1
|
Laomeephol C, Tawinwung S, Suppipat K, Arunmanee W, Wang Q, Amie Luckanagul J. Surface functionalization of virus-like particles via bioorthogonal click reactions for enhanced cell-specific targeting. Int J Pharm 2024; 660:124332. [PMID: 38866085 DOI: 10.1016/j.ijpharm.2024.124332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Surface functionalization of nano drug carriers allows for precise delivery of therapeutic molecules to the target site. This technique involves attaching targeting molecules to the nanoparticle surface, facilitating selective interaction. In this study, we engineered virus-like particles (VLPs) to enhance their targeting capabilities. Azide groups incorporated on the lipid membranes of VLPs enabled bioorthogonal click reactions for conjugation with cycloalkyne-bearing molecules, providing efficient conjugation with high specificity. HIV-1 Gag VLPs were chosen due to their envelope, which allows host membrane component incorporation, and the Gag protein, which serves as a recognition motif for human T cells. This combination, along with antibody-mediated targeting, addresses the limitations of intracellular delivery to T cells, which typically exhibit low uptake of exogenous materials. The selective uptake of azide VLPs by CD3-positive T cells was evaluated in a co-culture system. Even without antibody conjugation, VLP uptake was enhanced in T cells, indicating their intrinsic targeting potential. Antibody conjugation further amplified this effect, demonstrating the synergistic benefits of the combined targeting approach. Our study shows that recombinant production of azide functionalized VLPs results in engineered nanoparticles that can be easily modified using bioorthogonal click reactions, providing high specificity and versatility for conjugation with various molecules, making it applicable to a wide range of biological products.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Cellular Immunotherapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jittima Amie Luckanagul
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Wang J, Du LF, Zhang MZ, Wei W, Chen ZY, Zhang X, Xiong T, Wang ZF, Xia LY, Jiang JF, Li WJ, Zhu DY, Jia N, Cao WC. Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry. Commun Biol 2024; 7:784. [PMID: 38951577 PMCID: PMC11217389 DOI: 10.1038/s42003-024-06468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.
Collapse
Affiliation(s)
- Juan Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, P. R. China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zi-Yun Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
| | - Zhen-Fei Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan, 250012, Shandong, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wen-Jun Li
- Guangdong Key Laboratory of Nanomedicine CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, P.R. China.
| |
Collapse
|
3
|
Lampinen V, Gröhn S, Lehmler N, Jartti M, Hytönen VP, Schubert M, Hankaniemi MM. Production of norovirus-, rotavirus-, and enterovirus-like particles in insect cells is simplified by plasmid-based expression. Sci Rep 2024; 14:14874. [PMID: 38937523 PMCID: PMC11211442 DOI: 10.1038/s41598-024-65316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Insect cells have long been the main expression host of many virus-like particles (VLP). VLPs resemble the respective viruses but are non-infectious. They are important in vaccine development and serve as safe model systems in virus research. Commonly, baculovirus expression vector system (BEVS) is used for VLP production. Here, we present an alternative, plasmid-based system for VLP expression, which offers distinct advantages: in contrast to BEVS, it avoids contamination by baculoviral particles and proteins, can maintain cell viability over the whole process, production of alphanodaviral particles will not be induced, and optimization of expression vectors and their ratios is simple. We compared the production of noro-, rota- and entero-VLP in the plasmid-based system to the standard process in BEVS. For noro- and entero-VLPs, similar yields could be achieved, whereas production of rota-VLP requires some further optimization. Nevertheless, in all cases, particles were formed, the expression process was simplified compared to BEVS and potential for the plasmid-based system was validated. This study demonstrates that plasmid-based transfection offers a viable option for production of noro-, rota- and entero-VLPs in insect cells.
Collapse
Affiliation(s)
- Vili Lampinen
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Stina Gröhn
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Lehmler
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| | - Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Maren Schubert
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany.
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
4
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
5
|
Setyo Utomo DI, Suhaimi H, Muhammad Azami NA, Azmi F, Mohd Amin MCI, Xu J. An Overview of Recent Developments in the Application of Antigen Displaying Vaccine Platforms: Hints for Future SARS-CoV-2 VLP Vaccines. Vaccines (Basel) 2023; 11:1506. [PMID: 37766182 PMCID: PMC10536610 DOI: 10.3390/vaccines11091506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, a great effort has been devoted to studying attenuated and subunit vaccine development against SARS-CoV-2 since its outbreak in December 2019. It is known that diverse virus-like particles (VLPs) are extensively employed as carriers to display various antigenic and immunostimulatory cargo modules for vaccine development. Single or multiple antigens or antigenic domains such as the spike or nucleocapsid protein or their variants from SARS-CoV-2 could also be incorporated into VLPs via either a genetic or chemical display approach. Such antigen display platforms would help screen safer and more effective vaccine candidates capable of generating a strong immune response with or without adjuvant. This review aims to provide valuable insights for the future development of SARS-CoV-2 VLP vaccines by summarizing the latest updates and perspectives on the vaccine development of VLP platforms for genetic and chemical displaying antigens from SARS-CoV-2.
Collapse
Affiliation(s)
- Doddy Irawan Setyo Utomo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Gedung 611, LAPTIAB, KST Habibie, Serpong, Tangerang Selatan 15314, Indonesia;
| | - Hamizah Suhaimi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Fazren Azmi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Mohd Cairul Iqbal Mohd Amin
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022; 12:997875. [PMID: 36275021 PMCID: PMC9585283 DOI: 10.3389/fcimb.2022.997875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.
Collapse
Affiliation(s)
- Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cátia Rosa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Carvalho SB, Silva RJS, Sousa MFQ, Peixoto C, Roldão A, Carrondo MJT, Alves PM. Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring. Front Bioeng Biotechnol 2022; 10:805176. [PMID: 35252128 PMCID: PMC8894879 DOI: 10.3389/fbioe.2022.805176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 01/22/2023] Open
Abstract
Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs’ unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies — nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs’ thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90–115 nm for NTA and 129–141 nm for TRPS), surface charges (average of −20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization.
Collapse
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F. Q. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Paula M. Alves,
| |
Collapse
|
8
|
Aljabali AAA, Al Zoubi MS, Al-Batayneh KM, Pardhi DM, Dua K, Pal K, Tambuwala MM. Innovative Applications of Plant Viruses in Drug Targeting and Molecular Imaging- A Review. Curr Med Imaging 2021; 17:491-506. [PMID: 33030133 DOI: 10.2174/1573405616666201007160243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nature had already engineered various types of nanoparticles (NPs), especially viruses, which can deliver their cargo to the host/targeted cells. The ability to selectively target specific cells offers a significant advantage over the conventional approach. Numerous organic NPs, including native protein cages, virus-like particles, polymeric saccharides, and liposomes, have been used for the preparation of nanoparticles. Such nanomaterials have demonstrated better performance as well as improved biocompatibility, devoid of side effects, and stable without any deterioration. OBJECTIVE This review discusses current clinical and scientific research on naturally occurring nanomaterials. It also illustrates and updates the tailor-made approaches for selective delivery and targeted medications that require a high-affinity interconnection to the targeted cells. METHODS A comprehensive search was performed using keywords for viral nanoparticles, viral particles for drug delivery, viral nanoparticles for molecular imaging, theranostics applications of viral nanoparticles and plant viruses in nanomedicine. We searched on Google Scholar, PubMed, Springer, Medline, and Elsevier from 2000 till date and by the bibliographic review of all identified articles. RESULTS The findings demonstrated that structures dependent on nanomaterials might have potential applications in diagnostics, cell marking, comparing agents (computed tomography and magnetic resonance imaging), and antimicrobial drugs, as well as drug delivery structures. However, measures should be taken in order to prevent or mitigate, in pharmaceutical or medical applications, the toxic impact or incompatibility of nanoparticle-based structures with biological systems. CONCLUSION The review provided an overview of the latest advances in nanotechnology, outlining the difficulties and the advantages of in vivo and in vitro structures that are focused on a specific subset of the natural nanomaterials.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University - Faculty of Pharmacy, Irbid, Jordan
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Yarmouk University - Faculty of Medicine, Irbid, Jordan
| | - Khalid M Al-Batayneh
- Department of Biological Sciences, Yarmouk University - Faculty of Science, Irbid, Jordan
| | - Dinesh M Pardhi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, FL-70211, Kuopio, Finland
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Australia
| | - Kaushik Pal
- Federal University of Rio de Janeiro, Cidade Universitaria, Rio de Janeiro-RJ, 21941-901, Brazil
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
9
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
10
|
Improving Influenza HA-Vlps Production in Insect High Five Cells via Adaptive Laboratory Evolution. Vaccines (Basel) 2020; 8:vaccines8040589. [PMID: 33036359 PMCID: PMC7711658 DOI: 10.3390/vaccines8040589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
The use of non-standard culture conditions has proven efficient to increase cell performance and recombinant protein production in different cell hosts. However, the establishment of high-producing cell populations through adaptive laboratory evolution (ALE) has been poorly explored, in particular for insect cells. In this study, insect High Five cells were successfully adapted to grow at a neutral culture pH (7.0) through ALE for an improved production of influenza hemagglutinin (HA)-displaying virus-like particles (VLPs). A stepwise approach was used for the adaptation process, in which the culture pH gradually increased from standard 6.2 to 7.0 (ΔPh = 0.2–0.3), and cells were maintained at each pH value for 2–3 weeks until a constant growth rate and a cell viability over 95% were observed. These adapted cells enabled an increase in cell-specific HA productivity up to three-fold and volumetric HA titer of up to four-fold as compared to non-adapted cells. Of note, the adaptation process is the element driving increased specific HA productivity as a pH shift alone was inefficient at improving productivities. The production of HA-VLPs in adapted cells was successfully demonstrated at the bioreactor scale. The produced HA-VLPs show the typical size and morphology of influenza VLPs, thus confirming the null impact of the adaptation process and neutral culture pH on the quality of HA-VLPs produced. This work strengthens the potential of ALE as a bioprocess engineering strategy to improve the production of influenza HA-VLPs in insect High Five cells.
Collapse
|
11
|
Moleirinho MG, Fernandes RP, Carvalho SB, Bezemer S, Detmers F, Hermans P, Silva RJ, Alves PM, Carrondo MJ, Peixoto C. Baculovirus affinity removal in viral-based bioprocesses. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quantification of the HIV-1 virus-like particle production process by super-resolution imaging: From VLP budding to nanoparticle analysis. Biotechnol Bioeng 2020; 117:1929-1945. [PMID: 32242921 DOI: 10.1002/bit.27345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Eduard Puente-Massaguer
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Laura Cervera
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| |
Collapse
|
13
|
Puente-Massaguer E, Lecina M, Gòdia F. Integrating nanoparticle quantification and statistical design of experiments for efficient HIV-1 virus-like particle production in High Five cells. Appl Microbiol Biotechnol 2020; 104:1569-1582. [PMID: 31907573 PMCID: PMC7224031 DOI: 10.1007/s00253-019-10319-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
The nature of enveloped virus-like particles (VLPs) has triggered high interest in their application to different research fields, including vaccine development. The baculovirus expression vector system (BEVS) has been used as an efficient platform for obtaining large amounts of these complex nanoparticles. To date, most of the studies dealing with VLP production by recombinant baculovirus infection utilize indirect detection or quantification techniques that hinder the appropriate characterization of the process and product. Here, we propose the application of cutting-edge quantification methodologies in combination with advanced statistical designs to exploit the full potential of the High Five/BEVS as a platform to produce HIV-1 Gag VLPs. The synergies between CCI, MOI, and TOH were studied using a response surface methodology approach on four different response functions: baculovirus infection, VLP production, VLP assembly, and VLP productivity. TOH and MOI proved to be the major influencing factors in contrast with previous reported data. Interestingly, a remarkable competition between Gag VLP production and non-assembled Gag was detected. Also, the use of nanoparticle tracking analysis and flow virometry revealed the existence of remarkable quantities of extracellular vesicles. The different responses of the study were combined to determine two global optimum conditions, one aiming to maximize the VLP titer (quantity) and the second aiming to find a compromise between VLP yield and the ratio of assembled VLPs (quality). This study provides a valuable approach to optimize VLP production and demonstrates that the High Five/BEVS can support mass production of Gag VLPs and potentially other complex nanoparticles.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
14
|
Ratnatilaka Na Bhuket P, Luckanagul JA, Rojsitthisak P, Wang Q. Chemical modification of enveloped viruses for biomedical applications. Integr Biol (Camb) 2019; 10:666-679. [PMID: 30295307 DOI: 10.1039/c8ib00118a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The unique characteristics of enveloped viruses including nanometer size, consistent morphology, narrow size distribution, versatile functionality and biocompatibility have attracted attention from scientists to develop enveloped viruses for biomedical applications. The biomedical applications of the viral-based nanoparticles include vaccine development, imaging and targeted drug delivery. The modification of the structural elements of enveloped viruses is necessary for the desired functions. Here, we review the chemical approaches that have been utilized to develop bionanomaterials based on enveloped viruses for biomedical applications. We first provide an overview of the structures of enveloped viruses which are composed of nucleic acids, structural and functional proteins, glycan residues and lipid envelope. The methods for modification, including direct conjugation, metabolic incorporation of functional groups and peptide tag insertion, are described based on the biomolecular types of viral components. Layer-by-layer technology is also included in this review to illustrate the non-covalent modification of enveloped viruses. Then, we further elaborate the applications of chemically-modified enveloped viruses, virus-like particles and viral subcomponents in biomedical research.
Collapse
Affiliation(s)
- Pahweenvaj Ratnatilaka Na Bhuket
- Biomedicinal Chemistry Program, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
15
|
Carvalho SB, Silva RJ, Moreira AS, Cunha B, Clemente JJ, Alves PM, Carrondo MJ, Xenopoulos A, Peixoto C. Efficient filtration strategies for the clarification of influenza virus-like particles derived from insect cells. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
17
|
Pushko P, Tretyakova I, Hidajat R, Sun X, Belser JA, Tumpey TM. Multi-clade H5N1 virus-like particles: Immunogenicity and protection against H5N1 virus and effects of beta-propiolactone. Vaccine 2018; 36:4346-4353. [PMID: 29885769 PMCID: PMC6070352 DOI: 10.1016/j.vaccine.2018.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
During the past decade, H5N1 highly pathogenic avian influenza (HPAI) viruses have diversified genetically and antigenically, suggesting the need for multiple H5N1 vaccines. However, preparation of multiple vaccines from live H5N1 HPAI viruses is difficult and economically not feasible representing a challenge for pandemic preparedness. Here we evaluated a novel multi-clade recombinant H5N1 virus-like particle (VLP) design, in which H5 hemagglutinins (HA) and N1 neuraminidase (NA) derived from four distinct clades of H5N1 virus were co-localized within the VLP structure. The multi-clade H5N1 VLPs were prepared by using a recombinant baculovirus expression system and evaluated for functional hemagglutination and neuraminidase enzyme activities, particle size and morphology, as well as for the presence of baculovirus in the purified VLP preparations. To remove residual baculovirus, VLP preparations were treated with beta-propiolactone (BPL). Immunogenicity and efficacy of multi-clade H5N1 VLPs were determined in an experimental ferret H5N1 HPAI challenge model, to ascertain the effect of BPL on immunogenicity and protective efficacy against lethal challenge. Although treatment with BPL reduced immunogenicity of VLPs, all vaccinated ferrets were protected from lethal challenge with influenza A/VietNam/1203/2004 (H5N1) HPAI virus, indicating that multi-clade VLP preparations treated with BPL represent a potential approach for pandemic preparedness vaccines.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E, Atlanta, GA, USA
| |
Collapse
|
18
|
B Carvalho S, Fortuna AR, Wolff MW, Peixoto C, M Alves P, Reichl U, JT Carrondo M. Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:1988-1996. [PMID: 30008506 PMCID: PMC6033026 DOI: 10.1002/jctb.5474] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTS Using a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 µmol cm-2, salt concentration of the loading buffer: 24 mmol L-1 NaCl, and elution buffer: 920 mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL min-1), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSION Use of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - A Raquel Fortuna
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGießenGermany
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto von Guericke University MagdeburgMagdeburgGermany
| | - Manuel JT Carrondo
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
| |
Collapse
|
19
|
Carvalho SB, Moleirinho MG, Wheatley D, Welsh J, Gantier R, Alves PM, Peixoto C, Carrondo MJT. Universal label-free in-process quantification of influenza virus-like particles. Biotechnol J 2017; 12. [PMID: 28514082 DOI: 10.1002/biot.201700031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 01/19/2023]
Abstract
Virus-like particles (VLPs) are becoming established as vaccines, in particular for influenza pandemics, increasing the interest in the development of VLPs manufacturing bioprocess. However, for complex VLPs, the analytical tools used for quantification are not yet able to keep up with the bioprocess progress. Currently, quantification for Influenza relies on traditional methods: hemagglutination assay or Single Radial Immunodiffusion. These analytical technologies are time-consuming, cumbersome, and not supportive of efficient downstream process development and monitoring. Hereby we report a label-free tool that uses Biolayer interferometry (BLI) technology applied on an Octet platform to quantify Influenza VLPs at all stages of bioprocess. Human (α2,6-linked sialic acid) and avian (α2,3-linked sialic acid) biotinylated receptors associated with streptavidin biosensors were used, to quantify hemagglutinin content in several mono- and multivalent Influenza VLPs. The applied method was able to quantify hemagglutinin from crude samples up to final bioprocessing VLP product. BLI technology confirmed its value as a high throughput analytical tool with high sensitivity and improved detection limits compared to traditional methods. This simple and fast method allowed for real-time results, which are crucial for in-line monitoring of downstream processing, improving process development, control and optimization.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda G Moleirinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| |
Collapse
|
20
|
Pan H, Li WJ, Yao XJ, Wu YY, Liu LL, He HM, Zhang RL, Ma YF, Cai LT. In Situ Bioorthogonal Metabolic Labeling for Fluorescence Imaging of Virus Infection In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604036. [PMID: 28218446 DOI: 10.1002/smll.201604036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Optical fluorescence imaging is an important strategy to explore the mechanism of virus-host interaction. However, current fluorescent tag labeling strategies often dampen viral infectivity. The present study explores an in situ fluorescent labeling strategy in order to preserve viral infectivity and precisely monitor viral infection in vivo. In contrast to pre-labeling strategy, mice are first intranasally infected with azide-modified H5N1 pseudotype virus (N3 -H5N1p), followed by injection of dibenzocyclooctyl (DBCO)-functionalized fluorescence 6 h later. The results show that DBCO dye directly conjugated to N3 -H5N1p in lung tissues through in vivo bioorthogonal chemistry with high specificity and efficacy. More remarkably, in situ labeling rather than conventional prelabeling strategy effectively preserves viral infectivity and immunogenicity both in vitro and in vivo. Hence, in situ bioorthogonal viral labeling is a promising and reliable strategy for imaging and tracking viral infection in vivo.
Collapse
Affiliation(s)
- Hong Pan
- Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Jun Li
- Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Jie Yao
- Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, P. R. China
| | - Ya-Yun Wu
- Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan-Lan Liu
- Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hua-Mei He
- Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ren-Li Zhang
- Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, P. R. China
| | - Yi-Fan Ma
- Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin-Tao Cai
- Guangdong Key Laboratory of Nanomedicine, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|