1
|
Wang X, Wu P, Wang Y, Cui T, Jia M, He X, Wang W, Pan H, Sun Z, Yang HB, Chen J. Unraveling the Origin of Multichannel Circularly Polarized Luminescence in a Pyrene-Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2024; 63:e202407929. [PMID: 38837292 DOI: 10.1002/anie.202407929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Mechanically interlocked molecules (MIMs) are promising platforms for developing functionalized artificial molecular machines. The construction of chiral MIMs with appealing circularly polarized luminescence (CPL) properties has boosted their potential application in biomedicine and the optical industry. However, there is currently little knowledge about the CPL emission mechanism or the emission dynamics of these related MIMs. Herein, we demonstrate that time-resolved circularly polarized luminescence (TRCPL) spectroscopy combined with transient absorption (TA) spectroscopy offers a feasible approach to elucidate the origins of CPL emission in pyrene-functionalized topologically chiral [2]catenane as well as in a series of pyrene-functionalized chiral molecules. For the first time, direct evidence differentiating the chiroptical signals originating from either topological (local state emission) or Euclidean chirality (excimer state emission) in these pyrene-functionalized chiral molecules has been discovered. Our work not only establishes a novel and ideal approach to study CPL mechanism, but also provides a theoretical foundation for the rational design of novel chiral materials in the future.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Peicong Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Tong Cui
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes &, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
2
|
Chakraborty C, Rajak A, Das A. Shape-tunable two-dimensional assemblies from chromophore-conjugated crystallizable poly(L-lactides) with chain-length-dependent photophysical properties. NANOSCALE 2024; 16:13019-13028. [PMID: 38894626 DOI: 10.1039/d4nr01683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This work reports temperature-dependent shape-changeable two-dimensional (2D) nanostructures by crystallization-driven self-assembly (CDSA) from a chromophore-conjugated poly(L-lactide) (PLLA) homopolymer (PTZ-P1) that contained a polar dye, phenothiazine (PTZ), at the chain-end of the crystallizable PLLA. The CDSA of PTZ-P1 in a polar solvent, isopropanol (iPrOH), by an uncontrolled heating-cooling process, majorly generates lozenge-shaped 2D platelets via chain-folding-mediated crystallization of the PLLA core, leading to the display of the phenothiazines on the 2D surface that confers colloidal stability and orange-emitting luminescent properties to the crystal lamellae. Isothermal crystallization at 60 °C causes a morphological change in PTZ-P1 platelets from lozenge to truncated-lozenge to perfect hexagon under different annealing times, while no shape change was noticed in the structurally similar PTZ-P2 polymer with a longer PLLA chain under similar conditions. This study unveils the complex link between the 2D platelet morphologies and degree of polymerization (DP) of PLLA and the corona-forming dye character. Further, the co-assembly potential of PTZ-P1 with hydrophobic pyrene-terminated PLLAs of varying chain lengths (PY-P1, PY-P2, and PY-P3) was examined, as these two dyes could form a Förster Resonance Energy Transfer (FRET) pair on the 2D surface. The impact of the length of the crystallizable PLLA on the photophysical properties of the surface-occupied chromophores revealed crucial insights into interchromophoric interactions on the platelet surface. A reduction in the propensity for π-stacking with increasing chain-folding in longer PLLAs is manifested in the chain-length-dependent FRET efficiencies and excimer emission lifetimes within the resultant monolayered 2D assemblies. The unconventional "butterfly-shaped" molecular architecture of the tested phenothiazine, combined with its varied functional features and polar character, adds a distinctive dimension to the underdeveloped field of CDSA of chromophore-conjugated poly(L-lactides), opening future avenues for the development of advanced nanostructured biodegradable 2D materials with programmable morphology and optical functions.
Collapse
Affiliation(s)
- Chhandita Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S.C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S.C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S.C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
3
|
Nakamura I, Amesaka H, Hara M, Yonezawa K, Okamoto K, Kamikubo H, Tanaka S, Matsuo T. Conformation state-specific monobodies regulate the functions of flexible proteins through conformation trapping. Protein Sci 2023; 32:e4813. [PMID: 37861467 PMCID: PMC10659937 DOI: 10.1002/pro.4813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Synthetic binding proteins have emerged as modulators of protein functions through protein-protein interactions (PPIs). Because PPIs are influenced by the structural dynamics of targeted proteins, investigating whether the synthetic-binders-based strategy is applicable for proteins with large conformational changes is important. This study demonstrates the applicability of monobodies (fibronectin type-III domain-based synthetic binding proteins) in regulating the functions of proteins that undergo tens-of-angstroms-scale conformational changes, using an example of the A55C/C77S/V169C triple mutant (Adktm ; a phosphoryl transfer-catalyzing enzyme with a conformational change between OPEN/CLOSED forms). Phage display successfully developed monobodies that recognize the OPEN form (substrate-unbound form), but not the CLOSED form of Adktm . Two OPEN form-specific clones (OP-2 and OP-4) inhibited Adktm kinase activity. Epitope mapping with a yeast-surface display/flow cytometry indicated that OP-2 binds to the substrate-entry side of Adktm , whereas OP-4 binding occurs at another site. Small angle X-ray scattering coupled with size-exclusion chromatography (SEC-SAXS) indicated that OP-4 binds to the hinge side opposite to the substrate-binding site of Adktm , retaining the whole OPEN-form structure of Adktm . Titration of the OP-4-Adktm complex with Ap5 A, a transition-state analog of Adktm , showed that the conformational shift to the CLOSED form was suppressed although Adktm retained the OPEN-form (i.e., substrate-binding ready form). These results show that OP-4 captures and stabilizes the OPEN-form state, thereby affecting the hinge motion. These experimental results indicate that monobody-based modulators can regulate the functions of proteins that show tens-of-angstroms-scale conformational changes, by trapping specific conformational states generated during large conformational change process that is essential for function exertion.
Collapse
Affiliation(s)
- Ibuki Nakamura
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and Technology (NAIST)NaraJapan
| | - Hiroshi Amesaka
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Mizuho Hara
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Kento Yonezawa
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and Technology (NAIST)NaraJapan
- Center for Digital Green‐innovationNara Institute of Science and Technology (NAIST)NaraJapan
| | - Keisuke Okamoto
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and Technology (NAIST)NaraJapan
- Center for Digital Green‐innovationNara Institute of Science and Technology (NAIST)NaraJapan
| | - Shun‐ichi Tanaka
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityKusatsuJapan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and TechnologyNara Institute of Science and Technology (NAIST)NaraJapan
| |
Collapse
|
4
|
Keever JM, Banzon PD, Hales MK, Sargent AL, Allen WE. Association between N-Terminal Pyrenes Stabilizes the Collagen Triple Helix. J Org Chem 2023; 88:11885-11894. [PMID: 37531574 DOI: 10.1021/acs.joc.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Collagen model peptides featuring the fluorophore pyrene at their N-termini have been synthesized, and their thermal denaturation has been examined using circular dichroism (CD) and fluorescence spectroscopies. Flanking the (Pro-Hyp-Gly)7 core of the peptide monomers at positions 1 and/or 23 in the primary sequence, Lys residues were introduced to ensure water solubility. Triple helices derived from such peptides show a broad excimer emission at ∼480 nm, indicative of interaction between the pyrene units. CD experiments show that the fluorophores enhance helix stability primarily through entropic effects. Unfolding temperatures (Tm) increase by up to 7 °C for systems with N-terminal lysine residues and by up to 21 °C for systems in which the first-position Lys is replaced by Ala. Tm values derived from fluorescence measurements (at 50 μM) typically lie within ∼1 °C of those obtained using CD (at 200 μM). Computational modeling in a water continuum using B3LYP-GD3 and M06-2X functionals predicts that face-to-face association of fluorophores can occur while H-bonding within the [(POG)n]3 assembly is retained. Such parallel stacking is consistent with hydrophobically driven stabilization. Labeling collagen peptides with pyrene is a synthetically simple way to promote triple helicity while providing a means to obtain Tm data on relatively dilute samples.
Collapse
Affiliation(s)
- Jared M Keever
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Patrick D Banzon
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Megan K Hales
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - Andrew L Sargent
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | - William E Allen
- Department of Chemistry, Science and Technology Building, East Carolina University, Greenville, North Carolina 27858-4353, United States
| |
Collapse
|
5
|
Saraiva MA, Helena Florêncio M. Identification of a biological excimer involving protein-protein interactions: A case study of the α-synuclein aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121761. [PMID: 35985235 DOI: 10.1016/j.saa.2022.121761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Excimer formation based on pyrene derivatives stacking has been used to probe conformational changes associated with a variety of protein interactions. Herein, in search for the nature of the protein interactions involved in amyloid proteins aggregation we studied the spectroscopic features of the Nα-acetyl-l-tyrosinamide (NAYA) parent compound and of a well-known aggregate amyloid protein, the α-synuclein (Syn). The aggregation of this amyloid disordered protein has been implicated in the development of Parkinson's disease, which is an increasingly prevalent and currently incurable neurodegenerative disorder. Also, Syn aggregation has been widely investigated but, information concerning the conformational alterations in the diverse protein aggregated species at the molecular level, is still scarce. Three different molecular configurations of the NAYA parent compound were at least found to exist in its solutions containing 1,4-dioxane. Two of these NAYA molecular configurations were found to produce a more efficient excimer fluorescence. For Syn solutions containing 1,4-dioxane, one molecular configuration involving the intermolecular interaction between the protein tyrosyl group and the protein peptide bond was found to exhibit excimer fluorescence. This study is the first one reporting the formation of a biological excimer exhibiting fluorescence. Although very weak, this can be used as a signature of protein-protein interactions and, ultimately, enabling to access the complex interactions network existing in the amyloid aggregated species.
Collapse
Affiliation(s)
- Marco A Saraiva
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - M Helena Florêncio
- Departamento de Química e Bioquímica, Faculdade de Ciências, University of Lisbon, 1749-016 Lisbon, Portugal; Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, University of Lisbon, 1749-016 Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Faculdade de Ciências, University of Lisbon, Portugal
| |
Collapse
|
6
|
Takaishi K, Murakami S, Yoshinami F, Ema T. Binaphthyl‐Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a
D
2
Symmetry Strategy. Angew Chem Int Ed Engl 2022; 61:e202204609. [DOI: 10.1002/anie.202204609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Sho Murakami
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Fumiya Yoshinami
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry Graduate School of Natural Science and Technology Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
7
|
Binaphthyl‐Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a D2 Symmetry Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Appiarius Y, Gliese PJ, Segler SAW, Rusch P, Zhang J, Gates PJ, Pal R, Malaspina LA, Sugimoto K, Neudecker T, Bigall NC, Grabowsky S, Bakulin AA, Staubitz A. BN-Substitution in Dithienylpyrenes Prevents Excimer Formation in Solution and in the Solid State. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:4563-4576. [PMID: 35299818 PMCID: PMC8919264 DOI: 10.1021/acs.jpcc.1c08812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Boron-nitrogen substitutions in polycyclic aromatic hydrocarbons (PAHs) have a strong impact on the optical properties of the molecules due to a significantly more heterogeneous electron distribution. However, besides these single-molecule properties, the observed optical properties of PAHs critically depend on the degree of intermolecular interactions such as π-π-stacking, dipolar interactions, or the formation of dimers in the excited state. Pyrene is the most prominent example showing the latter as it exhibits a broadened and strongly bathochromically shifted emission band at high concentrations in solution compared to the respective monomers. In the solid state, the impact of intermolecular interactions is even higher as it determines the crystal packing crucially. In this work, a thiophene-flanked BN-pyrene (BNP) was synthesized and compared with its all-carbon analogue (CCP) in solution and in the solid state by means of crystallography, NMR spectroscopy, UV-vis spectroscopy, and photoluminescence (PL) spectroscopy. In solution, PL spectroscopy revealed the solvent-dependent presence of excimers of CCP at high concentrations. In contrast, no excimers were found in BNP. Clear differences were also observed in the single-crystal packing motifs. While CCP revealed overlapped pyrene planes with centroid distances in the range of classical π-stacking interactions, the BNP scaffolds were displaced and significantly more spatially separated.
Collapse
Affiliation(s)
- Yannik Appiarius
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| | - Philipp J. Gliese
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| | - Stephan A. W. Segler
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| | - Pascal Rusch
- Institute
of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3a, D-30167 Hannover, Germany
- Cluster
of Excellence PhoenixD (Photonics, Optics, and Engineering—Innovation
Across Disciplines), Leibniz University
Hannover, D-30167 Hannover, Germany
| | - Jiangbin Zhang
- Cavendish
Laboratory, University of Cambridge, 19 J J Thomson Avenue, CB3 0HE Cambridge, U.K.
- College of
Advanced Interdisciplinary Studies, National
University of Defense Technology, 410073 Changsha, Hunan, China
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, BS8 1TS Bristol, U.K.
| | - Rumpa Pal
- Institute
of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| | - Lorraine A. Malaspina
- Institute
of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Kunihisa Sugimoto
- Japan Synchrotron
Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Tim Neudecker
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
- Institute for Physical and Theoretical
Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- Bremen Center for Computational Materials
Science, University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany
| | - Nadja C. Bigall
- Institute
of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3a, D-30167 Hannover, Germany
- Cluster
of Excellence PhoenixD (Photonics, Optics, and Engineering—Innovation
Across Disciplines), Leibniz University
Hannover, D-30167 Hannover, Germany
| | - Simon Grabowsky
- Institute
of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Artem A. Bakulin
- Cavendish
Laboratory, University of Cambridge, 19 J J Thomson Avenue, CB3 0HE Cambridge, U.K.
- Department of Chemistry, Imperial College
London, Imperial College Rd, SW7 2AZ London, U.K.
| | - Anne Staubitz
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| |
Collapse
|
9
|
Synthesis and Excimer Formation Properties of Electroactive Polyamides Incorporated with 4,5-Diphenoxypyrene Units. Polymers (Basel) 2022; 14:polym14020261. [PMID: 35054668 PMCID: PMC8778140 DOI: 10.3390/polym14020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
A new dietherpyrene-cored diamine monomer, namely, 4,5-bis(4-aminophenoxy)pyrene, was successful synthesized and formed a series of electroactive polyamides with an aryloxy linkage in a polymer main chain and bearing pyrene chromophore as a pendent group using conventional one-pot polycondensation reactions with commercial aromatic/aliphatic dicarboxylic acids. The resulting polyamides exhibited good solubility in polar organic solvents and, further, can be made into transparent films. They had appropriate levels of thermal stability with moderately high glass-transition values. The dilute NMP solutions of these polyamides exhibited pyrene characteristic fluorescence and also showed a remarkable additional excimer emission peak centered at 475 nm. Electrochemical studies of these polymer films showed that these polyamides have both p- and n-dopable states as a result of the formation of radical cations and anions of the electroactive pyrene moieties.
Collapse
|
10
|
Mondal S, Panja A, Halder D, Bairi P, Nandi AK. Isomerization-Induced Excimer Formation of Pyrene-Based Acylhydrazone Controlled by Light- and Solvent-Sensing Aromatic Analytes. J Phys Chem B 2021; 125:13804-13816. [PMID: 34879652 DOI: 10.1021/acs.jpcb.1c07937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyrene is a fluorescent polycyclic aromatic hydrocarbon, and it would be interesting to determine whether its C═N-based conjugate can be used for sensing of aromatic analytes at its supramolecular aggregated state. For this purpose, we have synthesized (E)-3,4,5-tris(dodecyloxy)-N'-(pyren-1-ylmethylene)benzohydrazide (Py@B) by alkylation, substitution, and the Schiff base reaction methodology. The E-isomer of Py@B (E-Py@B) exhibits a bright fluorescence due to excimer formation in nonaromatic solvents. Upon photoirradiation with λ = 254 nm, it exhibits E-Z isomerization across the C═N bond at a low concentration (10-4 M), resulting in a quenched fluorescence intensity, and interestingly, upon photoirradiation with λ = 365 nm, the Z-isomer of Py@B returns to the E-isomer again, indicating that E-Z isomerization of Py@B is reversible in nature. The thick supramolecular aggregated morphology of E-Py@B changes to a flowery needlelike morphology after photoirradiation with λ = 254 nm. The UV-vis absorption band at 370 nm for 10-4 M Py@B in methyl cyclohexane (MCH) is due to excimer formation for closer proximity of pyrene moieties present in E-Py@B and changes to the absorption peak at 344 nm for its Z-isomer formation. The fluorescence spectroscopy results also support the fact that the optimum concentration of the E-isomer of Py@B is 2 × 10-4 M in MCH for excimer formation. From spectral results, it may be concluded that nonaromatic solvents assist in constructing the excimer, but aromatic solvents resist forming an excimer complex of E-Py@B. The fluorescent emission of E-Py@B in MCH is quickly quenched on addition of different aromatic analytes through both static and dynamic pathways. In the solid state, E-Py@B also senses aromatic vapors efficiently via fluorescence quenching. Absorbance spectra of a model molecule obtained using time-dependent density functional theory (TDDFT) calculations on a DFT-optimized structure indicate complex adduct formation between E-Py@B and aromatic analytes from the well-matched theoretical and experimental UV-vis spectra on addition of different analytes with E-Py@B.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Aditi Panja
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Debabrata Halder
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Partha Bairi
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
11
|
Erdoğan M, Serdaroğlu G. New Hybrid (E)‐4‐((pyren‐1‐ylmethylene)amino)‐N‐(thiazol‐2‐yl)benzenesulfonamide as a Potential Drug Candidate: Spectroscopy, TD‐DFT, NBO, FMO, and MEP Studies**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering Faculty of Engineering and Architecture Kafkas University Kars 36100 Turkey
| | | |
Collapse
|
12
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V-shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021; 60:19451-19457. [PMID: 34196488 DOI: 10.1002/anie.202107842] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Here, we designed symmetric and dissymmetric chiral V-shaped pyrenes by linking achiral pyrenes to trans-1,2-cyclohexane diamine scaffolds with varied spacers to investigate their circular dichroism (CD) and circularly polarized excimer emission (CPEE). In molecular solution, the symmetric V-shaped molecules (P1, P2, P3) displayed spacer-dependent CD and CPEE originating from the intramolecular excimers while the dissymmetric V-shaped B was silent in CD and CPEE. Upon self-assembly, the chiral V-shaped conformation guided a helical hexagonal packing. Notably, P1 self-assembled into delicate superhelices with optimum chiroptical activities and the largest gCD for pyrene derivatives to date. The dissymmetric B formed two distinct hexagonal aggregates as twists and rectangular nanotubes with greatly amplified CPEE. This work demonstrates unprecedented hexagonal superhelices from chiral V-shaped scaffolds and provides a deep insight into the relationship between molecular conformation, supramolecular architectures, and their chiroptical performance.
Collapse
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Hu S, Hu L, Zhu X, Wang Y, Liu M. Chiral V‐shaped Pyrenes: Hexagonal Packing, Superhelix, and Amplified Chiroptical Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Song Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Liang C, Li M, Chen Y. Amphiphilic Diazapyrenes with Multiple Stimuli-Responsive Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20698-20707. [PMID: 33881818 DOI: 10.1021/acsami.1c03318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of amphiphilic diazapyrenes exhibiting switchable fluorescence under the stimulus of mechanical force or water vapor are reported for the first time. Comprehensive studies of their photophysical properties in different states based on UV-Vis absorption, FL emission, FT-IR spectroscopy, and XRD analysis have revealed a stimuli-induced excimer-based sensing mechanism. The relationship between molecular structures and optical responsive properties of these diazapyrene derivatives is illustrated. Moreover, the unique fluorescent, stimuli-responsive behaviors of these diazapyrene compounds in the solid state are used to fabricate sensory films for successively and orthogonally sensing mechanical force and water vapor. In contrast to the well-established knowledge on the transformation between the pyrene monomer and excimer, our study offers valuable information about the unknown diazapyrene excimers and demonstrates their potential applications in biocompatible force sensors, data storage, and humidity sensors.
Collapse
Affiliation(s)
- Chunchun Liang
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Mengwei Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| | - Yulan Chen
- Department of Chemistry, Institute of Molecular Plus, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
15
|
Matsuo T. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
16
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
17
|
Himiyama T, Tsuchiya Y, Yonezawa Y, Nakamura T. Rebuilding Ring-Type Assembly of Peroxiredoxin by Chemical Modification. Bioconjug Chem 2020; 32:153-160. [PMID: 33334100 DOI: 10.1021/acs.bioconjchem.0c00587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Direct control of the protein quaternary structure (QS) is challenging owing to the complexity of the protein structure. As a protein with a characteristic QS, peroxiredoxin from Aeropyrum pernix K1 (ApPrx) forms a decamer, wherein five dimers associate to form a ring. Here, we disrupted and reconstituted ApPrx QS via amino acid mutations and chemical modifications targeting hot spots for protein assembly. The decameric QS of an ApPrx* mutant, wherein all cysteine residues in wild-type ApPrx were mutated to serine, was destructed to dimers via an F80C mutation. The dimeric ApPrx*F80C mutant was then modified with a small molecule and successfully assembled as a decamer. Structural analysis confirmed that an artificially installed chemical moiety potentially facilitates suitable protein-protein interactions to rebuild a native structure. Rebuilding of dodecamer was also achieved through an additional amino acid mutation. This study describes a facile method to regulate the protein assembly state.
Collapse
Affiliation(s)
- Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | - Yasushige Yonezawa
- High Pressure Protein Research Center, Institute of Advanced Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Tsutomu Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
18
|
Jatmika C, Wakabayashi K, Tamaki R, Akiyama N, Nakamura I, Hirota S, Yamaguchi H, Matsuo T. Ligand Exchange Strategy for Delivery of Ruthenium Complex Unit to Biomolecules Based on Ruthenium–Olefin Specific Interactions. CHEM LETT 2020. [DOI: 10.1246/cl.200590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Catur Jatmika
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazumo Wakabayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ryosei Tamaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Naoki Akiyama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ibuki Nakamura
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
19
|
Nowacka M, Makowski T, Kowalewska A. Hybrid Fluorescent Poly(silsesquioxanes) with Amide- and Triazole-Containing Side Groups for Light Harvesting and Cation Sensing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4491. [PMID: 33050483 PMCID: PMC7600812 DOI: 10.3390/ma13204491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 01/12/2023]
Abstract
Hybrid polymers containing pyrene (Py) units bound to linear poly(silsesquioxane) (LPSQ) chains through flexible linkers containing heteroatoms (S, N, O) (LPSQ-triazole-Py and LPSQ-amide-Py) exhibit intense fluorescence emission, both in very diluted solutions (c = 10-8 mol/L) and in the solid state. The materials are thermally stable and exhibit good thin film forming abilities. Their optical and physicochemical properties were found to be strongly dependent on the structure of the side chains. Comparative studies with octahedral silsesquioxane (POSS) analogues (POSS-triazole-Py and POSS-amide-Py) emphasized the role of the specific double-strand architecture of the LPSQ backbone and distribution of side Py groups for their photo-luminescent properties. The new hybrid materials were tested as fluorescence energy donors to red-emitting dyes (Nile Red and Coumarine 6). All the silsesquioxanes studied were found to be able to transfer FL emission energy to Coumarin 6, irrespectively of their spatial structure. However, due to the differences in the wavelength range of FL emission, only LPSQ-triazole-Py were able to act as energy donors to Nile Red. The Py-grafted LPSQ may be also applied for development of soluble and highly emissive chemosensors. Their fluorescent nature was explored for the detection of Cu(II), Fe(III), Co(II), Ag(I), Hg(II), Mg(II), Ca(II), Pb(II) and Zn(II). The morphology of the side chains and hydrogen-bonding interactions influenced the sensing capacity of all the studied materials.
Collapse
Affiliation(s)
- Maria Nowacka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland; (T.M.); (A.K.)
| | | | | |
Collapse
|
20
|
Shirai S, Inagaki S. Ab initio study on the excited states of pyrene and its derivatives using multi-reference perturbation theory methods. RSC Adv 2020; 10:12988-12998. [PMID: 35492109 PMCID: PMC9051409 DOI: 10.1039/c9ra10483f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/23/2020] [Indexed: 01/22/2023] Open
Abstract
Low-lying singlet excited states of pyrene derivatives originated from the 1La and 1Lb states of pyrene have decisive influences on their absorption and fluorescence emission behaviors. Calculation of these excited states with quantitative accuracy is required for the theoretical design of pyrene derivatives tailored to target applications; this has been a long-standing challenge for ab initio quantum chemical calculations. In this study, we explore an adequate computational scheme through calculations of pyrene and its phenyl-substituted derivatives using multi-reference perturbation theory (MRPT) methods. All valence π orbitals on the pyrene moiety were assigned to the active orbitals. Computational load was reduced by restricting the electron excitations within the active orbitals in the preparation of reference configuration space. A generalized multi-configuration quasi-degenerate perturbation theory (GMCQDPT) was adopted to treat the reference space other than the complete active space. The calculated 1La and 1Lb excitation energies of pyrene are in good agreement with the experimental values. Calculations of 1,3,6,8-tetraphenyl pyrene suggest that the energetic ordering of 1La and 1Lb is inverted through tetraphenyl substitution and its lowest singlet excited state is the 1La parentage of pyrene, which is consistent with the experimentally deduced scheme. These results are not readily obtained by MRPT calculations with a limited number of active orbitals and single-reference theory calculations. Diphenyl pyrenes (DPPy) were also calculated at the same level of theory to investigate the dependence on the substitution positions of phenyl groups.
Collapse
Affiliation(s)
- Soichi Shirai
- Toyota Central R&D Laboratories, Inc. Nagakute Aichi 480-1192 Japan
| | - Shinji Inagaki
- Toyota Central R&D Laboratories, Inc. Nagakute Aichi 480-1192 Japan
| |
Collapse
|
21
|
Oohora K, Hirayama S, Mashima T, Hayashi T. Supramolecular dimerization of a hexameric hemoprotein via multiple pyrene-pyrene interactions. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619500949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein assemblies are being investigated as a new-class of biomaterials. A supramolecular assembly of a mutant hexameric tyrosine coordinated hemoprotein (HTHP) modified with a pyrene derivative is described. Cysteine was first introduced as a site-specific reaction point at position V44 which is located at the bottom surface of the cylindrical structure of HTHP. [Formula: see text]-(1-pyrenyl)maleimide was then reacted with the mutant. The modification was confirmed by MALDI-TOF mass spectrometry and UV-vis absorption spectroscopy, indicating that approximately 90% cysteine residues are attached via the pyrene derivative. Size exclusion chromatography (SEC) measurements for pyrene-attached HTHP include a single peak which elutes earlier than the unmodified HTHP. Further investigation by SEC and dynamic light scattering (DLS) measurements indicate the desired size corresponding to the dimer of the hemoprotein hexamers. The multivalent effect of pyrene–pyrene interactions including hydrophobic and [Formula: see text]–[Formula: see text] stacking interactions appears to be responsible for including formation of the stable dimer of the hexamers. Interestingly, the assembly dissociates to the hexamer by removal of heme. In the case of the apo-form of pyrene-attached HTHP, the pyrene moiety appears to be incorporated into the heme pocket because the modification point is located at the adjacent residue of the Tyr45 coordinating to heme in the holo-form of HTHP. Subsequent addition of heme into the apo-form of pyrene-attached HTHP regenerates the dimer of the hexamers. The present study demonstrates a unique heme-dependent system in which HTHP is assembled to form a dimer of hexamers in the presence of heme and disassembled by removal of heme.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Shota Hirayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Tsuyoshi Mashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
22
|
Miyake T, Tamaki R, Asanuma M, Fukada Y, Hirota S, Matsuo T. Regioselective Chemical Modification of Cysteine Residues on Protein Surfaces Focusing on Local Environment around the Conjugation Site. Bioconjug Chem 2020; 31:794-802. [PMID: 31935079 DOI: 10.1021/acs.bioconjchem.9b00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For chemical modification of cysteines in a protein, the regioselectivity among cysteine residues on the protein surface is an issue to be considered. To elucidate the determinants of cysteine reactivities on protein surfaces, we have investigated the chemical modification of the adenylate kinase A55C/C77S/V169C mutant as an experimental model. Although Cys55 and Cys169 are commonly located on the protein surface, Cys55 showed the ca. 3-6-fold higher reactivity compared to Cys169 in a reaction with a pyrene derivative. By a further conjugation of a phenanthroline derivative into the vacant Cys thiol, fluorescence quenching was attained by a pyrene-phenanthroline interaction that occurred by the conformational change of the protein. The K50A mutation further enhanced the regioselectivity of pyrene conjugation in Cys55, which is attributed to the effects of structural flexibility in the vicinity of Cys55 on its reactivity. To regioselectively conjugate different types of synthetic molecules onto the surface of a protein, perturbation in the local structural flexibility around the conjugation sites will be a useful strategy.
Collapse
Affiliation(s)
- Teruyuki Miyake
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Ryosei Tamaki
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Moeko Asanuma
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yoji Fukada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takashi Matsuo
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| |
Collapse
|
23
|
Matsuo T, Miyake T, Hirota S. Recent developments on creation of artificial metalloenzymes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Shu T, Deng X, Dong C, Ruan Y, Yu Y. Diaminomaleonitrile-based Fluorophores as Highly Selective Sensing Platform for Cu 2. ANAL SCI 2019; 35:987-993. [PMID: 31105087 DOI: 10.2116/analsci.19p117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A colorimetric and turn-on fluorescent chemodosimeter 1 based on diaminomaleonitrile was synthesized for Cu2+ detection. It showed high selectivity and sensitivity towards Cu2+ over the other tested metal ions. Probe 1 in acetonitrile exhibited a strong absorption band at 530 nm and weak fluorescence emission when excited at 480 nm, while the addition of Cu2+ could lead to a 30-nm blue shift of the absorption band and a remarkable fluorescence enhancement. Moreover, the detection limit of probe 1 for Cu2+ was calculated to be 28 nM. Quite different from the reported mechanism based on a metal-complexation induced fluorescence enhancement, the sensing mechanism was proved to be based on the Cu2+-promoted hydrolysis reaction, which was confirmed by 1H NMR, 13C NMR and mass spectrum analysis. Studies on probe 2 were carried out to verify the universality of this sensing mechanism.
Collapse
Affiliation(s)
- Tingting Shu
- Institute for Interdisciplinary Research, Jianghan University
| | | | - Changzhi Dong
- University Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086
| | - Yibin Ruan
- Technology Center of China Tobacco Guizhou Industrial Co. Ltd
| | - Yanhua Yu
- Institute for Interdisciplinary Research, Jianghan University
| |
Collapse
|
25
|
FRET events in fluorescent pentapeptides containing aliphatic triazolo amino acid scaffolds: Role of spacer lengths. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Park M, Hong KI, Kang M, Kim TW, Lee H, Jang WD, Jeong KU. Hierarchical Hybrid Nanostructures Constructed by Fullerene and Molecular Tweezer. ACS NANO 2019; 13:6101-6112. [PMID: 31042357 DOI: 10.1021/acsnano.9b02893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the construction of well-defined hierarchical superstructures of pristine [60]fullerene (C60) arrays, pyrene-based molecular tweezers (PT) were used as host molecules for catching and arranging C60 guest molecules. The formation of host-guest complexes was systematically studied in solution as well as in the solid state. Two-dimensional proton nuclear magnetic resonance spectroscopic studies revealed that PT-host and C60-guest complexes were closely related to the molecular self-assembly of PT. Ultraviolet and fluorescence spectroscopic titrations indicated the formation of stable 1:1 and 2:1 (PT/C60) complexes. From the nonlinear curve-fitting analysis, equilibrium constants for the 1:1 (log K1) and 2:1 (log K2) complexes were estimated to be 4.96 and 5.01, respectively. X-ray diffraction results combined with transmission electron microscopy observations clearly exhibited the construction of well-defined layered superstructures of the PT-host and C60-guest complexes. From electron mobility measurements, it was demonstrated that the well-defined hierarchical hybrid nanostructure incorporating a C60 array exhibited a high electron mobility of 1.7 × 10-2 cm2 V-1 s-1. This study can provide a guideline for the hierarchical hybrid nanostructures of host-guest complex and its applications.
Collapse
Affiliation(s)
- Minwook Park
- Department of Polymer-Nano Science and Technology, Department of BIN Convergence Technology , Chonbuk National University , Jeonju , Jeonbuk 54896 , Korea
| | - Kyeong-Im Hong
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Minji Kang
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , Jeonju , Jeonbuk 565-905 , Korea
| | - Tae-Wook Kim
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , Jeonju , Jeonbuk 565-905 , Korea
| | - Hosoowi Lee
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Woo-Dong Jang
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of BIN Convergence Technology , Chonbuk National University , Jeonju , Jeonbuk 54896 , Korea
| |
Collapse
|
27
|
Nguyen MH, Khuat TTH, Nguyen HH, Dinh TH. NiII
, PdII
Complexes with Pyrene-based Thiosemicarbazones: Syntheses, Molecular Structures, and Excimeric Emissions. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Minh-Hai Nguyen
- Department of Chemistry; Hanoi University of Science, Vietnam National University; 19 Le Thanh Tong Hanoi Vietnam
| | - Thi-Thuy-Ha Khuat
- Department of Chemistry; Hanoi University of Science, Vietnam National University; 19 Le Thanh Tong Hanoi Vietnam
| | - Hung-Huy Nguyen
- Department of Chemistry; Hanoi University of Science, Vietnam National University; 19 Le Thanh Tong Hanoi Vietnam
| | - Thi-Hien Dinh
- Department of Chemistry; Hanoi National University of Education; 136 Xuan Thuy Hanoi Vietnam
| |
Collapse
|
28
|
Bag SS, Yashmeen A. A relay FRET event in a designed trichromophoric pentapeptide containing an o-, m-aromatic-amino acid scaffold. Chem Commun (Camb) 2018; 54:9765-9768. [DOI: 10.1039/c8cc04429e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The concept of a relay FRET event is established in a designed trichromophoric pentapeptide containing an o-,m-aromatic amino acid scaffold in the backbone as a novel β-turn mimetic β-sheet folding nucleator.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwahati-781039
- India
| | - Afsana Yashmeen
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwahati-781039
- India
| |
Collapse
|
29
|
Bag SS, Yashmeen A. Uracil-amino acid as a scaffold for β-sheet peptidomimetics: Study of photophysics and interaction with BSA protein. Bioorg Med Chem Lett 2017; 27:5387-5392. [PMID: 29153423 DOI: 10.1016/j.bmcl.2017.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
We report herein the uracil-di-aza-amino acid (UrAA) as a new family of molecular scaffold to induce β-hairpin structure with H-bonded β-sheet conformation in a short peptide. This has been demonstrated in two conceptual fluorescent pentapeptides wherein triazolylpyrenyl alanine and/or triazolylmethoxynapthyl alanine (TPyAlaDo and/or TMNapAlaDo) are embedded into two arms of the uracil-amino acid via an intervening leucine. Conformational analysis by CD, IR, variable temperature and 2D NMR spectroscopy reveals the β-hairpin structures for both the peptides. Study of photophysical property reveals that the pentapeptide containing fluorescent triazolyl unnatural amino acids TMNapAlaDo and TPyAlaDo at the two termini exhibits dual path entry to exciplex emission-either via FRET from TMNapAlaDo to TPyAlaDo or via direct excitation of a FRET acceptor, TPyAlaDo. The other pentapeptide with TPyAlaDo/TPyAlaDo pair shows excimer emission. Furthermore, both the peptides maintaining their fundamental photophysics are found to interact with BSA as only a test biomolecule.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, North Guwhati 781039, Assam, India.
| | - Afsana Yashmeen
- Bioorganic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, North Guwhati 781039, Assam, India
| |
Collapse
|
30
|
Katla J, Bhat HR, Jha PC, Ghalsasi PS, Kanvah S. α-Cyanostyrenes with Pyrene Scaffold: Unique Emission through Aggregation. ChemistrySelect 2017. [DOI: 10.1002/slct.201700008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jagadish Katla
- Department of Chemistry; Indian Institute of Technology Gandhinagar, Palaj; Gandhinagar 382 355
| | - Haamid R. Bhat
- School of Chemical Sciences; Central University of Gandhinagar, Sector-29; Gandhinagar 382 030
| | - Prakash C. Jha
- School of Chemical Sciences; Central University of Gandhinagar, Sector-29; Gandhinagar 382 030
| | - Prasanna S. Ghalsasi
- Department of Chemistry, Faculty of Science; The MS University of Baroda; Vadodara- 390002
| | - Sriram Kanvah
- Department of Chemistry; Indian Institute of Technology Gandhinagar, Palaj; Gandhinagar 382 355
| |
Collapse
|
31
|
Kumar P, Soumya S, Prasad E. Enhanced Resonance Energy Transfer and White-Light Emission from Organic Fluorophores and Lanthanides in Dendron-based Hybrid Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8068-8075. [PMID: 26954712 DOI: 10.1021/acsami.6b00018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we have investigated the use of poly(aryl ether) dendron-based gel as a medium for resonance energy transfer (RET) from organic donors (phenanthrene, naphthalene, and pyrene) to lanthanide [Eu(III) and Tb(III)] ions. The gel has been prepared through self-assembly of glucose-cored poly(aryl ether) dendrons in a dimethyl sulfoxide/water mixture (1:9 v/v). The efficiency of RET was calculated by metal-centered emission quantum yield measurements in the gel medium. While there was no resonance energy transfer observed between the donor-acceptor pairs in solution, efficient RET has been observed in the gel medium. The metal-centered quantum yield values were 11.9% for phenanthrene-Eu(III), 3.9% for naphthalene-Eu(III), and 3.6% for pyrene-Eu(III) systems. Partial RET in the system has been utilized to generate white-light emission from the gel by incorporating an additional lanthanide ion, Tb(III), along with the organic donors and Eu(III). The CIE (Commission Internationale d'Eclairage) coordinates obtained for gels formed by phenanthrene-Tb(III)-Eu(III) (PTE), naphthalene-Tb(III)-Eu(III) (NTE), and pyrene-Tb(III)-Eu(III) (PyTE) were (0.33, 0.32) for PTE, (0.35, 0.37) for NTE, and (0.35, 0.33) for PyTE. The correlated color temperatures (CCT) for white-light-emitting gels were calculated, and the values (5520 K for PTE, 4886 K for NTE, and 4722 K for PyTE) suggest that the system generates cool white light.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, Indian Institute of Technology Madras , Chennai, Tamil Nadu 600 036, India
| | - Sivalingam Soumya
- Department of Chemistry, Indian Institute of Technology Madras , Chennai, Tamil Nadu 600 036, India
| | - Edamana Prasad
- Department of Chemistry, Indian Institute of Technology Madras , Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
32
|
Ilkar Erdagi S, Doganci E, Uyanik C, Yilmaz F. Heterobifunctional poly(ε-caprolactone): Synthesis of α-cholesterol-ω-pyrene PCL via combination of ring-opening polymerization and “click” chemistry. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Bag SS, Jana S, Pradhan MK, Pal S. Trichromophoric pentapeptide: impact of β-sheet conformation on dual path to excimer emission and sensing of BSA. RSC Adv 2016. [DOI: 10.1039/c6ra14084j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We established dual mechanisms for excimer emission-either via FRET or direct excitation of a FRET acceptor- in a conceptually novel trichromophoric pentapeptide which serves as an effective fluorescence light-up probe for protein–peptide interaction.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| | - Subhashis Jana
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| | - Manoj Kumar Pradhan
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| | - Sunit Pal
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| |
Collapse
|