1
|
Xia W, Wu J. Flagellate bacteria-mediated tumour antigen delivery: A novel approach to enhance dendritic cell activation for in situ cancer vaccination. Microb Biotechnol 2024; 17:e70028. [PMID: 39422491 PMCID: PMC11487680 DOI: 10.1111/1751-7915.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In situ vaccination is a therapeutic approach aimed at exploiting tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. Antigens released from dying tumour cells are assumed to be taken up by activated dendritic cells and presented to T cells that seek out and destroy tumour cells. This process is significantly impeded in the immunosuppressive microenvironment of tumours. There is a growing trend in in situ vaccine strategies that utilize bacteria as natural adjuvants or as factories for cytokines, aiming to enhance the presentation of in situ antigens by antigen-presenting cells. Recently, a novel approach using flagellate bacteria-mediated antigen delivery to activate dendritic cells has been proposed. This method actively facilitates the delivery of intratumoral antigens, improving their presentation for in situ cancer vaccination. Here, we highlight how flagellate bacteria-mediated antigen delivery enhances the immune activation capabilities of in situ vaccines. Meanwhile, we provide perspectives and outlooks on these promising antigen delivery technologies.
Collapse
Affiliation(s)
- Wen Xia
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation CentreNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjing UniversityNanjingChina
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation CentreNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjing UniversityNanjingChina
| |
Collapse
|
2
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
3
|
Abdelaziz K, Helmy YA, Yitbarek A, Hodgins DC, Sharafeldin TA, Selim MSH. Advances in Poultry Vaccines: Leveraging Biotechnology for Improving Vaccine Development, Stability, and Delivery. Vaccines (Basel) 2024; 12:134. [PMID: 38400118 PMCID: PMC10893217 DOI: 10.3390/vaccines12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
With the rapidly increasing demand for poultry products and the current challenges facing the poultry industry, the application of biotechnology to enhance poultry production has gained growing significance. Biotechnology encompasses all forms of technology that can be harnessed to improve poultry health and production efficiency. Notably, biotechnology-based approaches have fueled rapid advances in biological research, including (a) genetic manipulation in poultry breeding to improve the growth and egg production traits and disease resistance, (b) rapid identification of infectious agents using DNA-based approaches, (c) inclusion of natural and synthetic feed additives to poultry diets to enhance their nutritional value and maximize feed utilization by birds, and (d) production of biological products such as vaccines and various types of immunostimulants to increase the defensive activity of the immune system against pathogenic infection. Indeed, managing both existing and newly emerging infectious diseases presents a challenge for poultry production. However, recent strides in vaccine technology are demonstrating significant promise for disease prevention and control. This review focuses on the evolving applications of biotechnology aimed at enhancing vaccine immunogenicity, efficacy, stability, and delivery.
Collapse
Affiliation(s)
- Khaled Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University Poole Agricultural Center, Jersey Ln #129, Clemson, SC 29634, USA
- Clemson University School of Health Research (CUSHR), Clemson, SC 29634, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Alexander Yitbarek
- Department of Animal & Food Sciences, University of Delaware, 531 S College Ave, Newark, DE 19716, USA;
| | - Douglas C. Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Tamer A. Sharafeldin
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| | - Mohamed S. H. Selim
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| |
Collapse
|
4
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
Zhang M, Ma H, Wang X, Yu B, Cong H, Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J Control Release 2023; 354:167-187. [PMID: 36581260 DOI: 10.1016/j.jconrel.2022.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharide-based nanocarriers (PBNs) are the focus of extensive investigation because of their biocompatibility, low cost, wide availability, and chemical versatility, which allow a wide range of anticancer agents to be loaded within the nanocarriers. Similar to other nanocarriers, most PBNs are designed to extravasate out of tumor vessels, depending on the enhanced permeability and retention (EPR) effect. However, the EPR effect is compromised in some tumors due to the heterogeneity of tumor structures. Transvascular transport efficacy is decreased by complex blood vessels and condensed tumor stroma. The limited extravasation impedes efficient drug delivery into tumor parenchyma, and thus affects the subsequent tumor accumulation, which hinders the therapeutic effect of PBNs. Therefore, overcoming the biological barriers that restrict extravasation from tumor vessels is of great importance in PBN design. Many strategies have been developed to enhance the EPR effect that involve nanocarrier property regulation and tumor structure remodeling. Moreover, some researchers have proposed active transcytosis pathways that are complementary to the paracellular EPR effect to increase the transvascular extravasation efficiency of PBNs. In this review, we summarize the recent advances in the design of PBNs with enhanced transvascular transport to enable optimization of PBNs in the extravasation of the drug delivery process. We also discuss the obstacles and challenges that need to be addressed to clarify the transendothemial mechanism of PBNs and the potential interactions between extravasation and other drug delivery steps.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - He Ma
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xijie Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Co-delivery of Antigen and Adjuvant. Bioconjug Chem 2023; 34:269-278. [PMID: 36608270 PMCID: PMC10545220 DOI: 10.1021/acs.bioconjchem.2c00601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for vaccines that are effective, but quickly produced. Of note, vaccines with plug-and-play capabilities that co-deliver antigen and adjuvant to the same cell have shown remarkable success. Our approach of utilizing a nitrilotriacetic acid (NTA) histidine (His)-tag chemistry with viral adjuvants incorporates both of these characteristics: plug-and-play and co-delivery. We specifically utilize the cowpea mosaic virus (CPMV) and the virus-like particles from bacteriophage Qβ as adjuvants and bind the model antigen ovalbumin (OVA). Successful binding of the antigen to the adjuvant/carrier was verified by SDS-PAGE, western blot, and ELISA. Immunization in C57BL/6J mice demonstrates that with Qβ - but not CPMV - there is an improved antibody response against the target antigen using the Qβ-NiNTA:His-OVA versus a simple admixture of antigen and adjuvant. Antibody isotyping also shows that formulation of the vaccines can alter T helper biases; while the Qβ-NiNTA:His-OVA particle produces a balanced Th1/Th2 bias the admixture was strongly Th2. In a mouse model of B16F10-OVA, we further demonstrate improved survival and slower tumor growth in the vaccine groups compared to controls. The NiNTA:His chemistry demonstrates potential for rapid development of future generation vaccines enabling plug-and-play capabilities with effectiveness boosted by co-delivery to the same cell.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Britney A Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
He Y, Yu W, Shen L, Yan W, Xiao L, Qi J, Hu T. A SARS-CoV-2 vaccine based on conjugation of SARS-CoV-2 RBD with IC28 peptide and mannan. Int J Biol Macromol 2022; 222:661-670. [PMID: 36152702 PMCID: PMC9490959 DOI: 10.1016/j.ijbiomac.2022.09.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
SARS-CoV-2 is a particularly transmissible virus that causes a severe respiratory disease known as COVID-19. Safe and effective vaccines are urgently needed to combat the COVID-19 pandemic. The receptor-binding domain (RBD) of SARS-CoV-2 spike protein elicits most neutralizing antibodies during viral infection and is an ideal antigen for vaccine development. In particular, RBD expressed by E. coli is amenable to low cost and high-yield manufacturability. The adjuvant is necessitated to improve the immunogenicity of RBD. IC28, a TLR5-dependent adjuvant, is a peptide from bacterial flagellin. Mannan is a ligand of TLR-4 or TLR-2 and a polysaccharide adjuvant. Here, IC28 and mannan were both covalently conjugated with RBD from E. coli. The conjugate (RBD-IC28-M) elicited high RBD-specific IgG titers, and a neutralization antibody titer of 201.4. It induced high levels of Th1-type cytokines (IFN-γ) and Th2-type cytokines (IL-5 and IL-10), along with high antigenicity and no apparent toxicity to the organs. The mouse sera of the RBD-IC28-M group competitively interfered with the interaction of RBD and ACE2. Thus, conjugation with IC28 and mannan additively enhanced the humoral and cellular immunity. Our study was expected to provide the feasibility to develop an affordable, easily scalable, effective vaccine SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Yunxia He
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Li YY, Liu HM, Wang D, Lu Y, Ding C, Zhou LS, Wu XY, Zhou ZW, Xu SQ, Lin C, Qin LH, Li Y, Liu J, Liu HP, Zhang L. Arabinogalactan enhances Mycobacterium marinum virulence by suppressing host innate immune responses. Front Immunol 2022; 13:879775. [PMID: 36090984 PMCID: PMC9459032 DOI: 10.3389/fimmu.2022.879775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Arabinogalactan (AG) participates in forming the cell wall core of mycobacteria, a structure known as the mAGP complex. Few studies have reported the virulence of inartificial AG or its interaction with the host immune system. Using clustered regularly interspaced short palindromic repeats interference gene editing technology, conditional Mycobacterium marinum mutants were constructed with a low expression of embA or glfT2 (EmbA_KD or GlfT2_KD), which are separately involved in the biosynthesis of AG arabinose and galactose domains. High-performance gel permeation chromatography and high-performance liquid chromatography assays confirmed that the EmbA_KD strain showed a remarkable decrease in AG content with fragmentary arabinose chains, and the GlfT2_KD strain displayed less reduction in content with cut-down galactose chains. Based on transmission and scanning electron microscopy observations, the cell walls of the two mutants were found to be dramatically thickened, and the boundaries of different layers were more distinct. Phenotypes including the over-secretion of extracellular substances and enhanced spreading motility with a concomitant decreased resistance to ethambutol appeared in the EmbA_KD strain. The EmbA_KD and GlfT2_KD strains displayed limited intracellular proliferation after infecting murine J774A.1 macrophages. The disease progression infected with the EmbA_KD or GlfT2_KD strain significantly slowed down in zebrafish/murine tail infection models as well. Through transcriptome profiling, macrophages infected by EmbA_KD/GlfT2_KD strains showed enhanced oxidative metabolism. The cell survival measured using the CCK8 assay of macrophages exposed to the EmbA_KD strain was upregulated and consistent with the pathway enrichment analysis of differentially expressed genes in terms of cell cycle/apoptosis. The overexpression of C/EBPβ and the increasing secretion of proinflammatory cytokines were validated in the macrophages infected by the EmbA_KD mutant. In conclusion, the AG of Mycobacterium appears to restrain the host innate immune responses to enhance intracellular proliferation by interfering with oxidative metabolism and causing macrophage death. The arabinose chains of AG influence the Mycobacterium virulence and pathogenicity to a greater extent.
Collapse
Affiliation(s)
- Ye-yu Li
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Han-Mei Liu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Decheng Wang
- School of Medicine, China Three Gorges University, Yichang, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Cairong Ding
- School of Medicine, China Three Gorges University, Yichang, China
| | - Li-Shuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang-Yang Wu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Wei Zhou
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Shu-qin Xu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Lian-Hua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Hai-Peng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Lu Zhang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| |
Collapse
|
9
|
Designing a novel E2-IFN-γ fusion protein against CSFV by immunoinformatics and structural vaccinology approaches. Appl Microbiol Biotechnol 2022; 106:3611-3623. [PMID: 35524776 DOI: 10.1007/s00253-022-11919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
Abstract
Subunit vaccines with high purity and safety are gradually becoming a main trend in vaccinology. However, adjuvants such as interferon-gamma (IFN-γ) are required to enhance immune responses of subunit vaccines due to their poor immunogenicity. The conjugation of antigen with adjuvant can induce more potent immune responses compared to the mixture of antigen and adjuvant. At the same time, the selection of linker, indispensable in the construction of the stable and bioactive fusion proteins, is complicated and time-consuming. The development of immunoinformatics and structural vaccinology approaches provides a means to address the abovementioned problem. Therefore, in this study, a E2-IFN-γ fusion protein with an optimal linker (E2-R2-PIFN) was designed by bioinformatics approaches to improve the immunogenicity of the classical swine fever virus (CSFV) E2 subunit vaccine. Moreover, the E2-R2-PIFN fusion protein was expressed in HEK293T cells and the biological effects of IFN-γ in E2-R2-PIFN were confirmed in vitro via Western blotting. Here, an alternative method is utilized to simplify the design and validation of the antigen-adjuvant fusion protein, providing a potential subunit vaccine candidate against CSFV. KEY POINTS: • An effective and simple workflow of antigen-adjuvant fusion protein design and validation was established by immunoinformatics and structural vaccinology. • A novel E2-IFN-γ fusion protein with an optimal linker was designed as a potential CSFV vaccine. • The bioactivity of the newly designed fusion protein was preliminarily validated through in vitro experiments.
Collapse
|
10
|
Wajanarogana S, Taylor WRJ, Kritsiriwuthinan K. Enhanced serodiagnosis of melioidosis by indirect ELISA using the chimeric protein rGroEL-FLAG300 as an antigen. BMC Infect Dis 2022; 22:387. [PMID: 35439967 PMCID: PMC9020111 DOI: 10.1186/s12879-022-07369-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background The accurate and rapid diagnosis of melioidosis is challenging. Several serological approaches have been developed using recombinant antigens to improve the diagnostic indices of serological tests for melioidosis.
Methods Fusion proteins from Burkholderia pseudomallei (rGroEL-FLAG300) were evaluated as a potential target antigen for melioidosis antibodies. A total of 220 serum samples from 38 culture proven melioidosis patients (gold standard), 126 healthy individuals from endemic (n = 37) and non-endemic (n = 89) Thai provinces and 56 patients with other proven bacterial infections as negative controls were tested using indirect enzyme-linked immunosorbent assays (ELISA). Results Using an optical density (OD) cut-off of 0.299148, our assay had 94.74% sensitivity (95% confidence interval (CI) = 82.3–99.4%), 95.05% specificity (95% CI = 90.8–97.7%), and 95% accuracy, which was better than in our previous work (90.48% sensitivity, 87.14% specificity, and 87.63% accuracy). Conclusion Our results suggest that the application of chimeric antigens in ELISA could improve the serological diagnosis of melioidosis and should be reconfirmed with greater patient numbers.
Collapse
Affiliation(s)
- Sumet Wajanarogana
- Department of Basic Medical Science, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand.
| | - Water R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, 10400, Thailand.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | |
Collapse
|
11
|
Jadaan SA, Khan AW. Recent Update of COVID-19 Vaccines. Adv Pharm Bull 2022; 12:219-236. [PMID: 35620327 PMCID: PMC9106961 DOI: 10.34172/apb.2022.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/08/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has been recently identified as a novel member of beta coronaviruses (CoVs) and the cause of coronavirus disease 2019 (COVID-19). It has been first discovered in China and soon has spread across continents with an escalating number of mortalities. There is an urgent need for developing a COVID-19 vaccine to control the rapid transmission and the deleterious impact of the virus. The potent vaccine should have a good tolerable and efficacious profile to induce target-specific humoral and cellular immune responses. It should also exhibit no or minimal detrimental effects in children, young adults, and elderly people with or without co-morbidities from different racial backgrounds. Previously published findings of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) played vital role in the characterization of surface spike proteins as the tool of entry of the SARS-CoV-2 into host cells. It has become evident that SARS-CoVs have high genetic similarity and this implies antecedent vaccination strategies could be implicated in the production of COVID-19 vaccines. Although several vaccines have been approved and rolled out, only a handful of them have passed the three phases of clinical studies. This review highlights the completed, and ongoing clinical trials of COVID-19 vaccines and efforts are being made globally to avert the pandemic.
Collapse
Affiliation(s)
- Sameer A. Jadaan
- College of Health & Medical Technology, Middle Technical University, Baghdad-Iraq
| | - Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Victoria-Australia
| |
Collapse
|
12
|
Yu W, Shen L, Qi Q, Hu T. Conjugation with loxoribine and mannan improves the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein. Eur J Pharm Biopharm 2022; 172:193-202. [DOI: 10.1016/j.ejpb.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
|
13
|
Universal influenza vaccine technologies and recombinant virosome production. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Mimicking Native Display of CD0873 on Liposomes Augments Its Potency as an Oral Vaccine against Clostridioides difficile. Vaccines (Basel) 2021; 9:vaccines9121453. [PMID: 34960199 PMCID: PMC8708880 DOI: 10.3390/vaccines9121453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Mucosal vaccination aims to prevent infection mainly by inducing secretory IgA (sIgA) antibody, which neutralises pathogens and enterotoxins by blocking their attachment to epithelial cells. We previously demonstrated that encapsulated protein antigen CD0873 given orally to hamsters induces neutralising antibodies locally as well as systemically, affording partial protection against Clostridioides difficile infection. The aim of this study was to determine whether displaying CD0873 on liposomes, mimicking native presentation, would drive a stronger antibody response. The recombinant form we previously tested resembles the naturally cleaved lipoprotein commencing with a cysteine but lacking lipid modification. A synthetic lipid (DHPPA-Mal) was designed for conjugation of this protein via its N-terminal cysteine to the maleimide headgroup. DHPPA-Mal was first formulated with liposomes to produce MalLipo; then, CD0873 was conjugated to headgroups protruding from the outer envelope to generate CD0873-MalLipo. The immunogenicity of CD0873-MalLipo was compared to CD0873 in hamsters. Intestinal sIgA and CD0873-specific serum IgG were induced in all vaccinated animals; however, neutralising activity was greatest for the CD0873-MalLipo group. Our data hold great promise for development of a novel oral vaccine platform driving intestinal and systemic immune responses.
Collapse
|
15
|
Feng H, Yang J, Zhi H, Hu X, Yang Y, Zhang L, Liu Q, Feng Y, Wu D, Li H. Eucommia ulmoides Leaf Polysaccharide in Conjugation with Ovalbumin Act as Delivery System Can Improve Immune Response. Pharmaceutics 2021; 13:pharmaceutics13091384. [PMID: 34575460 PMCID: PMC8471226 DOI: 10.3390/pharmaceutics13091384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023] Open
Abstract
In this investigation, to maximize the desired immunoenhancement effects of PsEUL and stimulate an efficient humoral and cellular immune response against an antigen, PsEUL and the model antigen ovalbumin (OVA) were coupled using the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) reaction to yield a novel delivery system (PsEUL-OVA). The physicochemical characteristics and immune regulation effects of this new system were investigated. We found the yield of this EDC method to be 46.25%. In vitro, PsEUL-OVA (200 μg mL−1) could enhance macrophage proliferation and increase their phagocytic efficiency. In vivo, PsEUL-OVA could significantly increase the levels of OVA-specific antibody (IgG, IgG1, IgG2a, and IgG2b) titers and cytokine (IL-2, IL-4, IL-6, IFN-γ) levels. Additionally, it could activate T lymphocytes and facilitate the maturation of dendritic cells (DCs). These findings collectively suggested that PsEUL-OVA induced humoral and cellular immune responses by promoting the phagocytic activity of macrophages and DCs. Taken together, these results revealed that PsEUL-OVA had the potential to improve immune responses and provide a promising theoretical basis for the design of a novel delivery system.
Collapse
Affiliation(s)
- Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
- Correspondence: ; Tel./Fax: +86-28-85522310
| | - Jie Yang
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Hui Zhi
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Xin Hu
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Yan Yang
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.Y.); (H.Z.); (X.H.); (Y.Y.)
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Yangyang Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Daiyan Wu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Hangyu Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (Q.L.); (Y.F.); (D.W.); (H.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
16
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
17
|
Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. J Control Release 2021; 335:158-177. [DOI: 10.1016/j.jconrel.2021.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
|
18
|
Qi J, He Y, Shen L, Yu W, Hu T. Conjugation of Hemoglobin and Mannan Markedly Improves the Immunogenicity of Domain III of the Zika Virus E Protein: Structural and Immunological Study. Bioconjug Chem 2021; 32:328-338. [PMID: 33522239 DOI: 10.1021/acs.bioconjchem.0c00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Zika virus (ZIKV) leads to congenital microcephaly and anomalies and severe neurological diseases such as Guillain-Barre syndrome. Safe and effective vaccines are necessitated to deal with these severe health threats. As an ideal antigen, the domain III of the envelope protein (EDIII) of ZIKV can evoke potent neutralizing antibodies without any antibody-dependent enhancement (ADE) effect. However, EDIII necessitates to be formulated with an antigen delivery system or adjuvants to improve its immunogenicity. Hemoglobin (Hb) regulates inflammation, cytokine levels, and activate macrophage. Mannan is a polysaccharide of the fungal cell wall with an immunomodulatory activity. In this study, EDIII was conjugated with Hb and mannan, using the disulfide bond as the linker. Hb and mannan both functioned as the adjuvants. Conjugation of Hb and mannan acted as the delivery system for EDIII. The structure of EDIII was essentially maintained upon conjugation of Hb and mannan. The intracellular release of EDIII from the conjugate (HM-EDIII-2) was achieved by reduction of the glutathione-sensitive disulfide bond. As compared with EDIII, HM-EDIII-2 elicited high EDIII-specific IgG titers and high levels of Th1-type cytokines (IFN-γ and IL-2) and Th2-type cytokines (IL-5 and IL-10), along with no apparent toxicity to the organs. Moreover, the pharmacokinetic study revealed a prolonged serum exposure of HM-EDIII-2 to the immune cells. Thus, HM-EDIII-2 could boost a strong humoral and cellular immune response to EDIII. Our study was expected to provide the feasibility necessary to develop a robust and potentially safe ZIKV vaccine.
Collapse
Affiliation(s)
- Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yunxia He
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
20
|
Xu Z, Rivera-Hernandez T, Moyle PM. Development of an Enzyme-Mediated, Site-Specific Method to Conjugate Toll-Like Receptor 2 Agonists onto Protein Antigens: Toward a Broadly Protective, Four Component, Group A Streptococcal Self-Adjuvanting Lipoprotein-Fusion Combination Vaccine. ACS Infect Dis 2020; 6:1770-1782. [PMID: 32407620 DOI: 10.1021/acsinfecdis.0c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subunit vaccines composed of protein antigens covalently attached to Toll-like receptor (TLR) agonists elicit superior immune responses compared to mixtures of antigens and TLR agonists. Among different conjugation approaches, enzyme-mediated ligation is one of the few that provides an opportunity for the generation of homogeneous, molecularly defined products in which protein antigens are maintained with native structures, which is most critical to elicit protective immune responses upon vaccination. Four highly conserved protein antigens from Group A Streptococcus (GAS) have the potential to be safe and efficacious vaccine candidates. After a TLR2 agonist fibroblast-stimulating lipopeptide-1 (FSL-1) was successfully attached onto each antigen using sortase A and techniques for their purification were developed, a combination vaccine containing interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), Group A Streptococcal C5a peptidase (SCPA), anchorless virulence factor arginine deiminase (ADI), and trigger factor (TF)-TLR2 conjugates was produced. This combination was assessed for immunity in mice and compared with mixtures of the four antigens with FSL-1 or alum. High titer antigen-specific IgG antibodies were detected from all vaccine groups, with antibodies elicited from FSL-1 conjugates around 10-fold higher compared to the FSL-1 mixture group. Furthermore, the FSL-1 conjugates afforded a more balanced TH1/TH2 immune response than the alum-adjuvanted group, suggesting that this combination vaccine represents a promising candidate for the prevention of GAS diseases. Thus, we established a conjugation platform that allows for the production of defined, site-specific antigen-adjuvant conjugates, which maintain the native three-dimensional structure of antigens and can be potentially applied to a variety of protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Cátedras CONACYT - Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, México
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
21
|
Qi J, Yin Y, Yu W, Shen L, Xu J, Hu T. Conjugation of β-Glucan with the Hydrazone and Disulfide Linkers Markedly Improves the Immunogenicity of Zika Virus E Protein. Mol Pharm 2020; 17:1933-1944. [DOI: 10.1021/acs.molpharmaceut.0c00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Oh SH, Kim Cho YS, Lee HB, Lee SM, Kim WS, Hong L, Cho CS, Choi YJ, Kang SK. Enhancement of antigen-specific humoral immune responses and protein solubility through conjugation of bacterial flagellin, Vibrio vulnificus FlaB, to the N-terminus of porcine epidemic diarrhea virus surface protein antigen S0. J Vet Sci 2020; 20:e70. [PMID: 31775197 PMCID: PMC6883195 DOI: 10.4142/jvs.2019.20.e70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/26/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious enteric swine disease. The large economic impact of PED on the swine industry worldwide has made the development of an effective PED vaccine a necessity. S0, a truncated region of the porcine epidemic diarrhea virus (PEDV) spike protein, has been suggested as a candidate antigen for PED subunit vaccines; however, poor solubility problems when the protein is expressed in Escherichia coli, and the inherent problems of subunit vaccines, such as low immunogenicity, remain. Flagellin has been widely used as a fusion partner to enhance the immunogenicity and solubility of many difficult-to-express proteins; however, the conjugation effect of flagellin varies depending on the target antigen or the position of the fusion placement. Here, we conjugated flagellin, Vibrio vulnificus FlaB, to the N- and C-termini of S0 and evaluated the ability of the fusion to enhance the solubility and immunogenicity of S0. Flagellin conjugation in the presence of the trigger factor chaperone tig greatly improved the solubility of the fusion protein (up to 99%) regardless of its conjugation position. Of importance, flagellin conjugated to the N-terminus of S0 significantly enhanced S0-specific humoral immune responses compared to other recombinant antigens in Balb/c mice. The mechanism of this phenomenon was investigated through in vitro and in vivo studies. These findings provide important information for the development of a novel PED vaccine and flagellin-based immunotherapeutics.
Collapse
Affiliation(s)
- Seo Ho Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Young Saeng Kim Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ho Bin Lee
- Institute of Green-Bio Science & Technology, Seoul National University Graduate School of International Agricultural Technology, Pyeongchang 25354, Korea
| | - Sang Mok Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Whee Soo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Liang Hong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Yun Jaie Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sang Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University Graduate School of International Agricultural Technology, Pyeongchang 25354, Korea.
| |
Collapse
|
23
|
Wang ZB, Xu J. Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant-Antigen Codelivery. Vaccines (Basel) 2020; 8:vaccines8010128. [PMID: 32183209 PMCID: PMC7157724 DOI: 10.3390/vaccines8010128] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional aluminum adjuvants can trigger strong humoral immunity but weak cellular immunity, limiting their application in some vaccines. Currently, various immunomodulators and delivery carriers are used as adjuvants, and the mechanisms of action of some of these adjuvants are clear. However, customizing targets of adjuvant action (cellular or humoral immunity) and action intensity (enhancement or inhibition) according to different antigens selected is time-consuming. Here, we review the adjuvant effects of some delivery systems and immune stimulants. In addition, to improve the safety, effectiveness, and accessibility of adjuvants, new trends in adjuvant development and their modification strategies are discussed.
Collapse
Affiliation(s)
| | - Jing Xu
- Correspondence: ; Tel.: +86-(10)-5224-5008
| |
Collapse
|
24
|
|
25
|
Xu Z, Moyle PM. A Self‐Adjuvanting Vaccine Platform: Optimization of Site‐Specific Sortase A Mediated Conjugation of Toll‐Like Receptor 2 Ligands onto the Carboxyl or Amino terminus of Recombinant Protein Antigens. Chempluschem 2020; 85:227-236. [DOI: 10.1002/cplu.201900687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zhenghui Xu
- Pharmacy Australia Centre of Excellence School of Pharmacy The University of Queensland 20 Cornwall St Woolloongabba QLD 4102 Australia
| | - Peter Michael Moyle
- Pharmacy Australia Centre of Excellence School of Pharmacy The University of Queensland 20 Cornwall St Woolloongabba QLD 4102 Australia
| |
Collapse
|
26
|
Self-conjugated protective antigen elicits strong and durable protective antibody response against anthrax. Int J Biol Macromol 2019; 137:790-800. [DOI: 10.1016/j.ijbiomac.2019.06.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 02/01/2023]
|
27
|
Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019; 7:microorganisms7080255. [PMID: 31409028 PMCID: PMC6724148 DOI: 10.3390/microorganisms7080255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis infection is responsible for the most deaths by a single infectious agent worldwide, with 1.6 million deaths in 2017 alone. The World Health Organization, through its "End TB" strategy, aims to reduce TB deaths by 95% by 2035. In order to reach this goal, a more effective vaccine than the Bacillus Calmette-Guerin (BCG) vaccine currently in use is needed. Subunit TB vaccines are ideal candidates, because they can be used as booster vaccinations for individuals who have already received BCG and would also be safer for use in immunocompromised individuals in whom BCG is contraindicated. However, subunit TB vaccines will almost certainly require formulation with a potent adjuvant. As the correlates of vaccine protection against TB are currently unclear, there are a variety of adjuvants currently being used in TB vaccines in preclinical and clinical development. This review describes the various adjuvants in use in TB vaccines, their effectiveness, and their proposed mechanisms of action. Notably, adjuvants with less inflammatory and reactogenic profiles that can be administered safely via mucosal routes, may have the biggest impact on future directions in TB vaccine design.
Collapse
|
28
|
Back YW, Choi S, Choi HG, Shin KW, Son YJ, Paik TH, Kim HJ. Cell wall skeleton of Mycobacterium bovis BCG enhances the vaccine potential of antigen 85B against tuberculosis by inducing Th1 and Th17 responses. PLoS One 2019; 14:e0213536. [PMID: 30849108 PMCID: PMC6407753 DOI: 10.1371/journal.pone.0213536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
A safe and effective adjuvant is necessary to induce reliable protective efficacy of the protein-based vaccines against tuberculosis (TB). Mycobacterial components, such as synthetic cord factor and arabinogalactan, have been used as one of the adjuvant components. Mycobacterium bovis bacillus Calmette- Guérin cell-wall skeleton (BCG-CWS) has been used as an effective immune-stimulator. However, it is not proven whether BCG-CWS can be an effective adjuvant for the subunit protein vaccine of TB. In this study, we demonstrated that the BCG-CWS effectively coupled with Ag85B and enhanced the conjugated Ag85B activity on the maturation of dendritic cells (DCs). Ag85B-BCG-CWS-matured DCs induced significant Th1 and Th17 responses when compared to BCG-CWS or Ag85B alone. In addition, significant Ag85B-specific Th1 and Th17 responses were induced in Ag85B-BCG-CWS-immunized mice before infection with M. tuberculosis and maintained after infection. Moreover, Ag85B-BCG-CWS showed significant protective effect comparable to live BCG at 6 weeks after infection and maintained its protective efficacy at 32 weeks post-challenge, whereas live BCG did not. These results suggest that the BCG-CWS may be an effective adjuvant candidate for a protein-based vaccine against TB.
Collapse
Affiliation(s)
- Yong Woo Back
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seunga Choi
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Won Shin
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeo-Jin Son
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hyun Paik
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, Köksal F. Does the Development of Vaccines Advance Solutions for Tuberculosis? Curr Mol Pharmacol 2018; 12:83-104. [PMID: 30474542 DOI: 10.2174/1874467212666181126151948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial. OBJECTIVE The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Department of Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Kuantan, Malaysia
| | - Husam AlMandeal
- Freiburg Universität, Moltkestraße 90, 76133 karlsruhe Augenklinik, Germany
| | - Emel Eker
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
30
|
Khademi F, Taheri RA, Yousefi Avarvand A, Vaez H, Momtazi-Borojeni AA, Soleimanpour S. Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines? Microb Pathog 2018; 121:218-223. [DOI: 10.1016/j.micpath.2018.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
31
|
Conjugation of chitosan oligosaccharides via a carrier protein markedly improves immunogenicity of porcine circovirus vaccine. Glycoconj J 2018; 35:451-459. [PMID: 30051156 DOI: 10.1007/s10719-018-9830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022]
Abstract
Porcine circovirus type 2 (PCV2)-associated diseases have led to huge economic losses in pig industry. Our laboratory previously found that conjugation of chitosan oligosaccharides (COS) enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. In this study, an effective adjuvant system was developed by covalent conjugation of COS via a carrier protein (Ovalbumin, OVA) to further increase the immunogenicity of vaccine. Its effect on dendritic cells maturation was assessed in vitro and its immunogenicity was investigated in mice. The results indicated that, as compared to the PCV2 and COS-PCV2, COS-OVA-PCV2 stimulated dendritic cells to express higher maturation markers (CD80, CD86, CD40 and MHC class II) and remarkably promoted both humoral and cellular immunity against PCV2 by enhancing the lymphocyte proliferation and inducing a mixed Th1/Th2 response, including the increased production of PCV2-specific antibodies and raised levels of inflammatory cytokines. Furthermore, it displayed better immune-stimulating effects than the physical mixture of vaccine and ISA206 (a commercialized adjuvant). In conclusion, conjugation of COS via a carrier protein might be a promising strategy to enhance the immunogenicity of vaccines.
Collapse
|
32
|
Mönkäre J, Pontier M, van Kampen EEM, Du G, Leone M, Romeijn S, Nejadnik MR, O'Mahony C, Slütter B, Jiskoot W, Bouwstra JA. Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery. Eur J Pharm Biopharm 2018; 129:111-121. [PMID: 29803720 DOI: 10.1016/j.ejpb.2018.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
Skin is an attractive but also very challenging immunisation site for particulate subunit vaccines. The aim of this study was to develop hyaluronan (HA)-based dissolving microneedles (MNs) loaded with PLGA nanoparticles (NPs) co-encapsulating ovalbumin (OVA) and poly(I:C) for intradermal immunisation. The NP:HA ratio used for the preparation of dissolving MNs appeared to be critical for the quality of MNs and their dissolution in ex vivo human skin. Asymmetrical flow field-flow fractionation and dynamic light scattering were used to analyse the NPs released from the MNs in vitro. Successful release of the NPs depended on the drying conditions during MN preparation. The delivered antigen dose from dissolving MNs in mice was determined to be 1 µg OVA, in NPs or as free antigen, by using near-infrared fluorescence imaging. Finally, the immunogenicity of the NPs after administration of dissolving MNs (NP:HA weight ratio 1:4) was compared with that of hollow MN-delivered NPs in mice. Immunization with free antigen in dissolving MNs resulted in equally strong immune responses compared to delivery by hollow MNs. However, humoral and cellular immune responses evoked by NP-loaded dissolving MNs were inferior to those elicited by NPs delivered through a hollow MN. In conclusion, we identified several critical formulation parameters for the further development of NP-loaded dissolving MNs.
Collapse
Affiliation(s)
- Juha Mönkäre
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maria Pontier
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eveline E M van Kampen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Guangsheng Du
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mara Leone
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - M Reza Nejadnik
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Conor O'Mahony
- Tyndall National Institute, Lee Maltings Complex, University College Cork, Dyke Parade, T12R5CP Cork, Ireland
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
33
|
Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 2018; 29:587-603. [PMID: 29378134 PMCID: PMC10642707 DOI: 10.1021/acs.bioconjchem.7b00808] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.
Collapse
Affiliation(s)
- Bob J. Ignacio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
34
|
Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M, Soleimanpour S. Multi-stage subunit vaccines against Mycobacterium tuberculosis: an alternative to the BCG vaccine or a BCG-prime boost? Expert Rev Vaccines 2017; 17:31-44. [DOI: 10.1080/14760584.2018.1406309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arshid Yousefi-Avarvand
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Hu S, Yu W, Hu C, Wei D, Shen L, Hu T, Yi Y. Conjugation of the CRM 197 -inulin conjugate significantly increases the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein. Bioorg Med Chem 2017; 25:5968-5974. [DOI: 10.1016/j.bmc.2017.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
36
|
Xu Z, Moyle PM. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands. Bioconjug Chem 2017; 29:572-586. [PMID: 28891637 DOI: 10.1021/acs.bioconjchem.7b00478] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional vaccines derived from attenuated or inactivated pathogens are effective at inducing antibody-based protective immune responses but tend to be highly reactogenic, causing notable adverse effects. Vaccines with superior safety profiles can be produced by subunit approaches, utilizing molecularly defined antigens (e.g., proteins and polysaccharides). These antigens, however, often elicit poor immunological responses, necessitating the use of adjuvants. Immunostimulatory adjuvants have the capacity to activate antigen presenting cells directly through specific receptors (e.g., Toll-like receptors (TLRs)), resulting in enhanced presentation of antigens as well as the secretion of proinflammatory chemokines and cytokines. Consequently, innate immune responses are amplified and adaptive immunity is generated. Recently, site-specific conjugation of such immunostimulatory adjuvants (e.g., TLR ligands) onto defined antigens has shown superior efficacy over unconjugated mixtures, suggesting that the development of chemically characterized immunostimulatory adjuvants and optimized approaches for their conjugation with antigens may provide a better opportunity for the development of potent, novel vaccines. This review briefly summarizes various TLR agonists utilized as immunostimulatory adjuvants and focuses on the development of techniques (e.g., recombinant, synthetic, and semisynthetic) for generating adjuvant-antigen fusion vaccines incorporating peptide or protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| | - Peter Michael Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| |
Collapse
|
37
|
Guo F, Liu Y, Zhang C, Wang Q, Wang L, Gao Y, Bi J, Wang H, Su Z. Prompt and Robust Humoral Immunity Elicited by a Conjugated Chimeric Malaria Antigen with a Truncated Flagellin. Bioconjug Chem 2017; 29:761-770. [DOI: 10.1021/acs.bioconjchem.7b00320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lianyan Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuhui Gao
- Molecular Parasitology Laboratory, Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing 100005, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Heng Wang
- Molecular Parasitology Laboratory, Peking Union Medical College, Chinese Academy of Medical Sciences, Institute of Basic Medical Sciences, Beijing 100005, PR China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
38
|
Zhang G, Cheng G, Jia P, Jiao S, Feng C, Hu T, Liu H, Du Y. The Positive Correlation of the Enhanced Immune Response to PCV2 Subunit Vaccine by Conjugation of Chitosan Oligosaccharide with the Deacetylation Degree. Mar Drugs 2017; 15:md15080236. [PMID: 28933754 PMCID: PMC5577591 DOI: 10.3390/md15080236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022] Open
Abstract
Chitosan oligosaccharides (COS), the degraded products of chitosan, have been demonstrated to have versatile biological functions. In primary studies, it has displayed significant adjuvant effects when mixed with other vaccines. In this study, chitosan oligosaccharides with different deacetylation degrees were prepared and conjugated to porcine circovirus type 2 (PCV2) subunit vaccine to enhance its immunogenicity. The vaccine conjugates were designed by the covalent linkage of COSs to PCV2 molecules and administered to BALB/c mice three times at two-week intervals. The results indicate that, as compared to the PCV2 group, COS-PCV2 conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting lymphocyte proliferation and initiating a mixed T-helper 1 (Th1)/T-helper 2 (Th2) response, including raised levels of PCV2-specific antibodies and an increased production of inflammatory cytokines. Noticeably, with the increasing deacetylation degree, the stronger immune responses to PCV2 were observed in the groups with COS-PCV2 vaccination. In comparison with NACOS (chitin oligosaccharides)-PCV2 and LCOS (chitosan oligosaccharides with low deacetylation degree)-PCV2, HCOS (chitosan oligosaccharides with high deacetylation degree)-PCV2 showed the highest adjuvant effect, even comparable to that of PCV2/ISA206 (a commercialized adjuvant) group. In summary, COS conjugation might be a viable strategy to enhance the immune response to PCV2 subunit vaccine, and the adjuvant effect was positively correlated with the deacetylation degree of COS.
Collapse
Affiliation(s)
- Guiqiang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Gong Cheng
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Peiyuan Jia
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Siming Jiao
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Cui Feng
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Hu
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hongtao Liu
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuguang Du
- Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
39
|
Identification and evaluation of the novel immunodominant antigen Rv2351c from Mycobacterium tuberculosis. Emerg Microbes Infect 2017; 6:e48. [PMID: 28588287 PMCID: PMC5520311 DOI: 10.1038/emi.2017.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/06/2017] [Accepted: 04/09/2017] [Indexed: 11/19/2022]
Abstract
There is an urgent need for new immunodominant antigens to improve the diagnosis of tuberculosis (TB) and the efficacy of the TB vaccine to control the disease worldwide. In this study, we evaluated the diagnostic potential of a novel Mycobacterium tuberculosis (MTB)-specific antigen, Rv2351c, from region of difference (RD) 7 of the MTB genome, and investigated the potency of the vaccine by identifying its immunological function in human and animal immunological experiments. Twenty T-cell epitopes were identified using TEpredict and prediction tools from the Immune Epitope Database and Analysis Resource. A total of 159 subjects, including 61 patients with pulmonary TB, 38 patients with no TB and 55 healthy donors, were recruited and analyzed with an enzyme-linked immunospot (ELISpot) assay. The ELISpot assay using Rv2351c to detect TB infection, as compared with bacteriological tests as the gold standard, had a sensitivity and specificity of 61.4% (35/57) and 91.4% (85/93), respectively. The ELISpot assay using Rv2351c had a good conformance (κ=0.554) as compared with the bacteriological test. Rv2351c also elicited a potent cellular immune response with a high expression of cytokines (IFN-γ (4978±596.7 μg/mL) and IL-4 (68.3±15.5 μg/mL)) and a potent humoral immune response with a high concentration of IgG (1:2.2 × 106), IgG1 (1:4.5 × 105) and IgG2a (1:1.6 × 106) in immunized BALB/c mice. In addition, the ratio of IgG2a/IgG1 indicated that Rv2351c induced cellular immunity in the mice. The results of this study indicated that Rv2351c is an antigen with good immunogenicity that may potentially be used to develop diagnostic techniques and new TB vaccines.
Collapse
|
40
|
Sun X, Yu W, Pang Q, Hu T. Conjugation Reaction with 8-Arm PEG Markedly Improves the Immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 Fusion Protein. Bioconjug Chem 2017; 28:1658-1668. [DOI: 10.1021/acs.bioconjchem.7b00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaowei Sun
- College
of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weili Yu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quanhai Pang
- College
of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi Province, China
| | - Tao Hu
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
41
|
Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv 2017; 35:375-389. [PMID: 28288861 DOI: 10.1016/j.biotechadv.2017.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023]
Abstract
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.
Collapse
|