1
|
Chiechio RM, Caponnetto A, Battaglia R, Ferrara C, Butera E, Musumeci P, Reitano R, Ruffino F, Maccarrone G, Di Pietro C, Marchi V, Lanzanò L, Arena G, Grasso A, Copat C, Ferrante M, Contino A. Internalization of Pegylated Er:Y 2O 3 Nanoparticles inside HCT-116 Cancer Cells: Implications for Imaging and Drug Delivery. ACS APPLIED NANO MATERIALS 2023; 6:19126-19135. [PMID: 37915835 PMCID: PMC10616970 DOI: 10.1021/acsanm.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Lanthanide-doped nanoparticles, featuring sharp emission peaks with narrow bandwidth, exhibit high downconversion luminescence intensity, making them highly valuable in the fields of bioimaging and drug delivery. High-crystallinity Y2O3 nanoparticles (NPs) doped with Er3+ ions were functionalized by using a pegylation procedure to confer water solubility and biocompatibility. The NPs were thoroughly characterized using transmission electron microscopy (TEM), inductively coupled plasma mass spectrometry (ICP-MS), and photoluminescence measurements. The pegylated nanoparticles were studied both from a toxicological perspective and to demonstrate their internalization within HCT-116 cancer cells. Cell viability tests allowed for the identification of the "optimal" concentration, which yields a detectable fluorescence signal without being toxic to the cells. The internalization process was investigated using a combined approach involving confocal microscopy and ICP-MS. The obtained data clearly indicate the efficient internalization of NPs into the cells with emission intensity showing a strong correlation with the concentrations of nanoparticles delivered to the cells. Overall, this research contributes significantly to the fields of nanotechnology and biomedical research, with noteworthy implications for imaging and drug delivery applications.
Collapse
Affiliation(s)
- Regina Maria Chiechio
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Angela Caponnetto
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Rosalia Battaglia
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Carmen Ferrara
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Ester Butera
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Paolo Musumeci
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Riccardo Reitano
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
- Consiglio
Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi
(CNR-IMM), Via S. Sofia
64, 95123 Catania, Italy
| | - Giuseppe Maccarrone
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Cinzia Di Pietro
- Dipartimento
di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica
“G. Sichel”, Università
di Catania, Via S. Sofia
89, 95123 Catania, Italy
| | - Valérie Marchi
- Institut
des Sciences Chimiques de Rennes, CNRS UMR 6226, Université
Rennes 1, Avenue du général Leclerc, 35042 Rennes, France
| | - Luca Lanzanò
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Giovanni Arena
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Alfina Grasso
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Chiara Copat
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Margherita Ferrante
- Environmental
and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical
Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95124 Catania, Italy
| | - Annalinda Contino
- Dipartimento
di Scienze Chimiche, Università di
Catania Viale Andrea
Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Abram SL, Mrkwitschka P, Thünemann AF, Radnik J, Häusler I, Bresch H, Hodoroaba VD, Resch-Genger U. Iron Oxide Nanocubes as a New Certified Reference Material for Nanoparticle Size Measurements. Anal Chem 2023; 95:12223-12231. [PMID: 37566555 DOI: 10.1021/acs.analchem.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs. In the following, the development and production of this nanoRM are highlighted including the characterization by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) as complementary methods for size and shape parameters, homogeneity and stability studies, and calculation of a complete uncertainty budget of the size features. The determination of the nanocubes' edge length by TEM and SAXS allows a method comparison. In addition, SAXS measurements can also provide the mean particle number density and the mass concentration. The certified size parameters, area equivalent circular diameter and square edge length, determined by TEM with a relative expanded uncertainty below 9%, are metrologically traceable to a natural constant for length, the very precisely known (111) lattice spacing of silicon. Cubic BAM-N012 qualifies as a certified nanoRM for estimating the precision and trueness, validation, and quality assurance of particle size and shape measurements with electron microscopy and SAXS as well as other sizing methods suitable for nanomaterials. The production of this new iron oxide nanocube RM presents an important achievement for the nanomaterial community, nanomaterial manufacturers, and regulators.
Collapse
Affiliation(s)
- Sarah-Luise Abram
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung, Richard-Willstaetter-Straße 11, 12489 Berlin, Germany
| | - Paul Mrkwitschka
- Division Surface Analysis and Interfacial Chemistry, Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Andreas F Thünemann
- Division Synthesis and Scattering of Nanostructures, Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205 Berlin, Germany
| | - Jörg Radnik
- Division Surface Analysis and Interfacial Chemistry, Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Ines Häusler
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Harald Bresch
- Division Material-Microbiome Interactions, Bundesanstalt für Materialforschung und -prüfung, Richard-Willstaetter-Straße 11, 12489 Berlin, Germany
| | - Vasile-Dan Hodoroaba
- Division Surface Analysis and Interfacial Chemistry, Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung, Richard-Willstaetter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
3
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Glaubitz C, Haeni L, Sušnik E, Rothen-Rutishauser B, Balog S, Petri-Fink A. The Influence of Liquid Menisci on Nanoparticle Dosimetry in Submerged Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206903. [PMID: 37021587 DOI: 10.1002/smll.202206903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Understanding the interaction between cells and nanoparticles (NPs) is vital to understand the hazard associated with nanoparticles. This requires quantifying and interpreting dose-response relationships. Experiments with cells cultured in vitro and exposed to particle dispersions mainly rely on mathematical models that estimate the received nanoparticle dose. However, models need to consider that aqueous cell culture media wets the inner surface of hydrophilic open wells, which results in a curved liquid-air interface called the meniscus. Here the impact of the meniscus on nanoparticle dosimetry is addressed in detail. Experiments and build an advanced mathematical model, to demonstrate that the presence of the meniscus may bring about systematic errors that must be considered to advance reproducibility and harmonization is presented. The script of the model is co-published and can be adapted to any experimental setup. Finally, simple and practical solutions to this problem, such as covering the air-liquid interface with a permeable lid or soft rocking of the cell culture well plate is proposed.
Collapse
Affiliation(s)
- Christina Glaubitz
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Eva Sušnik
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | | | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
- Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
5
|
Cardellini J, Ridolfi A, Donati M, Giampietro V, Severi M, Brucale M, Valle F, Bergese P, Montis C, Caselli L, Berti D. Probing the coverage of nanoparticles by biomimetic membranes through nanoplasmonics. J Colloid Interface Sci 2023; 640:100-109. [PMID: 36842416 DOI: 10.1016/j.jcis.2023.02.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Although promising for biomedicine, the clinical translation of inorganic nanoparticles (NPs) is limited by low biocompatibility and stability in biological fluids. A common strategy to circumvent this drawback consists in disguising the active inorganic core with a lipid bilayer coating, reminiscent of the structure of the cell membrane to redefine the chemical and biological identity of NPs. While recent reports introduced membrane-coating procedures for NPs, a robust and accessible method to quantify the integrity of the bilayer coverage is not yet available. To fill this gap, we prepared SiO2 nanoparticles (SiO2NPs) with different membrane coverage degrees and monitored their interaction with AuNPs by combining microscopic, scattering, and optical techniques. The membrane-coating on SiO2NPs induces spontaneous clustering of AuNPs, whose extent depends on the coating integrity. Remarkably, we discovered a linear correlation between the membrane coverage and a spectral descriptor for the AuNPs' plasmonic resonance, spanning a wide range of coating yields. These results provide a fast and cost-effective assay to monitor the compatibilization of NPs with biological environments, essential for bench tests and scale-up. In addition, we introduce a robust and scalable method to prepare SiO2NPs/AuNPs hybrids through spontaneous self-assembly, with a high-fidelity structural control mediated by a lipid bilayer.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Andrea Ridolfi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands(1)
| | - Melissa Donati
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | | | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Marco Brucale
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Francesco Valle
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Paolo Bergese
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali, Florence, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden(1).
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy; CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
6
|
Shalaby M, Kodous AS, Yousif N. Structural, optical characteristics and Anti-Cancer effect of Cd0.99Ni0.01O nanoparticles on human neuroblastoma and cervical cancer cell lines. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Quintanilla M, Henriksen-Lacey M, Renero-Lecuna C, Liz-Marzán LM. Challenges for optical nanothermometry in biological environments. Chem Soc Rev 2022; 51:4223-4242. [PMID: 35587578 DOI: 10.1039/d2cs00069e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Temperature monitoring is useful in medical diagnosis, and essential during hyperthermia treatments to avoid undesired cytotoxic effects. Aiming to control heating doses, different temperature monitoring strategies have been developed, largely based on luminescent materials, a.k.a. nanothermometers. However, for such nanothermometers to work, both excitation and emission light beams must travel through tissue, making its optical properties a relevant aspect to be considered during the measurements. In complex tissues, heterogeneity, and real-time alterations as a result of therapeutic treatment may have an effect on light-tissue interaction, hindering accuracy in the thermal reading. In this Tutorial Review we discuss various methods in which nanothermometers can be used for temperature sensing within heterogeneous environments. We discuss recent developments in optical (nano)thermometry, focusing on the incorporation of luminescent nanoparticles into complex in vitro and in vivo models. Methods formulated to avoid thermal misreading are also discussed, considering their respective advantages and drawbacks.
Collapse
Affiliation(s)
- Marta Quintanilla
- Materials Physics Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente, 7. 28049, Madrid, Spain.
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain. .,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Carlos Renero-Lecuna
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain. .,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain. .,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Berret JF, Graillot A. Versatile Coating Platform for Metal Oxide Nanoparticles: Applications to Materials and Biological Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5323-5338. [PMID: 35483044 DOI: 10.1021/acs.langmuir.2c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this feature article, we provide an overview of our research on statistical copolymers as a coating material for metal oxide nanoparticles and surfaces. These copolymers contain functional groups enabling noncovalent binding to oxide surfaces and poly(ethylene glycol) (PEG) polymers for colloidal stability and stealthiness. The functional groups are organic derivatives of phosphorous acid compounds R-H2PO3, also known as phosphonic acids that have been screened for their strong affinity to metals and for their multidentate binding ability. Herein we develop a polymer-based coating platform that shares features with the self-assembled monolayer (SAM) and layer-by-layer (L-b-L) deposition techniques. The milestones of this endeavor are the synthesis of PEG-based copolymers containing multiple phosphonic acid groups, the implementation of simple protocols combining versatility with high particle production yields, and the experimental evidence of the colloidal stability of the coated particles. As a demonstration, coating studies are conducted on cerium (CeO2), iron (γ-Fe2O3), aluminum (Al2O3), and titanium (TiO2) oxides of different sizes and morphologies. We finally discuss applications in the domain of nanomaterials and nanomedicine. We evaluate the beneficial effects of coatings on redispersible nanopowders, contrast agents for in vitro/vivo assays, and stimuli-responsive particles.
Collapse
Affiliation(s)
| | - Alain Graillot
- Specific Polymers, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| |
Collapse
|
9
|
Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030630. [PMID: 35336005 PMCID: PMC8954471 DOI: 10.3390/pharmaceutics14030630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β, TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study, Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand the human immune responses against Ag NP at a single-cell level, which can contribute to the development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.
Collapse
|
10
|
Paliwal H, Parihar A, Prajapati BG. Current State-of-the-Art and New Trends in Self-Assembled Nanocarriers as Drug Delivery Systems. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.836674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Self-assembled nanocarrier drug delivery has received profuse attention in the field of diagnosis and treatment of diseases. These carriers have proved that serious life-threatening diseases can be eliminated evidently by virtue of their characteristic design and features. This review is aimed at systematically presenting the research and advances in the field of self-assembled nanocarriers such as polymeric nanoparticles, dendrimers, liposomes, inorganic nanocarriers, solid lipid nanoparticles, polymerosomes, micellar systems, niosomes, and some other nanoparticles. The self-assembled delivery of nanocarriers has been developed in recent years for targeting diseases. Some of the innovative attempts with regard to prolonging drug action, improving bioavailability, avoiding drug resistance, enhancing cellular uptake, and so on have been discussed. The discussion about various delivery systems included the investigation conducted at the preliminary stage, i.e., preclinical trials and assessment of safety. The clinical studies of some of the recently developed self-assembled products are currently at the clinical trial phase or FDA approved.
Collapse
|
11
|
Cardellini J, Caselli L, Lavagna E, Salassi S, Amenitsch H, Calamai M, Montis C, Rossi G, Berti D. Membrane Phase Drives the Assembly of Gold Nanoparticles on Biomimetic Lipid Bilayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:4483-4494. [PMID: 35299820 PMCID: PMC8919252 DOI: 10.1021/acs.jpcc.1c08914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/07/2022] [Indexed: 05/15/2023]
Abstract
In recent years, many efforts have been devoted to investigating the interaction of nanoparticles (NPs) with lipid biomimetic interfaces, both from a fundamental perspective aimed at understanding relevant phenomena occurring at the nanobio interface and from an application standpoint for the design of novel lipid-nanoparticle hybrid materials. In this area, recent reports have revealed that citrate-capped gold nanoparticles (AuNPs) spontaneously associate with synthetic phospholipid liposomes and, in some cases, self-assemble on the lipid bilayer. However, the mechanistic and kinetic aspects of this phenomenon are not yet completely understood. In this study, we address the kinetics of interaction of citrate-capped AuNP with lipid vesicles of different rigidities (gel-phase rigid membranes on one side and liquid-crystalline-phase soft membranes on the other). The formation of AuNP-lipid vesicle hybrids was monitored over different time and length scales, combining experiments and simulation. The very first AuNP-membrane contact was addressed through molecular dynamics simulations, while the structure, morphology, and physicochemical features of the final colloidal objects were studied through UV-visible spectroscopy, small-angle X-ray scattering, dynamic light scattering, and cryogenic electron microscopy. Our results highlight that the physical state of the membrane triggers a series of events at the colloidal length scale, which regulate the final morphology of the AuNP-lipid vesicle adducts. For lipid vesicles with soft membranes, the hybrids appear as single vesicles decorated by AuNPs, while more rigid membranes lead to flocculation with AuNPs acting as bridges between vesicles. Overall, these results contribute to a mechanistic understanding of the adhesion or self-assembly of AuNPs onto biomimetic membranes, which is relevant for phenomena occurring at the nano-bio interfaces and provide design principles to control the morphology of lipid vesicle-inorganic NP hybrid systems.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucrezia Caselli
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Enrico Lavagna
- Department
of Physics, University of Genoa, Genoa 16146, Italy
| | | | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Martino Calamai
- European
Laboratory for Non-Linear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
| | - Costanza Montis
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giulia Rossi
- Department
of Physics, University of Genoa, Genoa 16146, Italy
| | - Debora Berti
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Novel Green Approaches for the Preparation of Gold Nanoparticles and Their Promising Potential in Oncology. Processes (Basel) 2022. [DOI: 10.3390/pr10020426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The difficulty of achieving targeted drug delivery following administration of currently marketed anticancer therapeutics is a still a concern. Metallic nanoparticles (NPs) developed through nanotechnology breakthroughs appear to be promising in this regard. Research studies pertaining to gold NPs have indicated their promising applicability in cancer diagnosis, drug delivery and therapy. These NPs have also recently paved the path for precise drug delivery and site-specific targeting. Our review paper thus highlights the scope and impact of biogenetically generated gold nanoparticles (NPs) in cancer therapy. In a critical, constructive, and methodical manner, we compare the advantages offered by gold NPs over other metal NPs. Moreover, we also focus on novel ‘greener’ strategies that have been recently explored for the preparation of gold NPs and shed light on the disadvantages of conventional NP synthesis routes. Future prospects pertaining to the use of gold NPs in oncotherapy and domains that require further investigation are also addressed.
Collapse
|
13
|
Cai W, Wu Q, Yan ZZ, He WZ, Zhou XM, Zhou LJ, Zhang JY, Zhang X. Neuroprotective Effect of Ultrasound Triggered Astaxanthin Release Nanoparticles on Early Brain Injury After Subarachnoid Hemorrhage. Front Chem 2021; 9:775274. [PMID: 34778220 PMCID: PMC8581801 DOI: 10.3389/fchem.2021.775274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a fatal disease. Within 72 h of SAH, the intracranial blood-brain barrier (BBB) is destroyed, and the nerve cells have responses such as autophagy, apoptosis, and oxidative stress. Antioxidation is an essential treatment of SAH. Astaxanthin (ATX) induces cells' antioxidant behaviors by regulating related signal pathways to reduce the damage of brain oxidative stress, inflammation, and apoptosis. Because of its easy degradability and low bioavailability, ATX is mainly encapsulated with stimulus-responsive nanocarriers to improve its stability, making it rapidly release in the brain and efficiently enter the lesion tissue. In this study, the ultrasonic cavitation agent perfluorocarbon (PFH), ATX, and fluorescent dye IR780 were loaded with polydopamine (PDA) to prepare a US triggered release nanoparticles (AUT NPs). The core-shell structure of AUT NPs formed a physical barrier to improve the bioavailability of ATX. AUT NPs have high ATX loading capacity and US responsiveness. The experimental results show that the AUT NPs have high stability in the physiological environment. Both US and pH stimuli can trigger the release. Under US, PFH breaks through the rigid shell. The structure of AUT NPs is destroyed in situ, releasing the loaded drugs into neuronal cells to realize the antioxidant and antiapoptotic effects. The in vivo experiment results show that the AUT NPs have good biosafety. They release the drugs in the brain under stimuli. The in vivo treatment results also show that AUT NPs have an excellent therapeutic effect. This approach presents an experimental basis for the establishment of Innovative SAH treatments.
Collapse
Affiliation(s)
- Wei Cai
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi Zhong Yan
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Neurosurgery, The 904th Hospital of the Joint Logistics Support Force of Chinese People’s Liberation Army, Wuxi, China
| | - Wei-Zhen He
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Long-Jiang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jian-Yong Zhang
- Department of Neurosurgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Abomuti MA, Danish EY, Firoz A, Hasan N, Malik MA. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. BIOLOGY 2021; 10:1075. [PMID: 34827068 PMCID: PMC8614830 DOI: 10.3390/biology10111075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
The facile bio-fabrication of zinc oxide (ZnO) nanoparticles (NPs) is described in this study using an aqueous leaf extract of Salvia officinalis L. as an efficient stabilizing/capping agent. Biosynthesis of nanomaterials using phytochemicals present in the plants has received great attention and is gaining significant importance as a possible alternative to the conventional chemical methods. The properties of the bio-fabricated ZnONPs were examined by different techniques, such as UV-visible spectroscopy, X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric/differential scanning calorimetry analysis (TGA/DTG). The photocatalytic activity of ZnONPs was investigated against methyl orange (MO) under UV light irradiation. Under optimum experimental conditions, ZnONPs exhibited 92.47% degradation of MO. Furthermore, the antifungal activity of bio-fabricated ZnONPs was determined against different clinical Candida albicans isolates following standard protocols of broth microdilution and disc diffusion assay. The susceptibility assay revealed that ZnONPs inhibit the growth of all the tested fungal isolates at varying levels with MIC values ranging from 7.81 to 1.95 µg/mL. Insight mechanisms of antifungal action appeared to be originated via inhibition of ergosterol biosynthesis and the disruption of membrane integrity. Thus, it was postulated that bio-fabricated ZnONPs have sustainable applications in developing novel antifungal agents with multiple drug targets. In addition, ZnONPs show efficient photocatalytic efficiency without any significant catalytic loss after the catalyst was recycled and reused multiple times.
Collapse
Affiliation(s)
- May Abdullah Abomuti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ekram Y. Danish
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box. 2097, Jazan, Saudi Arabia;
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.A.A.); (E.Y.D.)
| |
Collapse
|
15
|
Caselli L, Ridolfi A, Mangiapia G, Maltoni P, Moulin JF, Berti D, Steinke NJ, Gustafsson E, Nylander T, Montis C. Interaction of nanoparticles with lipid films: the role of symmetry and shape anisotropy. Phys Chem Chem Phys 2021; 24:2762-2776. [PMID: 34647947 DOI: 10.1039/d1cp03201a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bioactivity, biological fate and cytotoxicity of nanomaterials when they come into contact with living organisms are determined by their interaction with biomacromolecules and biological barriers. In this context, the role of symmetry/shape anisotropy of both the nanomaterials and biological interfaces in their mutual interaction, is a relatively unaddressed issue. Here, we study the interaction of gold nanoparticles (NPs) of different shapes (nanospheres and nanorods) with biomimetic membranes of different morphology, i.e. flat membranes (2D symmetry, representative of the most common plasma membrane geometry), and cubic membranes (3D symmetry, representative of non-lamellar membranes, found in Nature under certain biological conditions). For this purpose we used an ensemble of complementary structural techniques, including Neutron Reflectometry, Grazing Incidence Small-Angle Neutron Scattering, on a nanometer lengthscale and Confocal Laser Scanning Microscopy on a micrometer length scale. We found that the structural stability of the membrane towards NPs is dependent on the topological characteristic of the lipid assembly and of the NPs, where a higher symmetry gave higher stability. In addition, Confocal Laser Scanning Microscopy analyses highlighted that NPs interact with cubic and lamellar phases according to two distinct mechanisms, related to the different structures of the lipid assemblies. This study for the first time systematically addresses the role of NPs shape in the interaction with lipid assemblies with different symmetry. The results will contribute to improve the fundamental knowledge on lipid interfaces and will provide new insights on the biological function of phase transitions as a response strategy to the exposure of NPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Chemistry, University of Florence and CSGI, Florence, Italy.
| | - Andrea Ridolfi
- Department of Chemistry, University of Florence and CSGI, Florence, Italy. .,ISMN-CNR and CSGI, Bologna, Italy
| | - Gaetano Mangiapia
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany
| | | | - Jean-François Moulin
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching bei München, Germany
| | - Debora Berti
- Department of Chemistry, University of Florence and CSGI, Florence, Italy.
| | | | - Emil Gustafsson
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Tommy Nylander
- Department of Chemistry, Physical Chemistry, Lund University, Lund, Sweden. .,NanoLund, Lund University, Lund (Sweden, Lund Institute of Advanced Neutron and X-Ray Science - LINXS), Lund, Sweden
| | - Costanza Montis
- Department of Chemistry, University of Florence and CSGI, Florence, Italy.
| |
Collapse
|
16
|
Prasad M, Kumar R, Buragohain L, Kumari A, Ghosh M. Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Front Cell Dev Biol 2021; 9:696668. [PMID: 34631696 PMCID: PMC8495170 DOI: 10.3389/fcell.2021.696668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Engineered nanomaterials are bestowed with certain inherent physicochemical properties unlike their parent materials, rendering them suitable for the multifaceted needs of state-of-the-art biomedical, and pharmaceutical applications. The log-phase development of nano-science along with improved "bench to beside" conversion carries an enhanced probability of human exposure with numerous nanoparticles. Thus, toxicity assessment of these novel nanoscale materials holds a key to ensuring the safety aspects or else the global biome will certainly face a debacle. The toxicity may span from health hazards due to direct exposure to indirect means through food chain contamination or environmental pollution, even causing genotoxicity. Multiple ways of nanotoxicity evaluation include several in vitro and in vivo methods, with in vitro methods occupying the bulk of the "experimental space." The underlying reason may be multiple, but ethical constraints in in vivo animal experiments are a significant one. Two-dimensional (2D) monoculture is undoubtedly the most exploited in vitro method providing advantages in terms of cost-effectiveness, high throughput, and reproducibility. However, it often fails to mimic a tissue or organ which possesses a defined three-dimensional structure (3D) along with intercellular communication machinery. Instead, microtissues such as spheroids or organoids having a precise 3D architecture and proximate in vivo tissue-like behavior can provide a more realistic evaluation than 2D monocultures. Recent developments in microfluidics and bioreactor-based organoid synthesis have eased the difficulties to prosper nano-toxicological analysis in organoid models surpassing the obstacle of ethical issues. The present review will enlighten applications of organoids in nanotoxicological evaluation, their advantages, and prospects toward securing commonplace nano-interventions.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Lukumoni Buragohain
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | | | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
18
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
19
|
Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021; 164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Cancer remains a global health problem largely due to a lack of effective therapies. Major cancer management strategies include chemotherapy, surgical resection, and radiation. Unfortunately, these strategies have a number of limitations, such as non-specific side effects, uneven delivery of the drugs, and lack of proper monitoring technology. Inorganic nanoparticles (NPs) are considered promising agents in treating and tracing cancer due to their unique physicochemical properties such as the controlled release of drugs, bioavailability, biocompatibility, stability, and large surface area. Also, they enhance the solubility of hydrophobic drugs, prolong their circulation time, prevent undesired off-targeting and subsequent side effects, making them efficient particles in cancer theranostics. Promising inorganic-NPs include gold, selenium, silica, and oxide NPs. Further, several techniques are used to modify the surface of inorganic-NPs, making them more efficient for the effective transport of therapeutic cargos to overcome cellular barriers. Thus, inorganic-NPs function effectively, surmounting the intrinsic drawbacks of traditional organic NPs. This mini-review summarizes the significant inorganic-NPs, their properties, surface modifications, cellular uptake, and bio-distributions, along with their potential use in cancer theranostics. We also discuss the promises and challenges faced during the inorganic-NPs mediated therapeutic approach for cancer and these particles' status in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
20
|
Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm Sin B 2021; 11:903-924. [PMID: 33996406 PMCID: PMC8105776 DOI: 10.1016/j.apsb.2021.02.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023] Open
Abstract
The beneficial or deleterious effects of nanomedicines emerge from their complex interactions with intracellular pathways and their subcellular fate. Moreover, the dynamic nature of plasma membrane accounts for the movement of these nanocarriers within the cell towards different organelles thereby not only influencing their pharmacokinetic and pharmacodynamic properties but also bioavailability, therapeutic efficacy and toxicity. Therefore, an in-depth understanding of underlying parameters controlling nanocarrier endocytosis and intracellular fate is essential. In order to direct nanoparticles towards specific sub-cellular organelles the physicochemical attributes of nanocarriers can be manipulated. These include particle size, shape and surface charge/chemistry. Restricting the particle size of nanocarriers below 200 nm contributes to internalization via clathrin and caveolae mediated pathways. Similarly, a moderate negative surface potential confers endolysosomal escape and targeting towards mitochondria, endoplasmic reticulum (ER) and Golgi. This review aims to provide an insight into these physicochemical attributes of nanocarriers fabricated using amphiphilic graft copolymers affecting cellular internalization. Fundamental principles understood from experimental studies have been extrapolated to draw a general conclusion for the designing of optimized nanoparticulate drug delivery systems and enhanced intracellular uptake via specific endocytic pathway.
Collapse
Key Words
- AR, aspect ratio
- Amphiphilic
- CCP, clathrin coated pits
- Cav-1, caveolin-1
- Copolymer
- Cy, cyanine
- DOX, doxorubicin
- ER, endoplasmic reticulum
- FITC, fluorescein isothiocyanate
- HER-2, human epidermal growth factor receptor 2
- IL-2, interleukin
- Internalization
- Intracellular fate
- Nanoparticles
- RBITC, rhodamine B isothiocyanate
- RES, reticuloendothelial system
- Rmax, minimum size threshold value
- Rmin, maximum size threshold value
- SEM, scanning electron microscopy
- SR & LR, short rod and long rod
- TEM, transmission electron microscopy
- mPEG, methoxy poly(ethylene glycol)
Collapse
Affiliation(s)
- Samrat Mazumdar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS-PILANI), Pilani, Rajasthan 333031, India
| |
Collapse
|
21
|
Choi G, Rejinold NS, Piao H, Choy JH. Inorganic-inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 2021; 12:5044-5063. [PMID: 34168768 PMCID: PMC8179608 DOI: 10.1039/d0sc06724e] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues. Our present review highlights recent developments in inorganic-inorganic nanohybrids, and their applications in bio-imaging, drug delivery, and photo-therapy. In addition, their future scope is also discussed in detail.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- College of Science and Technology, Dankook University Cheonan 31116 Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- Department of Pre-medical Course, College of Medicine, Dankook University Cheonan 31116 Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| |
Collapse
|
22
|
Hifni B, Khan M, Devereux SJ, Byrne MH, Quinn SJ, Simpson JC. Investigation of the Cellular Destination of Fluorescently Labeled Carbon Nanohorns in Cultured Cells. ACS APPLIED BIO MATERIALS 2020; 3:6790-6801. [PMID: 35019342 DOI: 10.1021/acsabm.0c00748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high surface area, facile functionalization, and biocompatibility of carbon nanohorns (CNHs) make them attractive for many applications, including drug delivery. The cellular destination of nanomaterials dictates both the therapeutic application and the potential toxicity. Identifying the uptake mechanism is challenging as several endocytic pathways have been identified that facilitate cellular entry. Here, the cellular uptake of fluorescently labeled CNHs was assessed by utilizing quantitative cell-based assays to determine the factors influencing how internalization occurs and the destinations they reach in HeLa cells. Cell viability assays suggest that about 80% of the cells remained viable even at the highest concentration of 20 μg/mL exposure to CNHs. Uptake studies revealed that when pulse-chase conditions were applied, CNHs were seen to be localized both at the cell periphery and in a juxtanuclear pattern inside HeLa cells, in the latter case colocalizing with the lysosomal marker LAMP1. RNA interference studies, using a panel of RNA tools to individually deplete key molecules associated with the endocytic machinery, failed to block the internalization of CNHs into cells, suggesting that multiple mechanisms of endocytosis are used by this particle type.
Collapse
Affiliation(s)
- Badriah Hifni
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 N2E5, Ireland.,School of Biology & Environmental Science, University College Dublin, Belfield, Dublin 4 D04 N2E5, Ireland
| | - Mona Khan
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 N2E5, Ireland
| | - Stephen J Devereux
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 N2E5, Ireland
| | - Maria H Byrne
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 N2E5, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Belfield, Dublin 4 D04 N2E5, Ireland
| | - Jeremy C Simpson
- School of Biology & Environmental Science, University College Dublin, Belfield, Dublin 4 D04 N2E5, Ireland
| |
Collapse
|
23
|
Martins C, Chauhan VM, Araújo M, Abouselo A, Barrias CC, Aylott JW, Sarmento B. Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine (Lond) 2020; 15:2287-2309. [PMID: 32945230 DOI: 10.2217/nnm-2020-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Therapeutic and diagnostic payloads are usually associated with properties that compromise their efficacy, such as poor aqueous solubility, short half-life, low bioavailability, nonspecific accumulation and diverse side effects. Nanotechnological solutions have emerged to circumvent some of these drawbacks, augmenting therapeutic and/or diagnostic outcomes. Nanotechnology has benefited from the rise in polymer science research for the development of novel nanosystems for therapeutic and diagnostic purposes. Polymers are a widely used class of biomaterials, with a considerable number of regulatory approvals for application in clinics. In addition to their versatility in production and functionalization, several synthetic and natural polymers demonstrate biocompatible properties that dictate their successful biological performance. This article highlights the physicochemical characteristics of a variety of natural and synthetic biocompatible polymers, as well as their role in the manufacture of nanotechnology-based systems, state-of-art applications in disease treatment and diagnosis, and current challenges in finding a way to clinics.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Ruade Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Veeren M Chauhan
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Amjad Abouselo
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.,CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| |
Collapse
|
24
|
Montis C, Caselli L, Valle F, Zendrini A, Carlà F, Schweins R, Maccarini M, Bergese P, Berti D. Shedding light on membrane-templated clustering of gold nanoparticles. J Colloid Interface Sci 2020; 573:204-214. [DOI: 10.1016/j.jcis.2020.03.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
|
25
|
Zhang J, Teng F, Tang S, Zhang Y, Guo Y, Li J, Li Y, Zhang C, Xiong L. The Effect of Polymer Dots During Mammalian Early Embryo Development and Their Biocompatibility on Maternal Health. Macromol Biosci 2020; 20:e2000128. [PMID: 32567242 DOI: 10.1002/mabi.202000128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Conjugated polymer dots have excellent fluorescence properties in terms of their structural diversity and functional design, showing broad application prospects in the fields of biological imaging and biosensing. Polymer dots contain no heavy metals and are thought to be of low toxicity and good biocompatibility. Therefore, systematic studies on their potential toxicity are needed. Herein, the biocompatibility of poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)],10% benzothiadiazole(y) (PFBT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer dots on early embryo development as well as maternal health is studied in detail. The results show that prepared polymer dots are dose-dependently toxic to preimplantation embryos, and low-dose polymer dots can be used for cell labeling of early embryos without affecting the normal development of embryos into blastocysts. In addition, the in vivo distribution data show that the polymer dots accumulate mainly in the maternal liver, spleen, kidney, placenta, ovary, and lymph nodes of the pregnant mice. Histopathological examination and blood biochemical tests demonstrate that exposure of the maternal body to polymer dots at a dosage of 14 µg g-1 does not affect the normal function of the maternal organs and early fetal development. The research provides a safe basis for the wide application of polymer dots.
Collapse
Affiliation(s)
- Juxiang Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Fei Teng
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chunfu Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
26
|
Ridolfi A, Caselli L, Montis C, Mangiapia G, Berti D, Brucale M, Valle F. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation. J Microsc 2020; 280:194-203. [PMID: 32432336 DOI: 10.1111/jmi.12910] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Inorganic nanoparticles (NPs) represent promising examples of engineered nanomaterials, providing interesting biomedical solutions in several fields, like therapeutics and diagnostics. Despite the extensive number of investigations motivated by their remarkable potential for nanomedicinal applications, the interactions of NPs with biological interfaces are still poorly understood. The effect of NPs on living organisms is mediated by biological barriers, such as the cell plasma membrane, whose lateral heterogeneity is thought to play a prominent role in NPs adsorption and uptake pathways. In particular, biological membranes feature the presence of rafts, that is segregated lipid micro and/or nanodomains in the so-called liquid ordered phase (Lo ), immiscible with the surrounding liquid disordered phase (Ld ). Rafts are involved in various biological functions and act as sites for the selective adsorption of materials on the membrane. Indeed, the thickness mismatch present along their boundaries generates energetically favourable conditions for the adsorption of NPs. Despite its clear implications in NPs internalisation processes and cytotoxicity, a direct proof of the selective adsorption of NPs along the rafts' boundaries is still missing to date. Here we use multicomponent supported lipid bilayers (SLBs) as reliable synthetic models, reproducing the nanometric lateral heterogeneity of cell membranes. After being characterised by atomic force microscopy (AFM) and neutron reflectivity (NR), multidomain SLBs are challenged by prototypical inorganic nanoparticles, that is citrated gold nanoparticles (AuNPs), under simplified and highly controlled conditions. By exploiting AFM, we demonstrate that AuNPs preferentially target lipid phase boundaries as adsorption sites. The herein reported study consolidates and extends the fundamental knowledge on NPs-membrane interactions, which constitute a key aspect to consider when designing NPs-related biomedical applications. LAY DESCRIPTION: Inorganic nanoparticles (NPs) represent promising examples of engineered nanomaterials, offering interesting biomedical solutions in multiple fields like therapeutics and diagnostics. Despite being extensively investigated due to their remarkable potential for nanomedicinal applications, the interaction of NPs with biological systems is in several cases still poorly understood. The interaction of NPs with living organisms is mediated by biological barriers, such as the cell plasma membrane. Supported lipid bilayers (SLBs) represent suitable synthetic membrane models for studying the physicochemical properties of natural interfaces and their interaction with inorganic nanomaterials under simplified and controlled conditions. Recently, multicomponent SLBs were developed in order to mimic the lateral heterogeneity of most biological membranes. In particular, biological membranes feature the presence of rafts, that is segregated lipid micro and/or nanodomains, enriched in cholesterol, sphingomyelin, saturated glycerophospholipids and glycosphingolipids: these lipids segregate in the so-called liquid-ordered phase (Lo ), characterised by a high molecular packing degree, which promotes the phase separation from the surrounding liquid-crystalline (disordered, Ld ) phase, where the intermolecular mobility is increased. Rafts are thought to participate in the formation and targeting of nano-sized biogenic lipid vesicles and are also actively involved in multiple membrane processes. Indeed, Lo -Ld phase boundaries represent high energy areas, providing active sites for the preferential adsorption of external material. The selective adsorption of NPs along the phase boundaries of rafted membranes has been theorised and indirectly probed by different research groups; however, a direct proof of this phenomenon is still missing to date. We herein exploit atomic force microscopy (AFM) to directly visualise the preferential adsorption of gold nanoparticles (AuNPs) along the phase boundaries of multicomponent SLBs (previously characterised by neutron reflectivity), obtained from synthetic vesicles containing both an Ld and an Lo phase. The quantitative localisation and morphometry of AuNPs adsorbed on the SLB reveal important information on their interaction with the lipid matrix and directly prove the already theorised differential NPs-lipid interaction at the phase boundaries. The presented results could help the development of future NP-based applications, involving NPs adsorption on membranes with nanoscale phase segregations.
Collapse
Affiliation(s)
- Andrea Ridolfi
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy.,Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy.,Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Florence, Italy
| | - Lucrezia Caselli
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Florence, Italy
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy.,Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Florence, Italy
| | - Gaetano Mangiapia
- GEMS am Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Garching, Germany
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy.,Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Florence, Italy
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy.,Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy.,Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna, Italy
| |
Collapse
|
27
|
Halawani EM, Hassan AM, Gad El-Rab SMF. Nanoformulation of Biogenic Cefotaxime-Conjugated-Silver Nanoparticles for Enhanced Antibacterial Efficacy Against Multidrug-Resistant Bacteria and Anticancer Studies. Int J Nanomedicine 2020; 15:1889-1901. [PMID: 32256066 PMCID: PMC7090159 DOI: 10.2147/ijn.s236182] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Due to the expanded bacterial genetic tolerance to antibiotics through different mechanisms, infectious diseases of MDR bacteria are difficult for treatment. Consequently, we synthesized drug conjugated nanoparticles to dissolve this problem. Moreover, the present study aims to display the cell death status treated with cefotaxime-CS-AgNPs and also, apoptosis pathways of human RPE-1 normal cells and human MCF-7 breast cancer cells. METHODS Here, we demonstrate the possibility to synthesize AgNPs and conjugate them with cefotaxime to survey the probability of cefotaxime-CS-AgNPs as an antimicrobial agent against cefotaxime-resistant strains E. coli and MRSA. RESULTS TEM showed the size of AgNPs, CS-AgNPs and cefotaxime-CS-AgNPs ranged from 7.42 to 18.3 nm, 8.05-23.89 nm and 8.48-25.3 nm, respectively, with a spherical shape. The cefotaxime-CS-AgNPs enhanced the high antimicrobial properties compared to AgNPs or pure antibiotic. The MIC of Cefotaxime-CS-AgNPs ranged from 3 µg/mL to 8 µg/mL against tested E. coli and MRSA bacteria. Consequently, the highest reduction in the MIC of cefotaxime-CS-AgNPs was noted against tested strains ranging from 22% to 96%. Comparing cefotaime-CS-AgNPs to AgNPs we showed that cefotaime-CS-AgNPs have no cytotoxic effect on normal cells at even 12 µg/mL for 24 hrs. The IC50 for the AgNPs and cefotaxime-CS-AgNPs was 12 µg/mL for human RPE-1 normal cells and human MCF-7 breast cancer cell lines. The pro-apoptotic genes p53, p21, and Bax of cancer cell lines significantly upregulated followed by downregulated by anti-apoptotic gene Bcl-2 after 48 hrs at 24 µg/mL, and this concentration represents the most effective dose. CONCLUSION Results enhanced the conjugating utility in old unresponsive cefotaxime to AgNPs to restore its efficiency against previous strains and demonstrated potential therapeutic applications of cefotaxime-CS-AgNPs. Moreover, this research gives remarkable insights for designing nanoscale delivery and curative systems that have a pronounced cytotoxic activity on cancer cells and are safe to normal cells.
Collapse
Affiliation(s)
- Eman M Halawani
- Division of Microbiology, Department of Biology, Faculty of Science, Taif University, Taif21974, Saudi Arabia
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aziza M Hassan
- Department of Biotechnology, Faculty of Science, Taif University, Taif21974, Saudi Arabia
- Cell Biology Department, National Research Centre, Dokki, Giza, Egypt
| | - Sanaa M F Gad El-Rab
- Department of Biotechnology, Faculty of Science, Taif University, Taif21974, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut71516, Egypt
| |
Collapse
|
28
|
Mishra S, Sharma S, Javed MN, Pottoo FH, Barkat MA, Harshita, Alam MS, Amir M, Sarafroz M. Bioinspired Nanocomposites: Applications in Disease Diagnosis and Treatment. Pharm Nanotechnol 2019; 7:206-219. [PMID: 31030662 DOI: 10.2174/2211738507666190425121509] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advancement in the field of synthesis and application of nanomaterials provided holistic approach for both diagnosis as well as treatment of diseases. Briefly, three-dimensional scaffold and geometry of bioinspired nanocarriers modulate bulk properties of loaded drug at molecular/ atomic structures in a way to conjointly modulate pathological as well as altered metabolic states of diseases, in very predictable and desired manners at a specific site of the target. While, from the pharmacotechnical point of views, the bioinspired nanotechnology processes carriers either favor to enhance the solubility of poorly aqueous soluble drugs or enable well-controlled sustained release profiles, to reduce the frequency of drug regimen. Consequently, from biopharmaceutical point of view, these composite materials, not only minimize first pass metabolism but also significantly enhance in-vivo biodistribution, permeability, bio-adhesion and diffusivity. In lieu of the above arguments, the nano-processed materials exhibit an important role for diagnosis and treatments. In the diagnostic center, recent emergences and advancement in the tools and techniques to diagnose the unrevealed diseases with the help of instruments such as, computed tomography, magnetic resonance imaging etc; heavily depend upon nanotechnology-based materials. In this paper, a brief introduction and recent application of different types of nanomaterials in the field of tissue engineering, cancer treatment, ocular therapy, orthopedics, and wound healing as well as drug delivery system are thoroughly discussed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Abdul Kalam Technical University, Lucknow, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research SPER (Formerly, Faculty of Pharmacy), Jamia Hamdard, New- Delhi, India.,School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Amir
- Department of Natural Product & Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
29
|
Mendozza M, Caselli L, Salvatore A, Montis C, Berti D. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. SOFT MATTER 2019; 15:8951-8970. [PMID: 31680131 DOI: 10.1039/c9sm01601e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This contribution reviews the state of art on hybrid soft matter assemblies composed of inorganic nanoparticles (NP) and lamellar or non-lamellar lipid bilayers. After a short outline of the relevant energetic contributions, we address the interaction of NPs with synthetic lamellar bilayers, meant as cell membrane mimics. We then review the design of hybrid nanostructured materials composed of lipid bilayers and some classes of inorganic NPs, with particular emphasis on the effects on the amphiphilic phase diagram and on the additional properties contributed by the NPs. Then, we present the latest developments on the use of lipid bilayers as coating agents for inorganic NPs. Finally, we remark on the main achievements of the last years and our vision for the development of the field.
Collapse
Affiliation(s)
- Marco Mendozza
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Annalisa Salvatore
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
30
|
Zyuzin MV, Cassani M, Barthel MJ, Gavilan H, Silvestri N, Escudero A, Scarpellini A, Lucchesi F, Teran FJ, Parak WJ, Pellegrino T. Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41957-41971. [PMID: 31584801 DOI: 10.1021/acsami.9b15501] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The design of magnetic nanostructures whose magnetic heating efficiency remains unaffected at the tumor site is a fundamental requirement to further advance magnetic hyperthermia in the clinic. This work demonstrates that the confinement of magnetic nanoparticles (NPs) into a sub-micrometer cavity is a key strategy to enable a certain degree of nanoparticle motion and minimize aggregation effects, consequently preserving the magnetic heat loss of iron oxide nanocubes (IONCs) under different conditions, including intracellular environments. We fabricated magnetic layer-by-layer (LbL) self-assembled polyelectrolyte sub-micrometer capsules using three different approaches, and we studied their heating efficiency as obtained in aqueous dispersions and after internalization by tumor cells. First, IONCs were added to the hollow cavities of LbL submicrocapsules, allowing the IONCs to move to a certain extent in the capsule cavities. Second, IONCs were coencapsulated into solid calcium carbonate cores coated with LbL polymer shells. Third, IONCs were incorporated within the polymer layers of the LbL capsule walls. In aqueous solution, higher specific absorption rate (SAR) values were related to those of free IONCs, while lower SAR values were recorded for capsule/core assemblies. However, after uptake by cancer cell lines (SKOV-3 cells), the SAR values of the free IONCs were significantly lower than those observed for capsule/core assemblies, especially after prolonged incubation periods (24 and 48 h). These results show that IONCs packed into submicrocavities preserve the magnetic losses, as the SAR values remained almost invariable. Conversely, free IONCs without the protective capsule shell agglomerated and their magnetic losses were strongly reduced. Indeed, IONC-loaded capsules and free IONCs reside inside endosomal and lysosomal compartments after cellular uptake and show strongly reduced magnetic losses due to the immobilization and aggregation in centrosymmetrical structures in the intracellular vesicles. The confinement of IONCs into sub-micrometer cavities is a key strategy to provide a sustained and predictable heating dose inside biological matrices.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191023 St. Petersburg , Russia
| | - Marco Cassani
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica , Università di Genova , Via Dodecaneso 33 , 16146 Genova , Italy
| | - Markus J Barthel
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Helena Gavilan
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Niccolò Silvestri
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica , Università di Genova , Via Dodecaneso 33 , 16146 Genova , Italy
| | - Alberto Escudero
- Leibniz Institute for New Materials , Campus D2 2, D-66123 Saarbrücken , Germany
- Departamento de Química Inorgánica and Instituto de Investigaciones Químicas (IIQ) , Universidad de Sevilla-CSIC , Calle Américo Vespucio 49 , E-41092 Seville , Spain
| | - Alice Scarpellini
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Federica Lucchesi
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Informatica,B ioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS) , Via all'Opera Pia, 13 , 16145 Genova , Italy
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
- Nanobiotecnología (iMdea-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| | - Wolfgang J Parak
- Faculty of Physics and Chemistry and CHyN , Universität Hamburg , 20146 Hamburg , Germany
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
31
|
You ZQ, Wu Q, Zhou XM, Zhang XS, Yuan B, Wen LL, Xu WD, Cui S, Tang XL, Zhang X. Receptor-Mediated Delivery of Astaxanthin-Loaded Nanoparticles to Neurons: An Enhanced Potential for Subarachnoid Hemorrhage Treatment. Front Neurosci 2019; 13:989. [PMID: 31619957 PMCID: PMC6759683 DOI: 10.3389/fnins.2019.00989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Astaxanthin (ATX) is a carotenoid that exerts strong anti-oxidant and anti-inflammatory property deriving from its highly unsaturated molecular structures. However, the low stability and solubility of ATX results in poor bioavailability, which markedly hampers its application as therapeutic agent in clinic advancement. This study investigated a promising way of transferrin conjugated to poly (ethylene glycol) (PEG)-encapsulated ATX nanoparticles (ATX-NPs) on targeted delivery and evaluated the possible mechanism underlying neuroprotection capability. As a result, the ATX integrated into nanocarrier presented both well water-dispersible and biocompatible, primely conquering its limitations. More than that, the transferrin-containing ATX-NPs exhibited enhanced cellular uptake efficiency than that of ATX-NPs without transferrin conjugated in primary cortical neurons. Additionally, compared to free ATX, transferrin-containing ATX-NPs with lower ATX concentration showed powerful neuroprotective effects on OxyHb-induced neuronal damage. Taken together, the improved bioavailability and enhanced neuroprotective effects enabled ATX-NPs as favorable candidates for targeted delivery and absorption of ATX. We believe that these in vitro findings will provide insights for advancement of subarachnoid hemorrhage therapy.
Collapse
Affiliation(s)
- Zong-Qi You
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Jiangsu University, Zhenjiang, China
| | - Qi Wu
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Second Military Medical University, Shanghai, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Bin Yuan
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Li Wen
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Wei-Dong Xu
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Southern Medical University (Guangzhou), Nanjing, China
| | - Sheng Cui
- College of Material Sciences and Engineering, Nanjing Tech University, Nanjing, China
| | - Xiang-Long Tang
- College of Material Sciences and Engineering, Nanjing Tech University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Jiangsu University, Zhenjiang, China.,Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China.,Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Eom HJ, Choi J. Clathrin-mediated endocytosis is involved in uptake and toxicity of silica nanoparticles in Caenohabditis elegans. Chem Biol Interact 2019; 311:108774. [DOI: 10.1016/j.cbi.2019.108774] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
33
|
Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C. Nanoparticle-Plant Interactions: Two-Way Traffic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901794. [PMID: 31318142 PMCID: PMC6800249 DOI: 10.1002/smll.201901794] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Indexed: 05/03/2023]
Abstract
In this Review, an effort is made to discuss the most recent progress and future trend in the two-way traffic of the interactions between plants and nanoparticles (NPs). One way is the use of plants to synthesize NPs in an environmentally benign manner with a focus on the mechanism and optimization of the synthesis. Another way is the effects of synthetic NPs on plant fate with a focus on the transport mechanisms of NPs within plants as well as NP-mediated seed germination and plant development. When NPs are in soil, they can be adsorbed at the root surface, followed by their uptake and inter/intracellular movement in the plant tissues. NPs may also be taken up by foliage under aerial deposition, largely through stomata, trichomes, and cuticles, but the exact mode of NP entry into plants is not well documented. The NP-plant interactions may lead to inhibitory or stimulatory effects on seed germination and plant development, depending on NP compositions, concentrations, and plant species. In numerous cases, radiation-absorbing efficiency, CO2 assimilation capacity, and delay of chloroplast aging have been reported in the plant response to NP treatments, although the mechanisms involved in these processes remain to be studied.
Collapse
Affiliation(s)
- Mujeebur Rahman Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tanveer Fatima Rizvi
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, U.S.A
| | - Faheem Ahamad
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| |
Collapse
|
34
|
Farokhi M, Mottaghitalab F, Saeb MR, Thomas S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release 2019; 309:203-219. [PMID: 31362077 DOI: 10.1016/j.jconrel.2019.07.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
Abstract
Nanocarriers sensitive to near infrared light (NIR) are useful templates for chemo-photothermal therapy (PTT) and imaging of tumors due to the ability to change the absorbed NIR energy to heat. The conventional photo-absorbing reagents lack the efficient loading and release of drug before reaching the target site leading to insufficient therapeutic outcomes. To overcome these limitations, the surface of nanocarriers can be modified with different polymers with wide functionalities to provide systems with diagnostic, therapeutic, and theranostic capabilities. Among various polymers, polydopamine (PDA) has been more interested due to complex structure with various chemical moieties, and the capacity to be used through different coating mechanism. In this review, we describe the complex structure, chemical properties, and coating mechanisms of PDA. Moreover, the advantage and surface modification of some relevant nanosystems based on carbon materials, gold, iron oxide, manganese, and upconverting nanomaterials by using PDA will be discussed, in detail.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
35
|
Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. NANOSCALE 2019; 11:13458-13468. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials.
Collapse
Affiliation(s)
- D Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - M Wegmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany. and MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - T Jochum
- Fraunhofer-Zentrum für Angewandte Nanotechnologie CAN, Grindelallee 117, 20146 Hamburg, Germany
| | - V Somma
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - M Sowa
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - J Scholz
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - E Fröhlich
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - K Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - J Niehaus
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - D Roggenbuck
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany and Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Germany
| | - U Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
36
|
Starsich FH, Herrmann IK, Pratsinis SE. Nanoparticles for Biomedicine: Coagulation During Synthesis and Applications. Annu Rev Chem Biomol Eng 2019; 10:155-174. [DOI: 10.1146/annurev-chembioeng-060718-030203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nanoparticle-based systems offer fascinating possibilities for biomedicine, but their translation into clinics is slow. Missing sterile, reproducible, and scalable methods for their synthesis along with challenges in characterization and poor colloidal stability of nanoparticles in body fluids are key obstacles. Flame aerosol technology gives proven access to scalable synthesis of nanoparticles with diverse compositions and architectures. Although highly promising in terms of product reproducibility and sterility, this technology is frequently overlooked, as its products are of fractal-like aggregated and/or agglomerated morphology. However, coagulation is a widely occurring phenomenon in all kinds of particle-based systems. In particular, protein-rich body fluids encountered in biomedical settings often lead to destabilization of colloidal nanoparticle suspensions in vivo. We aim to provide insights into how particle–particle interactions can be measured and controlled. Moreover, we show how particle coupling effects driven by coagulation may even be beneficial for certain sensing, therapeutic, and bioimaging applications.
Collapse
Affiliation(s)
- Fabian H.L. Starsich
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland;,
| | - Inge K. Herrmann
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), CH-9014 St. Gallen, Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland;,
| |
Collapse
|
37
|
Moore TL, Urban DA, Rodriguez-Lorenzo L, Milosevic A, Crippa F, Spuch-Calvar M, Balog S, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. Nanoparticle administration method in cell culture alters particle-cell interaction. Sci Rep 2019; 9:900. [PMID: 30696847 PMCID: PMC6351679 DOI: 10.1038/s41598-018-36954-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/09/2018] [Indexed: 01/30/2023] Open
Abstract
As a highly interdisciplinary field, working with nanoparticles in a biomedical context requires a robust understanding of soft matter physics, colloidal behaviors, nano-characterization methods, biology, and bio-nano interactions. When reporting results, it can be easy to overlook simple, seemingly trivial experimental details. In this context, we set out to understand how in vitro technique, specifically the way we administer particles in 2D culture, can influence experimental outcomes. Gold nanoparticles coated with poly(vinylpyrrolidone) were added to J774A.1 mouse monocyte/macrophage cultures as either a concentrated bolus, a bolus then mixed via aspiration, or pre-mixed in cell culture media. Particle-cell interaction was monitored via inductively coupled plasma-optical emission spectroscopy and we found that particles administered in a concentrated dose interacted more with cells compared to the pre-mixed administration method. Spectroscopy studies reveal that the initial formation of the protein corona upon introduction to cell culture media may be responsible for the differences in particle-cell interaction. Modeling of particle deposition using the in vitro sedimentation, diffusion and dosimetry model helped to clarify what particle phenomena may be occurring at the cellular interface. We found that particle administration method in vitro has an effect on particle-cell interactions (i.e. cellular adsorption and uptake). Initial introduction of particles in to complex biological media has a lasting effect on the formation of the protein corona, which in turn mediates particle-cell interaction. It is of note that a minor detail, the way in which we administer particles in cell culture, can have a significant effect on what we observe regarding particle interactions in vitro.
Collapse
Affiliation(s)
- Thomas L Moore
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, 1700, Switzerland
| | - Dominic A Urban
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, 1700, Switzerland
| | | | - Ana Milosevic
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, 1700, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, 1700, Switzerland
| | - Miguel Spuch-Calvar
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, 1700, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, 1700, Switzerland
| | | | - Marco Lattuada
- Chemistry Department, Université de Fribourg, Fribourg, 1700, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, 1700, Switzerland.
- Chemistry Department, Université de Fribourg, Fribourg, 1700, Switzerland.
| |
Collapse
|
38
|
Oliveira H, Bednarkiewicz A, Falk A, Fröhlich E, Lisjak D, Prina‐Mello A, Resch S, Schimpel C, Vrček IV, Wysokińska E, Gorris HH. Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403). Adv Healthc Mater 2019; 8:e1801233. [PMID: 30536962 DOI: 10.1002/adhm.201801233] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/20/2018] [Indexed: 11/07/2022]
Abstract
The unique photoluminescent properties of upconversion nanoparticles (UCNPs) have attracted worldwide research interest and inspired many bioanalytical applications. The anti-Stokes emission with long luminescence lifetimes, narrow and multiple absorption and emission bands, and excellent photostability enable background-free and multiplexed detection in deep tissues. So far, however, in vitro and in vivo applications of UCNPs are restricted to the laboratory use due to safety concerns. Possible harmful effects may originate from the chemical composition but also from the small size of UCNPs. Potential end users must rely on well-founded safety data. Thus, a risk to benefit assessment of the envisioned combined therapeutic and diagnostic ("theranostic") applications is fundamentally important to bridge the translational gap between laboratory and clinics. The COST Action CM1403 "The European Upconversion Network-From the Design of Photon-Upconverting Nanomaterials to Biomedical Applications" integrates research on UCNPs ranging from fundamental materials synthesis and research, detection instrumentation, biofunctionalization, and bioassay development to toxicity testing. Such an interdisciplinary approach is necessary for a better and safer theranostic use of UCNPs. Here, the status of nanotoxicity research on UCNPs is compared to other nanomaterials, and routes for the translation of UCNPs into clinical applications are delineated.
Collapse
Affiliation(s)
- Helena Oliveira
- Department of BiologyCESAM‐Centre for Environmental and Marine StudiesCICECO‐Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure ResearchPolish Academy of Sciences ul.Okolna 2 50422 Wroclaw Poland
- PORT Sp. z o.o. Stablowicka 147 Str. 54‐066 Wroclaw Poland
| | - Andreas Falk
- BioNanoNet Forschungsgesellschaft mbH Steyrergasse 17 8010 Graz Austria
| | - Eleonore Fröhlich
- Center for Medical ResearchMedical University of Graz Stiftingtalstrasse 24 8010 Graz Austria
| | - Darja Lisjak
- Department for Materials SynthesisJožef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
| | - Adriele Prina‐Mello
- LBCAM and Nanomedicine LaboratoryTrinity Translational Medicine InstituteTrinity College Dublin Dublin 8 Republic of Ireland
| | - Susanne Resch
- BioNanoNet Forschungsgesellschaft mbH Steyrergasse 17 8010 Graz Austria
| | - Christa Schimpel
- BioNanoNet Forschungsgesellschaft mbH Steyrergasse 17 8010 Graz Austria
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health Ksaverska cesta 2 10000 Zagreb Croatia
| | - Edyta Wysokińska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences Wrocław Poland
| | - Hans H. Gorris
- Institute of Analytical ChemistryChemo‐ and BiosensorsUniversity of Regensburg 93040 Regensburg Germany
| |
Collapse
|
39
|
Jayaram DT, Kumar A, Kippner LE, Ho PY, Kemp ML, Fan Y, Payne CK. TiO2 nanoparticles generate superoxide and alter gene expression in human lung cells. RSC Adv 2019; 9:25039-25047. [PMID: 35321350 PMCID: PMC8939877 DOI: 10.1039/c9ra04037d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TiO2 nanoparticles are widely used in consumer products and industrial applications, yet little is understood regarding how the inhalation of these nanoparticles impacts long-term health. This is especially important for the occupational safety of workers who process these materials. We used RNA sequencing to probe changes in gene expression and fluorescence microscopy to image intracellular reactive oxygen species (ROS) in human lung cells incubated with low, non-cytotoxic, concentrations of TiO2 nanoparticles. Experiments were designed to measure changes in gene expression following an acute exposure to TiO2 nanoparticles and changes inherited by progeny cells. We observe that TiO2 nanoparticles lead to significant (>2000 differentially expressed genes) changes in gene expression following a 24 hour incubation. Following this acute exposure, the response dissipates with only 34 differentially expressed genes in progeny cells. The progeny cells adapt to this initial exposure, observed when re-challenged with a second acute TiO2 nanoparticle exposure. Accompanying these changes in gene expression is the production of intracellular ROS, specifically superoxide, along with changes in oxidative stress-related genes. These experiments suggest that TiO2 nanoparticles adapt to oxidative stress through transcriptional changes over multiple generations of cells. Human lung cells have a multi-generational response to TiO2 nanoparticle exposure determined by RNA-Seq and fluorescence microscopy.![]()
Collapse
Affiliation(s)
- Dhanya T. Jayaram
- Department of Mechanical Engineering and Materials Science
- Duke University
- Durham
- USA
| | - Ashwath Kumar
- School of Biological Sciences
- Georgia Institute of Technology
- Atlanta
- USA
| | - Linda E. Kippner
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
| | - Po-Yi Ho
- School of Biological Sciences
- Georgia Institute of Technology
- Atlanta
- USA
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering
- Georgia Institute of Technology and Emory University
- Atlanta
- USA
- Parker H. Petit Institute for Bioengineering and Biosciences
| | - Yuhong Fan
- School of Biological Sciences
- Georgia Institute of Technology
- Atlanta
- USA
- Parker H. Petit Institute for Bioengineering and Biosciences
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science
- Duke University
- Durham
- USA
| |
Collapse
|
40
|
Burnand D, Milosevic A, Balog S, Spuch-Calvar M, Rothen-Rutishauser B, Dengjel J, Kinnear C, Moore TL, Petri-Fink A. Beyond Global Charge: Role of Amine Bulkiness and Protein Fingerprint on Nanoparticle-Cell Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802088. [PMID: 30198074 DOI: 10.1002/smll.201802088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Amino groups presented on the surface of nanoparticles are well-known to be a predominant factor in the formation of the protein corona and subsequent cellular uptake. However, the molecular mechanism underpinning this relationship is poorly defined. This study investigates how amine type and density affect the protein corona and cellular association of gold nanoparticles with cells in vitro. Four specific poly(vinyl alcohol-co-N-vinylamine) copolymers are synthesized containing primary, secondary, or tertiary amines. Particle cellular association (i.e., cellular uptake and surface adsorption), as well as protein corona composition, are then investigated. It is found that the protein corona (as a consequence of "amine bulkiness") and amine density are both important in dictating cellular association. By evaluating the nanoparticle surface chemistry and the protein fingerprint, proteins that are significant in mediating particle-cell association are identified. In particular, primary amines, when exposed on the polymer side chain, are strongly correlated with the presence of alpha-2-HS-glycoprotein, and promote nanoparticle cellular association.
Collapse
Affiliation(s)
- David Burnand
- Chemistry Department, Université de Fribourg, 1700, Fribourg, Switzerland
- Adolphe Merkle Institute, Université de Fribourg, 1700, Fribourg, Switzerland
| | - Ana Milosevic
- Adolphe Merkle Institute, Université de Fribourg, 1700, Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, Université de Fribourg, 1700, Fribourg, Switzerland
| | - Miguel Spuch-Calvar
- Adolphe Merkle Institute, Université de Fribourg, 1700, Fribourg, Switzerland
| | | | - Jörn Dengjel
- Department of Biology, Université de Fribourg, 1700, Fribourg, Switzerland
| | - Calum Kinnear
- School of Chemistry, University of Melbourne, Parkville, 3010, Australia
| | - Thomas L Moore
- Adolphe Merkle Institute, Université de Fribourg, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Chemistry Department, Université de Fribourg, 1700, Fribourg, Switzerland
- Adolphe Merkle Institute, Université de Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
41
|
Uyguner Demirel CS, Birben NC, Bekbolet M. A comprehensive review on the use of second generation TiO 2 photocatalysts: Microorganism inactivation. CHEMOSPHERE 2018; 211:420-448. [PMID: 30077938 DOI: 10.1016/j.chemosphere.2018.07.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 05/12/2023]
Abstract
Photocatalytic disinfection practices have been applied for decades and attract current interest along with the developments in synthesis of novel photocatalysts. A survey based investigation was performed for elucidation of photocatalytic treatment details as well as disinfection mechanism of microorganisms. The present work brings significant information on the utilization of second generation TiO2 photocatalysts for inactivation of microorganisms typically using E. coli as the model microorganism. Special interest was devoted to the role of organic matrix either generated during treatment or as a natural component. Studies on photocatalytic disinfection were extensively reviewed and evaluated with respect to basic operational parameters related to photocatalysis, and types and properties of microorganisms investigated. Degradation mechanism and behavior of microorganisms towards reactive oxygen species during disinfection and organic matrix effects were also addressed. For successful utilization and effective assessment of visible light active photocatalysts, standard protocols for disinfection activity testing have to be set. Further improvement of the efficiency of these materials would be promising for future applications in water treatment processes.
Collapse
Affiliation(s)
| | - Nazmiye Cemre Birben
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| | - Miray Bekbolet
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
42
|
Yan X, Remond M, Zheng Z, Hoibian E, Soulage C, Chambert S, Andraud C, Van der Sanden B, Ganachaud F, Bretonnière Y, Bernard J. General and Scalable Approach to Bright, Stable, and Functional AIE Fluorogen Colloidal Nanocrystals for in Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25154-25165. [PMID: 29979019 DOI: 10.1021/acsami.8b07859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Maxime Remond
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Zheng Zheng
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Elsa Hoibian
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Christophe Soulage
- CarMeN Laboratory , Univ-Lyon, INSERM U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1 , F-69621 Villeurbanne , France
| | - Stéphane Chambert
- Univ Lyon, INSA-Lyon, CNRS, Université Lyon 1, CPE Lyon, ICBMS, UMR 5246 , Bâtiment Jules Verne, 20 Avenue Albert Einstein , F-69621 Villeurbanne , France
| | - Chantal Andraud
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Boudewijn Van der Sanden
- Intravital Microscopy Plateform, France Life Imaging, Unit Biomedical Radio-Pharmaceutics, Medical Faculty , INSERM U1039 and University Grenoble Alpes , 38706 La Tronche , France
| | - François Ganachaud
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| | - Yann Bretonnière
- Laboratoire de Chimie , Univ Lyon, ENS de Lyon, CNRS, UMR 5182, Université Lyon 1 , F-69342 Lyon , France
| | - Julien Bernard
- Université de Lyon , F-69003 Lyon , France
- INSA-Lyon, IMP , F-69621 Villeurbanne , France
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères , F-69621 Villeurbanne , France
| |
Collapse
|
43
|
Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1154. [PMID: 29986436 PMCID: PMC6073273 DOI: 10.3390/ma11071154] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Due to the high surface: volume ratio and the extraordinary properties arising from the nanoscale (optical, electric, magnetic, etc.), nanoparticles (NPs) are excellent candidates for multiple applications. In this context, nanoscience is opening a wide range of modern technologies in biological and biomedical fields, among others. However, one of the main drawbacks that still delays its fast evolution and effectiveness is related to the behavior of nanomaterials in the presence of biological fluids. Unfortunately, biological fluids are characterized by high ionic strengths which usually induce NP aggregation. Besides this problem, the high content in biomacromolecules—such as lipids, sugars, nucleic acids and, especially, proteins—also affects NP stability and its viability for some applications due to, for example, the formation of the protein corona around the NPs. Here, we will review the most common strategies to achieve stable NPs dispersions in high ionic strength fluids and, also, antifouling strategies to avoid the protein adsorption.
Collapse
Affiliation(s)
- Luca Guerrini
- Departamento de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain.
| | - Ramon A Alvarez-Puebla
- Departamento de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain.
- Institución Catalana de Investigación y Estudios Avanzados, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Nicolas Pazos-Perez
- Departamento de Quimica Fisica e Inorganica and EMaS, Universitat Rovira i Virgili Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain.
| |
Collapse
|
44
|
Kästner C, Böhmert L, Braeuning A, Lampen A, Thünemann AF. Fate of Fluorescence Labels-Their Adsorption and Desorption Kinetics to Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7153-7160. [PMID: 29792806 DOI: 10.1021/acs.langmuir.8b01305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles are among the most widely used and produced nanoparticles. Because of their frequent application in consumer products, the assessment of their toxicological potential has seen a renewed importance. A major difficulty is the traceability of nanoparticles in in vitro and in vivo experiments. Even if the particles are labeled, for example, by a fluorescent marker, the dynamic exchange of ligands often prohibits their spatial localization. Our study provides an insight into the adsorption and desorption kinetics of two different fluorescent labels on silver nanoparticles with a core radius of 3 nm by dynamic light scattering, small-angle X-ray scattering, and fluorescence spectroscopy. We used BSA-FITC and tyrosine as examples for common fluorescent ligands. It is shown that the adsorption of BSA-FITC takes at least 3 days, whereas tyrosine adsorbs immediately. The quantitative amount of stabilizer on the particle surface was determined by fluorescence spectroscopy and revealed that the particles are stabilized by a monolayer of BSA-FITC (corresponding to 20 ± 9 molecules), whereas tyrosine forms a multilayered structure consisting of 15900 ± 200 molecules. Desorption experiments show that the BSA-FITC-stabilized particles are ideally suited for application in in vitro and in vivo experiments because the ligand desorption takes several days. Depending on the BSA concentration in the particles surroundings, the rate constant is k = 0.2 per day or lower when applying first order kinetics, that is, 50% of the BSA-FITC molecules are released from the particle's surface within 3.4 days. For illustration, we provide a first application of the fluorescence-labeled particles in an uptake study with two different commonly used cell lines, the human liver cell model HepG2 and the human intestinal cell model of differentiated Caco-2 cells.
Collapse
Affiliation(s)
- Claudia Kästner
- Bundesanstalt für Materialforschung und -prüfung (BAM) , Unter den Eichen 87 , 12205 Berlin , Germany
| | - Linda Böhmert
- Bundesinstitut für Risikobewertung (BfR) , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany
| | - Albert Braeuning
- Bundesinstitut für Risikobewertung (BfR) , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany
| | - Alfonso Lampen
- Bundesinstitut für Risikobewertung (BfR) , Max-Dohrn-Straße 8-10 , 10589 Berlin , Germany
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM) , Unter den Eichen 87 , 12205 Berlin , Germany
| |
Collapse
|
45
|
Tong Z, Rajeev G, Guo K, Ivask A, McCormick S, Lombi E, Priest C, Voelcker NH. Microfluidic Cell Microarray Platform for High Throughput Analysis of Particle–Cell Interactions. Anal Chem 2018; 90:4338-4347. [DOI: 10.1021/acs.analchem.7b03079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gayathri Rajeev
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Keying Guo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Angela Ivask
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Scott McCormick
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
46
|
Shen Y, Cao B, Snyder NR, Woeppel KM, Eles JR, Cui XT. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. J Nanobiotechnology 2018; 16:13. [PMID: 29433522 PMCID: PMC5810018 DOI: 10.1186/s12951-018-0340-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 02/03/2018] [Indexed: 11/27/2022] Open
Abstract
Background Oxidative stress acts as a trigger in the course of neurodegenerative diseases and neural injuries. An antioxidant-based therapy can be effective to ameliorate the deleterious effects of oxidative stress. Resveratrol (RSV) has been shown to be effective at removing excess reactive oxygen species (ROS) or reactive nitrogen species generation in the central nervous system (CNS), but the delivery of RSV into the brain through systemic administration is inefficient. Here, we have developed a RSV delivery vehicle based on polylactic acid (PLA)-coated mesoporous silica nanoparticles (MSNPs), conjugated with a ligand peptide of low-density lipoprotein receptor (LDLR) to enhance their transcytosis across the blood–brain barrier (BBB). Results Resveratrol was loaded into MSNPs (average diameter 200 nm, pore size 4 nm) at 16 μg/mg (w/w). As a gatekeeper, the PLA coating prevented the RSV burst release, while ROS was shown to trigger the drug release by accelerating PLA degradation. An in vitro BBB model with a co-culture of rat brain microvascular endothelial cells (RBECs) and microglia cells using Transwell chambers was established to assess the RSV delivery across BBB. The conjugation of LDLR ligand peptides markedly enhanced the migration of MSNPs across the RBECs monolayer. RSV could be released and effectively reduce the activation of the microglia cells stimulated by phorbol-myristate-acetate or lipopolysaccharide. Conclusions These ROS responsive LDLR peptides conjugated PLA-coated MSNPs have great potential for oxidative stress therapy in CNS. Electronic supplementary material The online version of this article (10.1186/s12951-018-0340-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Shen
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.,Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Cao
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Noah R Snyder
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Kevin M Woeppel
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA. .,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15260, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
47
|
Carazo E, Borrego-Sánchez A, García-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C, Viseras C. Advanced Inorganic Nanosystems for Skin Drug Delivery. CHEM REC 2018; 18:891-899. [DOI: 10.1002/tcr.201700061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023]
Affiliation(s)
- E. Carazo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - A. Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - F. García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - R. Sánchez-Espejo
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - P. Cerezo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| |
Collapse
|
48
|
Schubert J, Chanana M. Coating Matters: Review on Colloidal Stability of Nanoparticles with Biocompatible Coatings in Biological Media, Living Cells and Organisms. Curr Med Chem 2018; 25:4553-4586. [PMID: 29852857 PMCID: PMC7040520 DOI: 10.2174/0929867325666180601101859] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles' physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.
Collapse
Affiliation(s)
- Jonas Schubert
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| | - Munish Chanana
- Address correspondence to these authors at the Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany and Department of Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany;E-mails: ;
| |
Collapse
|
49
|
Dai Q, Bertleff‐Zieschang N, Braunger JA, Björnmalm M, Cortez‐Jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthc Mater 2018; 7. [PMID: 28809092 DOI: 10.1002/adhm.201700575] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/04/2017] [Indexed: 12/22/2022]
Abstract
Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and improve overall efficacy in applications such as vaccination and drug delivery. However, when targeted particles enter a complex biological environment, the adsorption of biomolecules and the formation of a surface coating (e.g., a protein corona) changes the properties of the carriers and can render their behavior unpredictable. For this reason, it is of importance to consider the potential challenges imposed by the biological environment at the early stages of particle design. This review describes parameters that affect the targeting ability of particulate drug carriers, with an emphasis on the effect of the protein corona. We highlight strategies for exploiting the protein corona to improve the targeting ability of particles. Finally, we provide suggestions for complementing current in vitro assays used for the evaluation of targeting and carrier efficacy with new and emerging techniques (e.g., 3D models and flow-based technologies) to advance fundamental understanding in bio-nano science and to accelerate the development of targeted particles for biomedical applications.
Collapse
Affiliation(s)
- Qiong Dai
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Nadja Bertleff‐Zieschang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Julia A. Braunger
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
50
|
Palvai S, Kuman MM, Sengupta P, Basu S. Hyaluronic Acid Layered Chimeric Nanoparticles: Targeting MAPK-PI3K Signaling Hub in Colon Cancer Cells. ACS OMEGA 2017; 2:7868-7880. [PMID: 30023564 PMCID: PMC6044924 DOI: 10.1021/acsomega.7b01315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 06/08/2023]
Abstract
Colon cancer has emerged as one of the most devastating diseases in the whole world. Mitogen-activated protein kinase (MAPK)-phosphatidylinsitol-3-kinase (PI3K) signaling hub has gained lots of attention due to its deregulation in colon cancer cells. However, selective targeting of oncogenic MAPK-PI3K hub in colon cancer has remained highly challenging, hence it has mostly been unexplored. To address this, we have engineered a hyaluronic acid layered lipid-based chimeric nanoparticle (HA-CNP) consisting of AZD6244 (MAPK inhibitor), PI103 (PI3K inhibitor), and cisplatin (DNA impairing drug) ratiometrically in a single particle. Electron microscopy (field emission scanning electron microscopy and atomic force microscopy) and dynamic light scattering were utilized to characterize the size, shape, morphology, and surface charge of the HA-CNPs. Fluorescent confocal laser scanning microscopy and flow cytometry analysis confirmed that HA-CNPs were taken up by HCT-116 colon cancer cells by merging of clathrin and CD44 receptor-mediated endocytosis along with macropinocytosis to home into acidic organelles (lysosomes) within 1 h. A gel electrophoresis study evidently established that HA-CNPs simultaneously inhibited MAPK-PI3K signaling hub with DNA damage in HCT-116 cells. These HA-CNPs stalled the cell cycle into G0/G1 phase, leading to induction of apoptosis (early and late) in colon cancer cells. Finally, these HA-CNPs exerted remarkable cytotoxicity in HCT-116 colon cancer cells at 24 h compared to that of the free triple drug cocktail as well as HA-coated dual drug-loaded nanoparticles without showing any cell death in healthy L929 fibroblast cells. These HA-coated CNPs have potential to be translated into clinics as a novel platform to perturb various oncogenic signaling hubs concomitantly toward next-generation targeted colon cancer therapy.
Collapse
Affiliation(s)
- Sandeep Palvai
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi
Bhabha Road, Pashan, Pune 411008, India
| | - Meenu Mahesh Kuman
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi
Bhabha Road, Pashan, Pune 411008, India
| | - Poulomi Sengupta
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sudipta Basu
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi
Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|