strategy (radioPDT), which is facilitated by novel nanomaterials. This may provide the best of both worlds by combining the precise targeting and treatment depth/volume capabilities of radiation therapy with the high therapeutic index and biological advantages of PDT, without increasing toxicities. Achieving this, however, will require novel agents, primarily developed with nanomaterials. This is under active investigation by many research groups using different approaches.
Collapse
Affiliation(s)
- Deepak Dinakaran
- National Cancer Institute, National Institute of Health, Bethesda, MD, United States
- Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Lu C, Xue L, Luo K, Liu Y, Lai J, Yao X, Xue Y, Huo W, Meng C, Xia D, Gao X, Yuan Q, Cao K. Colon-Accumulated Gold Nanoclusters Alleviate Intestinal Inflammation and Prevent Secondary Colorectal Carcinogenesis via Nrf2-Dependent Macrophage Reprogramming. ACS NANO 2023; 17:18421-18432. [PMID: 37690027 DOI: 10.1021/acsnano.3c06025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inflammatory bowel disease (IBD) is one of the main factors leading to colitis-associated colorectal cancer (CAC). Therefore, it is critical to develop an effective treatment for IBD to prevent secondary colorectal carcinogenesis. M2 macrophages play crucial roles in the resolution phase of intestinal inflammation. However, traditional drugs rarely target intestinal M2 macrophages, and they are not easily cleared. Gold nanoclusters are known for their in vivo safety and intrinsic biomedical activities. In this study, a glutathione-protected gold nanocluster is synthesized and evaluated, namely, GA. Interestingly, GA specifically accumulates in the colon during IBD. Furthermore, GA not only promotes M2 differentiation of IL-4-treated peritoneal macrophages but also reprograms macrophage polarization from M1 to M2 in a pro-inflammatory environment. Mechanistically, this regulatory effect is exerted through activating the antioxidant Nrf2 signaling pathway, but not traditional STAT6. When applied in IBD mice, we found that GA elevates M2 macrophages and alleviates IBD in an Nrf2-dependent manner, evidenced by the abolished therapeutic effect upon Nrf2 inhibitor treatment. Most importantly, GA administration significantly suppresses AOM/DSS-induced CAC, without causing obvious tissue damage, providing critical evidence for the potential application of gold nanoclusters as nanomedicine for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Cao Lu
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Xue
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kaidi Luo
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yu Liu
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jing Lai
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiuxiu Yao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yilin Xue
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- College of Chemistry and Material Science, Shandong Agricultural University, Shandong, Taian 271018, China
| | - Xueyun Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
40
|
Shahrashoob M, Hosseinkhani S, Jafary H, Hosseini M, Molaabasi F. Dual-emissive phenylalanine dehydrogenase-templated gold nanoclusters as a new highly sensitive label-free ratiometric fluorescent probe: heavy metal ions and thiols measurement with live-cell imaging. RSC Adv 2023; 13:21655-21666. [PMID: 37476045 PMCID: PMC10354591 DOI: 10.1039/d3ra03179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Phenylalanine dehydrogenase (PheDH) has been proposed as an ideal protein scaffold for the one-step and green synthesis of highly efficient multifunctional gold nanoclusters. The PheDH-stabilized fluorescent gold nanoclusters (PheDH-AuNCs) with dual emission/single excitation exhibited excellent and long-term stability, high water solubility, large Stokes shift and intense photoluminescence. Selectivity studies demonstrated that the red fluorescence emission intensity of PheDH-AuNCs was obviously decreased in less than 10 min by the addition of mercury, copper, cysteine or glutathione under the single excitation at 360 nm, without significant change in the blue emission of the PheDH-AuNCs. Therefore, the as-prepared PheDH-AuNCs as a new excellent fluorescent probe were successfully employed to develop a simple, rapid, low cost, label- and surface modification-free nanoplatform for the ultrasensitive and selective detection of Hg2+, Cu2+, Cys and GSH through a ratiometric fluorescence system with wide linear ranges and detection limits of 1.6, 2.4, 160 and 350 nM, respectively which were lower than previous reports. In addition, the results showed that PheDH-AuNCs can be used for the detection of toxic heavy metal ions and small biomarker thiols in biological and aqueous samples with acceptable recoveries. Interestingly, PheDH-AuNCs also displayed a promising potential for live-cell imaging due to their low toxicity and great chemical- and photo-stability.
Collapse
Affiliation(s)
- Mahsa Shahrashoob
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University Tehran Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran Tehran Iran
| | - Fatemeh Molaabasi
- Department of Interdisciplinary Technologies, Breast Cancer Research Center, Biomaterials and Tissue Engineering Research Group, Motamed Cancer Institute, ACECR Tehran Iran
| |
Collapse
|
41
|
Ku M, Yang J. Intracellular lipophilic network transformation induced by protease-specific endocytosis of fluorescent Au nanoclusters. NANO CONVERGENCE 2023; 10:26. [PMID: 37296273 DOI: 10.1186/s40580-023-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The understanding of the endocytosis process of internalized nanomedicines through membrane biomarker is essential for the development of molecular-specific nanomedicines. In various recent reports, the metalloproteases have been identified as important markers during the metastasis of cancer cells. In particular, MT1-MMP has provoked concern due to its protease activity in the degradation of the extracellular matrix adjacent to tumors. Thus, in the current work, we have applied fluorescent Au nanoclusters which present strong resistance to chemical quenching to the investigation of MT1-MMP-mediated endocytosis. We synthesized protein-based Au nanocluster (PAuNC) and MT1-MMP-specific peptide was conjugated with PAuNC (pPAuNC) for monitoring protease-mediated endocytosis. The fluorescence capacity of pPAuNC was investigated and MT1-MMP-mediated intracellular uptake of pPAuNC was subsequently confirmed by a co-localization analysis using confocal microscopy and molecular competition test. Furthermore, we confirmed a change in the intracellular lipophilic network after an endocytosis event of pPAuNC. The identical lipophilic network change did not occur with the endocytosis of bare PAuNC. By classification of the branched network between the lipophilic organelles at the nanoscale, the image-based analysis of cell organelle networking allowed the evaluation of nanoparticle internalization and impaired cellular components after intracellular accumulation at a single-cell level. Our analyses suggest a methodology to achieve a better understanding of the mechanism by which nanoparticles enter cells.
Collapse
Affiliation(s)
- Minhee Ku
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Systems Molecular Radiology at Yonsei (SysMolRaY), Seoul, 03722, Republic of Korea
- Imaging of MechanoBiology (iMechBio) at Yonsei, Seoul, 03722, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
- Systems Molecular Radiology at Yonsei (SysMolRaY), Seoul, 03722, Republic of Korea.
- Imaging of MechanoBiology (iMechBio) at Yonsei, Seoul, 03722, Republic of Korea.
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
Kannan P, Maduraiveeran G. Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. BIOSENSORS 2023; 13:bios13050542. [PMID: 37232903 DOI: 10.3390/bios13050542] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Wide-ranging research efforts have been directed to prioritize scientific and technological inventions for healthcare monitoring. In recent years, the effective utilization of functional nanomaterials in various electroanalytical measurements realized a rapid, sensitive, and selective detection and monitoring of a wide range of biomarkers in body fluids. Owing to good biocompatibility, high organic capturing ability, strong electrocatalytic activity, and high robustness, transition metal oxide-derived nanocomposites have led to enhancements in sensing performances. The aim of the present review is to describe key advancements of transition metal oxide nanomaterials and nanocomposites-based electrochemical sensors, along with current challenges and prospects towards the development of a highly durable and reliable detection of biomarkers. Moreover, the preparation of nanomaterials, electrode fabrication, sensing mechanism, electrode-bio interface, and performance of metal oxides nanomaterials and nanocomposite-based sensor platforms will be described.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
43
|
Khawas S, Srivastava S. Anisotropic nanocluster arrays to a diminished zone: different regimes of surface deposition of gold nanocolloids. SOFT MATTER 2023; 19:3580-3589. [PMID: 37161512 DOI: 10.1039/d2sm01625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Evaporation-induced assembly of nanoparticles has emerged as a versatile technique for the production of large-scale ordered structures and materials with complex features. In this study, we show that a dried particulate of an anisotropic nanocolloid undergoes non-ubiquitous surface morphological transitions at varying particle concentrations. Below 5 nM, deposits reveal the formation of linear arrays of AuNR clusters outside of the coffee ring and an annular CTAB-rich depletion zone in the inner vicinity of the coffee ring. For nanoparticle concentrations ≥5 nM, the outer cluster deposits disappear and a region of reduced AuNR density, sandwiched between the coffee ring and the depletion zone, analogous to the diminished zone, is observed. Within the coffee-ring deposits, nanoscale smectic AuNR assembly occurs via the expulsion of the cetyltrimethyl ammonium bromide (CTAB) bilayer, which contributes to the inward solutal Marangoni flow. An enhanced inward solutal Marangoni flow at high particle concentrations assists in the formation of a wider depletion zone, the emergence of the diminished zone and suppression of the width of the coffee-ring deposits. Through detailed analysis of data from ex situ (scanning electron microscopy, SEM) and in situ (contact angle and confocal imaging) measurements, we establish a direct correlation between the different evaporation modes and the various deposition regimes. A detailed mechanism for the surface morphology modulation of AuNR deposits by tuning the nanoparticle concentration in the drying sessile drop is discussed.
Collapse
Affiliation(s)
- Sanjoy Khawas
- Department of Physics, Indian Institute of Technology Bombay, Powai, Maharashtra-400076, India.
| | - Sunita Srivastava
- Department of Physics, Indian Institute of Technology Bombay, Powai, Maharashtra-400076, India.
| |
Collapse
|
44
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Zhang K, Chen FR, Wang L, Hu J. Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206044. [PMID: 36670072 DOI: 10.1002/smll.202206044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
For a long time, optical imaging of the deep brain with high resolution has been a challenge. Recently, with the advance in second near-infrared (NIR-II) bioimaging techniques and imaging contrast agents, NIR-II window bioimaging has attracted great attention to monitoring deeper biological or pathophysiological processes with high signal-to-noise ratio (SNR) and spatiotemporal resolution. Assisted with NIR-II bioimaging, the modulation of structure and function of brain is promising to be noninvasive and more precise. Herein, in this review, first the advantage of NIR-II light in brain imaging from the interaction between NIR-II and tissue is elaborated. Then, several specific NIR-II bioimaging technologies are introduced, including NIR-II fluorescence imaging, multiphoton fluorescence imaging, and photoacoustic imaging. Furthermore, the corresponding contrast agents are summarized. Next, the application of various NIR-II bioimaging technologies in visualizing the characteristics of cerebrovascular network and monitoring the changes of the pathology signals will be presented. After that, the modulation of brain structure and function based on NIR-II bioimaging will be discussed, including treatment of glioblastoma, guidance of cell transplantation, and neuromodulation. In the end, future perspectives that would help improve the clinical translation of NIR-II light are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
46
|
Obstarczyk P, Pniakowska A, Nonappa, Grzelczak MP, Olesiak-Bańska J. Crown Ether-Capped Gold Nanoclusters as a Multimodal Platform for Bioimaging. ACS OMEGA 2023; 8:11503-11511. [PMID: 37008092 PMCID: PMC10061685 DOI: 10.1021/acsomega.3c00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 12/01/2023]
Abstract
The distinct polarity of biomolecule surfaces plays a pivotal role in their biochemistry and functions as it is involved in numerous processes, such as folding, aggregation, or denaturation. Therefore, there is a need to image both hydrophilic and hydrophobic bio-interfaces with markers of distinct responses to hydrophobic and hydrophilic environments. In this work, we present a synthesis, characterization, and application of ultrasmall gold nanoclusters capped with a 12-crown-4 ligand. The nanoclusters present an amphiphilic character and can be successfully transferred between aqueous and organic solvents and have their physicochemical integrity retained. They can serve as probes for multimodal bioimaging with light (as they emit near-infrared luminescence) and electron microscopy (due to the high electron density of gold). In this work, we used protein superstructures, namely, amyloid spherulites, as a hydrophobic surface model and individual amyloid fibrils with a mixed hydrophobicity profile. Our nanoclusters spontaneously stained densely packed amyloid spherulites as observed under fluorescence microscopy, which is limited for hydrophilic markers. Moreover, our clusters revealed structural features of individual amyloid fibrils at a nanoscale as observed under a transmission electron microscope. We show the potential of crown ether-capped gold nanoclusters in multimodal structural characterization of bio-interfaces where the amphiphilic character of the supramolecular ligand is required.
Collapse
Affiliation(s)
- Patryk Obstarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| | - Anna Pniakowska
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| | - Nonappa
- Faculty
of Engineering and Natural Sciences, Tampere
University, FI-33720 Tampere, Finland
| | - Marcin P. Grzelczak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| |
Collapse
|
47
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
48
|
Nguyen NHA, Falagan-Lotsch P. Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles. Int J Mol Sci 2023; 24:4109. [PMID: 36835521 PMCID: PMC9963226 DOI: 10.3390/ijms24044109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Nanotechnology has great potential to significantly advance the biomedical field for the benefit of human health. However, the limited understanding of nano-bio interactions leading to unknowns about the potential adverse health effects of engineered nanomaterials and to the poor efficacy of nanomedicines has hindered their use and commercialization. This is well evidenced considering gold nanoparticles, one of the most promising nanomaterials for biomedical applications. Thus, a fundamental understanding of nano-bio interactions is of interest to nanotoxicology and nanomedicine, enabling the development of safe-by-design nanomaterials and improving the efficacy of nanomedicines. In this review, we introduce the advanced approaches currently applied in nano-bio interaction studies-omics and systems toxicology-to provide insights into the biological effects of nanomaterials at the molecular level. We highlight the use of omics and systems toxicology studies focusing on the assessment of the mechanisms underlying the in vitro biological responses to gold nanoparticles. First, the great potential of gold-based nanoplatforms to improve healthcare along with the main challenges for their clinical translation are presented. We then discuss the current limitations in the translation of omics data to support risk assessment of engineered nanomaterials.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentsk. 2, 46117 Liberec, Czech Republic
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
49
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
50
|
Bonačić-Koutecký V, Le Guével X, Antoine R. Engineering Liganded Gold Nanoclusters as Efficient Theranostic Agents for Cancer Applications. Chembiochem 2023; 24:e202200524. [PMID: 36285807 DOI: 10.1002/cbic.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Luminescent gold nanoclusters are rapidly gaining attention as efficient theranostic targets for imaging and therapeutics. Indeed, their ease of synthesis, their tunable optical properties and tumor targeting make them potential candidates for sensitive diagnosis and efficacious therapeutic applications. This concept highlights the key components for designing gold nanoclusters as efficient theranostics focusing on application in the field of oncology.
Collapse
Affiliation(s)
- Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia.,Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Xavier Le Guével
- Institute for Advanced Biosciences, Univ. Grenoble Alpes/INSERM1209/CNRS-UMR5309, Grenoble, France
| | - Rodolphe Antoine
- Institut lumière matière, UMR5306, Université Claude Bernard Lyon1-CNRS Univ. Lyon, 69622, Villeurbanne cedex, France
| |
Collapse
|