1
|
Qi M, Zhu C, Chen Y, Wang C, Ye X, Li S, Cheng Z, Jiang H, Du Z. Site-Specific Stability Evaluation of Antibody-Drug Conjugate in Serum Using a Validated Liquid Chromatography-Mass Spectrometry Method. J Proteome Res 2024; 23:5131-5142. [PMID: 39363186 DOI: 10.1021/acs.jproteome.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Antibody-drug conjugate (ADC) consists of engineered antibodies and cytotoxic drugs linked via a chemical linker, and the stability of ADC plays a crucial role in ensuring its safety and efficacy. The stability of ADC is closely related to the conjugation site; however, no method has been developed to assess the stability of different conjugation sites due to the low response of conjugated peptides. In this study, an integrated strategy was developed and validated to assess the stability of different conjugation sites on ADC in serum. Initial identification of the conjugated peptides of the model drug ado-trastuzumab emtansine (T-DM1) was achieved by the proteomic method. Subsequently, a semiquantitative method for conjugated peptides was established in liquid chromatography-hybrid linear ion trap triple quadrupole mass spectrometry (LC-QTRAP-MS/MS) based on the qualitative information. The pretreatment method of the serum sample was optimized to reduce matrix interference. The method was then validated and applied to evaluate the stability of the conjugation sites on T-DM1. The results highlighted differences in stability among the different conjugation sites on T-DM1. This is the first study to assess the stability of different conjugation sites on the ADC in serum, which will be helpful for the design and screening of ADCs in the early stages of development.
Collapse
Affiliation(s)
- Meiling Qi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenyue Zhu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenxi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyuan Ye
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhongzhe Cheng
- Wuhan Hongren Biopharmaceutical Inc., Wuhan 430075, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Majumder U, Zhu X, Custar D, Li D, Fang H, McGonigle S, Albone E, Cheng X, Lai W, Amy Siu Y, Bresciano K, Hart A, Postema M. A Novel Concept for Cleavable Linkers Applicable to Conjugation Chemistry - Design, Synthesis and Characterization. Chembiochem 2024:e202400826. [PMID: 39424599 DOI: 10.1002/cbic.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Linkers with disulfide bonds are the only cleavable linkers that utilize physiological thiol gradients as a trigger to initiate the intracellular drug release cascade. Herein, we present a novel concept exploiting the thiol gradient phenomena to design a new class of cleavable linker with no disulfide bond. To support the concept, an electron-deficient sulfonamide-based cleavable linker amenable to conjugation of drug molecules with targeting agents, was developed. Modulating the electron-withdrawing nature of the aryl sulfonamide was critical to the balance between the stability and drug release. Favorable stability and payload release in human serum under physiologically relevant thiol concentrations was demonstrated with two potent cytotoxics. Intracellular payload release was further validated in cell-based assay in context of antibody-drug conjugate generated from monoclonal antibody and sulfonamide containing linker. To support the proposed release mechanism, possible downstream by-products formed from the drug-linker adduct were characterized.
Collapse
Affiliation(s)
- Utpal Majumder
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Xiaojie Zhu
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Daniel Custar
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Danyang Li
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Hui Fang
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Sharon McGonigle
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| | - Earl Albone
- EPAT, Eisai Inc., 210 Welsh Pool Road, Exton, PA, 19341, USA
| | - Xin Cheng
- EPAT, Eisai Inc., 210 Welsh Pool Road, Exton, PA, 19341, USA
| | - Weidong Lai
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Y Amy Siu
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Karen Bresciano
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Andrew Hart
- DMPK Core Functional Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Maarten Postema
- Oncology Product Creation Unit, Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA-02140, USA
| |
Collapse
|
3
|
Aoyama M, Tada M, Yokoo H, Ito T, Misawa T, Demizu Y, Ishii-Watabe A. Linker and Conjugation Site Synergy in Antibody-Drug Conjugates: Impacts on Biological Activity. Bioconjug Chem 2024; 35. [PMID: 39363433 PMCID: PMC11488503 DOI: 10.1021/acs.bioconjchem.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Antibody-drug conjugates (ADCs) produced using general conjugation methods yield heterogeneous products containing mixtures of species with different numbers of payloads per antibody (drug-antibody ratios) conjugated at multiple sites. This heterogeneity affects the stability, efficacy, and safety of ADCs. Thus, various site-specific conjugation methods have been developed to achieve homogeneity in ADCs. It was reported that linker structures and conjugation sites generally affected the characteristics of site-specific ADCs such as stability, efficacy, and safety. However, the combined effects of conjugation sites and linker structures on the physicochemical and biological characteristics of site-specific ADCs have remained unclear. In this study, we generated 30 homogeneous site-specific ADCs with a combination of six conjugation sites and five linker structures using THIOMAB technology and evaluated the characteristics of these homogeneous ADCs. We found that both conjugation sites and linker structures affected characteristics unique to ADCs (linker stability as well as target-dependent and target-independent cytotoxicity) in site-specific ADCs. Especially, conjugation to the constant regions of the light chain and the presence of polyethylene glycol structures in the linker are important for those ADC-specific characteristics. Interestingly, we also found that the effects of linker structures on the target-independent cytotoxicity of homogeneous ADCs at certain conjugation sites differed from those seen in conventional heterogeneous ADCs. Our results suggest that optimizing linker structures based on the conjugation site may be necessary for site-specific ADCs.
Collapse
Affiliation(s)
- Michihiko Aoyama
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Minoru Tada
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Hidetomo Yokoo
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takahito Ito
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takashi Misawa
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
4
|
Tabariès S, Robert A, Marcil A, Ling B, Acchione M, Lippens J, Pagé M, Fortin A, Meury L, Coutu M, Annis MG, Girondel C, Navarre J, Jaramillo M, Moraitis AN, Siegel PM. Anti-Claudin-2 Antibody-Drug Conjugates for the Treatment of Colorectal Cancer Liver Metastasis. Mol Cancer Ther 2024; 23:1459-1470. [PMID: 38902871 DOI: 10.1158/1535-7163.mct-23-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
We have previously demonstrated that Claudin-2 is required for colorectal cancer (CRC) liver metastasis. The expression of Claudin-2 in primary CRC is associated with poor survival and highly expressed in liver metastases. Claudin-2 also promotes breast cancer liver metastasis by enabling seeding and cancer cell survival. These observations support Claudin-2 as a potential therapeutic target for managing patients with liver metastases. Antibody-drug conjugates (ADC) are promising antitumor therapeutics, which combine the specific targeting ability of monoclonal antibodies with the potent cell killing activity of cytotoxic drugs. Herein, we report the generation of 28 anti-Claudin-2 antibodies for which the binding specificities, cross-reactivity with claudin family members, and cross-species reactivity were assessed by flow cytometry analysis. Multiple drug conjugates were tested, and PNU was selected for conjugation with anti-Claudin-2 antibodies binding either extracellular loop 1 or 2. Anti-Claudin-2 ADCs were efficiently internalized and were effective at killing Claudin-2-expressing CRC cancer cells in vitro. Importantly, PNU-conjugated-anti-Claudin-2 ADCs impaired the development of replacement-type CRC liver metastases in vivo, using established CRC cell lines and patient-derived xenograft (PDX) models of CRC liver metastases. Results suggest that the development of ADCs targeting Claudin-2 is a promising therapeutic strategy for managing patients with CRC liver-metastatic disease who present replacement-type liver metastases.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Alma Robert
- National Research Council Canada, Montréal, Canada
| | - Anne Marcil
- National Research Council Canada, Montréal, Canada
| | - Binbing Ling
- National Research Council Canada, Ottawa, Canada
| | | | | | - Martine Pagé
- National Research Council Canada, Montréal, Canada
| | - Annie Fortin
- National Research Council Canada, Montréal, Canada
| | - Luc Meury
- National Research Council Canada, Montréal, Canada
| | | | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Charlotte Girondel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | - Julie Navarre
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
| | | | | | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, Canada
- Department of Medicine, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| |
Collapse
|
5
|
Cochran M, Arias D, Burke R, Chu D, Erdogan G, Hood M, Kovach P, Kwon HW, Chen Y, Moon M, Miller CD, Huang H, Levin A, Doppalapudi VR. Structure-Activity Relationship of Antibody-Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody-siRNA Conjugates for Drug Development. J Med Chem 2024; 67:14852-14867. [PMID: 39197831 PMCID: PMC11403602 DOI: 10.1021/acs.jmedchem.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Antibody-oligonucleotide conjugates are a promising class of therapeutics for extrahepatic delivery of small interfering ribonucleic acids (siRNAs). These conjugates can be optimized for improved delivery and mRNA knockdown (KD) through understanding of structure-activity relationships. In this study, we systematically examined factors including antibody isotype, siRNA chemistry, linkers, conjugation chemistry, PEGylation, and drug-to-antibody ratios (DARs) for their impact on bioconjugation, pharmacokinetics (PK), siRNA delivery, and bioactivity. Conjugation site (cysteine, lysine, and Asn297 glycan) and DAR proved critical for optimal conjugate PK and siRNA delivery. SiRNA chemistry including 2' sugar modifications and positioning of phosphorothioates were found to be critical for delivery and duration of action. By utilizing cleavable and noncleavable linkers, we demonstrated the impact of linkers on PK and mRNA KD. To achieve optimal properties of antibody-siRNA conjugates, a careful selection of siRNA chemistry, DAR, conjugation sites, linkers, and antibody isotype is necessary.
Collapse
Affiliation(s)
- Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Danny Arias
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Rob Burke
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - David Chu
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Gulin Erdogan
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Michael Hood
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Philip Kovach
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Hae Won Kwon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Yanling Chen
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Michael Moon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Christopher D Miller
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Arthur Levin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Venkata Ramana Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| |
Collapse
|
6
|
Ricardo MG, Llanes D, Rennert R, Jänicke P, Rivera DG, Wessjohann LA. Improved Access to Potent Anticancer Tubulysins and Linker-Functionalized Payloads Via an All-On-Resin Strategy. Chemistry 2024; 30:e202401943. [PMID: 38771268 DOI: 10.1002/chem.202401943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Tubulysins are among the most recent antimitotic compounds to enter into antibody/peptide-drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e. g., by using small tertiary amide N-substituents (Me, Et, Pr) on the tubuvaline residue. Cumbersome solution-phase approaches are typically used for both syntheses and functionalization with cleavable linkers. p-Aminobenzyl quaternary ammonium (PABQ) linkers were a remarkable advancement for targeted delivery, but the procedures to incorporate them into tubulysins are only of moderate efficiency. Here we describe a novel all-on-resin strategy permitting a loss-free resin linkage and an improved access to super potent tubulysin analogs showing close resemblance to the natural compounds. For the first time, a protocol enables the integration of on-resin tubulysin derivatization with, e. g., a maleimido-Val-Cit-PABQ linker, which is a notable progress for the payload-PABQ-linker technology. The strategy also allows tubulysin diversification of the internal amide N-substituent, thus enabling to screen a tubulysin library for the discovery of new potent analogs. This work provides ADC/PDC developers with new tools for both rapid access to new derivatives and easier linker-attachment and functionalization.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
- Present address: Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dayma Llanes
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Paul Jänicke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Daniel G Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
7
|
Qiao S, Cheng Z, Li F. Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization. Beilstein J Org Chem 2024; 20:721-733. [PMID: 38590533 PMCID: PMC10999997 DOI: 10.3762/bjoc.20.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Chemoenzymatic strategies that combine synthetic and enzymatic transformations offer efficient approaches to yield target molecules, which have been increasingly employed in the synthesis of bioactive natural products. In the biosynthesis of macrocyclic nonribosomal peptides, polyketides, and their hybrids, thioesterase (TE) domains play a significant role in late-stage macrocyclization. These domains can accept mimics of native substrates in vitro and exhibit potential for use in total synthesis. This review summarizes the recent advances of TE domains in the chemoenzymatic synthesis for these natural products that aim to address the common issues in classical synthetic approaches and increase synthetic efficiencies, which have the potential to facilitate further pharmaceutical research.
Collapse
Affiliation(s)
- Senze Qiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhongyu Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fuzhuo Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China
| |
Collapse
|
8
|
Thomas JD, Yurkovetskiy AV, Yin M, Bodyak ND, Tang S, Protopopova M, Kelleher E, Jones B, Yang L, Custar D, Catcott KC, Demady DR, Collins SD, Xu L, Bu C, Qin L, Ter-Ovanesyan E, Damelin M, Toader D, Lowinger TB. Development of a Novel DNA Mono-alkylator Platform for Antibody-Drug Conjugates. Mol Cancer Ther 2024; 23:541-551. [PMID: 38354416 DOI: 10.1158/1535-7163.mct-23-0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Although microtubule inhibitors (MTI) remain a therapeutically valuable payload option for antibody-drug conjugates (ADC), some cancers do not respond to MTI-based ADCs. Efforts to fill this therapeutic gap have led to a recent expansion of the ADC payload "toolbox" to include payloads with novel mechanisms of action such as topoisomerase inhibition and DNA cross-linking. We present here the development of a novel DNA mono-alkylator ADC platform that exhibits sustained tumor growth suppression at single doses in MTI-resistant tumors and is well tolerated in the rat upon repeat dosing. A phosphoramidate prodrug of the payload enables low ADC aggregation even at drug-to-antibody ratios of 5:1 while still delivering a bystander-capable payload that is effective in multidrug resistant (MDR)-overexpressing cell lines. The platform was comparable in xenograft studies to the clinical benchmark DNA mono-alkylator ADC platform DGN459 but with a significantly better tolerability profile in rats. Thus, the activity and tolerability profile of this new platform make it a viable option for the development of ADCs.
Collapse
Affiliation(s)
| | | | - Mao Yin
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Shuyi Tang
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | - Brian Jones
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Liping Yang
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Daniel Custar
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Damon R Demady
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Ling Xu
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Charlie Bu
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - LiuLiang Qin
- Formerly Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Marc Damelin
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Dorin Toader
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
9
|
Song CH, Jeong M, In H, Kim JH, Lin CW, Han KH. Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Antibodies (Basel) 2023; 12:72. [PMID: 37987250 PMCID: PMC10660735 DOI: 10.3390/antib12040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
In cancer treatment, the first-generation, cytotoxic drugs, though effective against cancer cells, also harmed healthy ones. The second-generation targeted cancer cells precisely to inhibit their growth. Enter the third-generation, consisting of immuno-oncology drugs, designed to combat drug resistance and bolster the immune system's defenses. These advanced therapies operate by obstructing the uncontrolled growth and spread of cancer cells through the body, ultimately eliminating them effectively. Within the arsenal of cancer treatment, monoclonal antibodies offer several advantages, including inducing cancer cell apoptosis, precise targeting, prolonged presence in the body, and minimal side effects. A recent development in cancer therapy is Antibody-Drug Conjugates (ADCs), initially developed in the mid-20th century. The second generation of ADCs addressed this issue through innovative antibody modification techniques, such as DAR regulation, amino acid substitutions, incorporation of non-natural amino acids, and enzymatic drug attachment. Currently, a third generation of ADCs is in development. This study presents an overview of 12 available ADCs, reviews 71 recent research papers, and analyzes 128 clinical trial reports. The overarching objective is to gain insights into the prevailing trends in ADC research and development, with a particular focus on emerging frontiers like potential targets, linkers, and drug payloads within the realm of cancer treatment.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Minchan Jeong
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Hyukmin In
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Ji Hoe Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406, Taiwan;
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| |
Collapse
|
10
|
Duvall JR, Thomas JD, Bukhalid RA, Catcott KC, Bentley KW, Collins SD, Eitas T, Jones BD, Kelleher EW, Lancaster K, Protopopova M, Ray SS, Ter-Ovanesyan E, Xu L, Yang L, Zurita J, Damelin M, Toader D, Lowinger TB. Discovery and Optimization of a STING Agonist Platform for Application in Antibody Drug Conjugates. J Med Chem 2023; 66:10715-10733. [PMID: 37486969 PMCID: PMC10424177 DOI: 10.1021/acs.jmedchem.3c00907] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/26/2023]
Abstract
While STING agonists have proven to be effective preclinically as anti-tumor agents, these promising results have yet to be translated in the clinic. A STING agonist antibody-drug conjugate (ADC) could overcome current limitations by improving tumor accessibility, allowing for systemic administration as well as tumor-localized activation of STING for greater anti-tumor activity and better tolerability. In line with this effort, a STING agonist ADC platform was identified through systematic optimization of the payload, linker, and scaffold based on multiple factors including potency and specificity in both in vitro and in vivo evaluations. The platform employs a potent non-cyclic dinucleotide STING agonist, a cleavable ester-based linker, and a hydrophilic PEG8-bisglucamine scaffold. A tumor-targeted ADC built with the resulting STING agonist platform induced robust and durable anti-tumor activity and demonstrated high stability and favorable pharmacokinetics in nonclinical species.
Collapse
Affiliation(s)
- Jeremy R. Duvall
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Joshua D. Thomas
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Raghida A. Bukhalid
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kalli C. Catcott
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Keith W. Bentley
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Scott D. Collins
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Timothy Eitas
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Brian D. Jones
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Eugene W. Kelleher
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Kelly Lancaster
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Marina Protopopova
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Soumya S. Ray
- 3-Dimensional
Consulting, 134 Franklin
Avenue, Quincy, Massachusetts 02170, United States
| | - Elena Ter-Ovanesyan
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Ling Xu
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Liping Yang
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Zurita
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Marc Damelin
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Dorin Toader
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Timothy B. Lowinger
- Mersana
Therapeutics, Inc., 840
Memorial Drive, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Hurwitz J, Haggstrom LR, Lim E. Antibody-Drug Conjugates: Ushering in a New Era of Cancer Therapy. Pharmaceutics 2023; 15:2017. [PMID: 37631232 PMCID: PMC10458257 DOI: 10.3390/pharmaceutics15082017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have provided new therapeutic options and significant promise for patients with cancer, particularly where existing treatments are limited. Substantial effort in ADC development is underway globally, with 13 ADCs currently approved and many more in development. The therapeutic benefits of ADCs leverage the ability to selectively target cancer cells through antibody binding, resultant relative sparing of non-malignant tissues, and the targeted delivery of a cytotoxic payload. Consequently, this drug class has demonstrated activity in multiple malignancies refractory to standard therapeutic options. Despite this, limitations exist, including narrow therapeutic windows, unique toxicity profiles, development of therapeutic resistance, and appropriate biomarker selection. This review will describe the development of ADCs, their mechanisms of action, pivotal trials, and approved indications and identify common themes. Current challenges and opportunities will be discussed for this drug class in cancer therapeutics at a time when significant developments in antibody therapies, immunotherapy, and targeted agents are occurring.
Collapse
Affiliation(s)
- Joshua Hurwitz
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Elgene Lim
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
12
|
Petersen ME, Brant MG, Lasalle M, Fung VKC, Rojas AH, Wong J, Das S, Barnscher SD, Rich JR, Winters GC. Structure-Activity Relationships of Bis-Intercalating Peptides and Their Application as Antibody-Drug Conjugate Payloads. J Med Chem 2023. [PMID: 37307297 DOI: 10.1021/acs.jmedchem.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic analogs based on the DNA bis-intercalating natural product peptides sandramycin and quinaldopeptin were investigated as antibody drug conjugate (ADC) payloads. Synthesis, biophysical characterization, and in vitro potency of 34 new analogs are described. Conjugation of an initial drug-linker derived from a novel bis-intercalating peptide produced an ADC that was hydrophobic and prone to aggregation. Two strategies were employed to improve ADC physiochemical properties: addition of a solubilizing group in the linker and the use of an enzymatically cleavable hydrophilic mask on the payload itself. All ADCs showed potent in vitro cytotoxicity in high antigen expressing cells; however, masked ADCs were less potent than payload matched unmasked ADCs in lower antigen expressing cell lines. Two pilot in vivo studies were conducted using stochastically conjugated DAR4 anti-FRα ADCs, which showed toxicity even at low doses, and site-specific conjugated (THIOMAB) DAR2 anti-cMet ADCs that were well tolerated and highly efficacious.
Collapse
Affiliation(s)
- Mark E Petersen
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Michael G Brant
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Manuel Lasalle
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Vincent K C Fung
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | | | - Jodi Wong
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Samir Das
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Stuart D Barnscher
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Geoffrey C Winters
- Technical and Manufacturing Operations, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| |
Collapse
|
13
|
Samantasinghar A, Sunildutt NP, Ahmed F, Soomro AM, Salih ARC, Parihar P, Memon FH, Kim KH, Kang IS, Choi KH. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother 2023; 161:114408. [PMID: 36841027 DOI: 10.1016/j.biopha.2023.114408] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Antibody Drug Conjugate (ADC) is an emerging technology to overcome the limitations of chemotherapy by selectively targeting the cancer cells. ADC binds with an antigen, specifically over expressed on the surface of cancer cells, results decrease in bystander effect and increase in therapeutic index. The potency of an ideal ADC is entirely depending on several physicochemical factors such as site of conjugation, molecular weight, linker length, Steric hinderance, half-life, conjugation method, binding energy and so on. Inspite of the fact that there is more than 100 of ADCs are in clinical trial only 14 ADCs are approved by FDA for clinical use. However, to design an ideal ADC is still challenging and there is much more to be done. Here in this review, we have discussed the key components along with their significant role or contribution towards the efficacy of an ADC. Moreover, we also explained about the recent advancement in the conjugation method. Additionally, we spotlit the mode of action of an ADC, recent challenges, and future perspective regarding ADC. The profound knowledge regarding key components and their properties will help in the synthesis or production of different engineered ADCs. Therefore, contributes to develop an ADC with low safety concern and high therapeutic index. We hope this review will improve the understanding and encourage the practicing of research in anticancer ADCs development.
Collapse
Affiliation(s)
| | | | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | | | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | - In Suk Kang
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea.
| |
Collapse
|
14
|
Shi W, Zhang J, Liu L, Li W, Liu Z, Ren A, Wang J, Tang C, Yang Y, Xu D, Huang Q, Wang Y, Luo C, Huang W, Tang F. Hiding Payload Inside the IgG Fc Cavity Significantly Enhances the Therapeutic Index of Antibody-Drug Conjugates. J Med Chem 2023; 66:1011-1026. [PMID: 36584232 DOI: 10.1021/acs.jmedchem.2c01812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The inadequate understanding of the structure-activity relationship (SAR) of glycosite-specific antibody-drug conjugates (ADCs) hinders its design and development. Herein, we revealed the systemic SAR and structure-toxicity relationship (STR) of gsADCs by constructing 50 gsADC structures bearing three glycan subtypes and diverse linker-drug combinations. According to the results, extra hydrophilic linkers are indispensable for the intact glycan-based gsADCs to achieve better in vivo efficacy. Meanwhile, the gsADCs that conjugate linker-drug complexes onto the terminal sialic acid are more stable and potent than the ones conjugated onto the terminal galactose in vivo. Notably, the LacNAc-based gsADCs, which shortened the spacer and located the linker-drug more inside the immunoglobulin class G (IgG) Fc cavity, showed excellent hydrophilicity, in vivo activity, pharmacokinetics, and safety. Conclusively, we found that hiding the linker-toxin into the Fc cavity can significantly enhance the therapeutic index of LacNAc-based gsADCs, which will benefit the further design of ADCs with optimal druggability.
Collapse
Affiliation(s)
- Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Pudong, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Jianxin Zhang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Pudong, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - Liya Liu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wanzhen Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Pudong, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - Zhi Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - Anni Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Jie Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Caihong Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Pudong, Shanghai 201203, China
| | - Yang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Dandan Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Qianqian Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Caili Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Pudong, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Shanghai GlycanLink Biotech. Co. Ltd. Minhang, Shanghai 201203, China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Pudong, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
15
|
Quintana J, Arboleda D, Hu H, Scott E, Luthria G, Pai S, Parangi S, Weissleder R, Miller MA. Radiation Cleaved Drug-Conjugate Linkers Enable Local Payload Release. Bioconjug Chem 2022; 33:1474-1484. [PMID: 35833631 PMCID: PMC9390333 DOI: 10.1021/acs.bioconjchem.2c00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugation of therapeutic payloads to biologics including antibodies and albumin can enhance the selectively of drug delivery to solid tumors. However, achieving activity in tumors while avoiding healthy tissues remains a challenge, and payload activity in off-target tissues can cause toxicity for many such drug-conjugates. Here, we address this issue by presenting a drug-conjugate linker strategy that releases an active therapeutic payload upon exposure to ionizing radiation. Localized X-ray irradiation at clinically relevant doses (8 Gy) yields 50% drug (doxorubicin or monomethyl auristatin E, MMAE) release under hypoxic conditions that are traditionally associated with radiotherapy resistance. As proof-of-principle, we apply the approach to antibody- and albumin-drug conjugates and achieve >2000-fold enhanced MMAE cytotoxicity upon irradiation. Overall, this work establishes ionizing radiation as a strategy for spatially localized cancer drug delivery.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - David Arboleda
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Huiyu Hu
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Gaurav Luthria
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
| | - Sara Pai
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Sareh Parangi
- Department
of Surgery, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital Research Institute, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
16
|
Marei HE, Cenciarelli C, Hasan A. Potential of antibody-drug conjugates (ADCs) for cancer therapy. Cancer Cell Int 2022; 22:255. [PMID: 35964048 PMCID: PMC9375290 DOI: 10.1186/s12935-022-02679-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Walles M, Berna MJ, Jian W, Hauri S, Hengel S, King L, Tran JC, Wei C, Xu K, Zhu X. A Cross Company Perspective on the Assessment of Therapeutic Protein Biotransformation. Drug Metab Dispos 2022; 50:846-857. [DOI: 10.1124/dmd.121.000462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
|
18
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
19
|
Kramlinger VM, Dalvie D, Heck CJ, Kalgutkar AS, O'Neill J, Su D, Teitelbaum A, Totah RA. Future of Biotransformation Science in the Pharmaceutical Industry. Drug Metab Dispos 2021; 50:258-267. [PMID: 34921097 DOI: 10.1124/dmd.121.000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them towards a rewarding career path. The ability of scientists with a background in biotransformation/organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small molecule or large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders and antibodies. Significance Statement Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity to nurture creative ways to train them and guarantee the future growth of this field.
Collapse
Affiliation(s)
| | | | - Carley Js Heck
- Pfizer Worldwide Research and Development, United States
| | - Amit S Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism Dept., Pfizer Worldwide Research and Development, United States
| | | | - Dian Su
- Mersana Therapeutics, United States
| | - Aaron Teitelbaum
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, United States
| | - Rheem A Totah
- Medicinal Chemistry, Univeristy of Washington, United States
| |
Collapse
|
20
|
Giese M, Davis PD, Woodman RH, Hermanson G, Pokora A, Vermillion M. Linker Architectures as Steric Auxiliaries for Altering Enzyme-Mediated Payload Release from Bioconjugates. Bioconjug Chem 2021; 32:2257-2267. [PMID: 34587447 DOI: 10.1021/acs.bioconjchem.1c00429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-activated prodrugs leverage the increased activity of proteases in the tumor microenvironment and the tight regulation in healthy tissues to provide selective activation of cytotoxins in the tumor while minimizing toxicity to normal tissues. One of the largest classes of protease-activated prodrugs are composed of therapeutic agents conjugated to macromolecular carriers via peptide motifs that are substrates for cathepsin B, and antibody-drug conjugates are one of the most successful designs within this class. However, many of these peptide motifs are also cleaved by extracellular enzymes such as elastase and carboxylesterase 1C. Additionally, some peptide sequences have little selectivity for other lysosomal cathepsins, which have also been found to have extracellular activity in normal physiological processes. A lack of selectivity or oversensitivity to other extracellular enzymes can lead to off-target release of the cytotoxic payload and subsequent toxicities. In this report, we describe an approach for modulating cathepsin-mediated release of the cytotoxic payload through steric shielding provided by the synergistic effects of appropriately designed hydrophilic linkers and the conjugated carrier. We prepared a fluorogenic model payload with a Val-Cit cleavable trigger and attached the trigger-payload to a variety of PEG-based linker architectures with different numbers of PEG arms (y), different numbers of ethylene oxide units in each arm (n), and different distances between the cleavable trigger and PEG branch point (D'). These linker-payloads were then used to prepare DAR2 conjugates with the cleavable triggers at three different distances (D) from the antibody, and cathepsin-mediated payload release was monitored with in vitro assays. The results show that structural variables of the linker architectures can be manipulated to effectively shield enzymatically labile trigger-payloads from enzymes with readily accessible binding sites, and may offer an additional strategy for balancing off-target and tumor-targeted payload release.
Collapse
Affiliation(s)
- Matthew Giese
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Paul D Davis
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Robert H Woodman
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Greg Hermanson
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Alex Pokora
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Melissa Vermillion
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| |
Collapse
|
21
|
Bruins J, Damen JAM, Wijdeven MA, Lelieveldt LPWM, van Delft FL, Albada B. Non-Genetic Generation of Antibody Conjugates Based on Chemoenzymatic Tyrosine Click Chemistry. Bioconjug Chem 2021; 32:2167-2172. [PMID: 34519477 PMCID: PMC8532111 DOI: 10.1021/acs.bioconjchem.1c00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Indexed: 12/01/2022]
Abstract
The availability of tools to generate homogeneous and stable antibody conjugates without recombinant DNA technology is a valuable asset in fields spanning from in vitro diagnostics to in vivo imaging and therapeutics. We present here a general approach for the conjugation to human IgG1 antibodies, by employing a straightforward two-stage protocol based on antibody deglycosylation followed by tyrosinase-mediated ortho-quinone strain-promoted click chemistry. The technology is validated by the efficient and clean generation of highly potent DAR2 and DAR4 antibody-drug conjugates (ADCs) with cytotoxic payloads MMAE or PBD dimer, and their in vitro evaluation.
Collapse
Affiliation(s)
- Jorick
J. Bruins
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Johannes A. M. Damen
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | | | | | - Floris L. van Delft
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Synaffix
BV, Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Bauke Albada
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
22
|
Kaempffe A, Dickgiesser S, Rasche N, Paoletti A, Bertotti E, De Salve I, Sirtori FR, Kellner R, Könning D, Hecht S, Anderl J, Kolmar H, Schröter C. Effect of Conjugation Site and Technique on the Stability and Pharmacokinetics of Antibody-Drug Conjugates. J Pharm Sci 2021; 110:3776-3785. [PMID: 34363839 DOI: 10.1016/j.xphs.2021.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Appropriate selection of conjugation sites and conjugation technologies is now widely accepted as crucial for the success of antibody-drug conjugates (ADCs). Herein, we present ADCs conjugated by different conjugation methods to different conjugation positions being systematically characterized by multiple in vitro assays as well as in vivo pharmacokinetic (PK) analyses in transgenic Tg276 mice. Conjugation to cysteines, genetically introduced at positions N325, L328, S239, D265, and S442, was compared to enzymatic conjugation via microbial transglutaminase (mTG) either to C-terminal light (LC) or heavy chain (HC) recognition motifs or to endogenous position Q295 of a native antibody. All conjugations yielded homogeneous DAR 2 ADCs with similar hydrophobicity, thermal stability, human neonatal Fc receptor (huFcRn) binding, and serum stability properties, but with pronounced differences in their PK profiles. mTG-conjugated ADC variants conjugated either to Q295 or to LC recognition motifs showed superior PK behavior. Within the panel of engineered cysteine variants L328 showed a similar PK profile compared to previously described S239 but superior PK compared to S442, D265, and N325. While all positions were first tested with trastuzumab, L328 and mTG LC were further evaluated with additional antibody scaffolds derived from clinically evaluated monoclonal antibodies (mAb). Based on PK analyses, this study confirms the newly described position L328 as favorable site for cysteine conjugation, comparable to the well-established engineered cysteine position S239, and emphasizes the favorable position Q295 of native antibodies and the tagged LC antibody variant for enzymatic conjugations via mTG. In addition, hemizygous Tg276 mice are evaluated as an adequate model for ADC pharmacokinetics, facilitating the selection of suitable ADC candidates early in the drug discovery process.
Collapse
Affiliation(s)
- Anna Kaempffe
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Stephan Dickgiesser
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Nicolas Rasche
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Andrea Paoletti
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Elisa Bertotti
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Ilse De Salve
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Federico Riccardi Sirtori
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Roland Kellner
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Doreen Könning
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Stefan Hecht
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Jan Anderl
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Schröter
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| |
Collapse
|
23
|
Su D, Zhang D. Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Front Pharmacol 2021; 12:687926. [PMID: 34248637 PMCID: PMC8262647 DOI: 10.3389/fphar.2021.687926] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
The development of antibody-drug conjugates (ADCs) has significantly been advanced in the past decade given the improvement of payloads, linkers and conjugation methods. In particular, linker design plays a critical role in modulating ADC stability in the systemic circulation and payload release efficiency in the tumors, which thus affects ADC pharmacokinetic (PK), efficacy and toxicity profiles. Previously, we have investigated key linker parameters such as conjugation chemistry (e.g., maleimide vs. disulfide), linker length and linker steric hindrance and their impacts on PK and efficacy profiles. Herein, we discuss our perspectives on development of integrated strategies for linker design to achieve a balance between ADC stability and payload release efficiency for desired efficacy in antigen-expressing xenograft models. The strategies have been successfully applied to the design of site-specific THIOMABTM antibody-drug conjugates (TDCs) with different payloads. We also propose to conduct dose fractionation studies to gain guidance for optimal dosing regimens of ADCs in pre-clinical models.
Collapse
Affiliation(s)
- Dian Su
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, United States
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
24
|
Nicolaou KC, Rigol S, Pitsinos EN, Das D, Lu Y, Rout S, Schammel AW, Holte D, Lin B, Gu C, Sarvaiya H, Trinidad J, Barbour N, Valdiosera AM, Sandoval J, Lee C, Aujay M, Fernando H, Dhar A, Karsunky H, Taylor N, Pysz M, Gavrilyuk J. Uncialamycin-based antibody-drug conjugates: Unique enediyne ADCs exhibiting bystander killing effect. Proc Natl Acad Sci U S A 2021; 118:e2107042118. [PMID: 34155147 PMCID: PMC8237573 DOI: 10.1073/pnas.2107042118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as valuable targeted anticancer therapeutics with at least 11 approved therapies and over 80 advancing through clinical trials. Enediyne DNA-damaging payloads represented by the flagship of this family of antitumor agents, N-acetyl calicheamicin [Formula: see text], have a proven success track record. However, they pose a significant synthetic challenge in the development and optimization of linker drugs. We have recently reported a streamlined total synthesis of uncialamycin, another representative of the enediyne class of compounds, with compelling synthetic accessibility. Here we report the synthesis and evaluation of uncialamycin ADCs featuring a variety of cleavable and noncleavable linkers. We have discovered that uncialamycin ADCs display a strong bystander killing effect and are highly selective and cytotoxic in vitro and in vivo.
Collapse
Affiliation(s)
- K C Nicolaou
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005;
| | - Stephan Rigol
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | - Emmanuel N Pitsinos
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", 153 10 Agia Paraskevi, Greece
| | - Dipendu Das
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | - Yong Lu
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | - Subhrajit Rout
- BioScience Research Collaborative, Department of Chemistry, Rice University, Houston, TX 77005
| | | | - Dane Holte
- Discovery Chemistry Department, AbbVie Inc., South San Francisco, CA 94080
| | - Baiwei Lin
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Christine Gu
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Hetal Sarvaiya
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Jose Trinidad
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Nicole Barbour
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Amanda M Valdiosera
- Bioconjugation and Process Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Joseph Sandoval
- Assay Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Christina Lee
- Assay Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Monette Aujay
- Assay Development Department, AbbVie Inc., South San Francisco, CA 94080
| | - Hanan Fernando
- Cancer Biology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Anukriti Dhar
- Cancer Biology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Holger Karsunky
- Cancer Biology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Nicole Taylor
- In Vivo Pharmacology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Marybeth Pysz
- In Vivo Pharmacology Department, AbbVie Inc., South San Francisco, CA 94080
| | - Julia Gavrilyuk
- Discovery Chemistry Department, AbbVie Inc., South San Francisco, CA 94080;
| |
Collapse
|
25
|
Luciano MP, Dingle I, Nourian S, Schnermann MJ. Preferential Light-Chain Labeling of Native Monoclonal Antibodies Improves the Properties of Fluorophore Conjugates. Tetrahedron Lett 2021; 75. [PMID: 34321699 DOI: 10.1016/j.tetlet.2021.153211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Site specific labeling methods have significant potential to enhance the properties of antibody conjugates. While studied extensively in the context of antibody-drug conjugates (ADCs), few studies have examined the impact of homogenous labeling on the properties of antibody-fluorophore conjugates (AFCs). We report the application of pentafluorophenyl (PFP) esters, which had previously been shown to be reasonably selective for K188 of the kappa light chain of human IGG antibodies, toward producing AFCs. We show that simple replacement of N-hydroxy succinimide (NHS) with PFP dramatically increases the light-chain specificity of near-infrared (NIR) AFCs. Comparing the properties of AFCs labeled using NHS and PFP-activated esters reveals that the latter exhibits reduced aggregation and improved brightness, both in vitro and in vivo. Overall, the use of PFP esters provides a remarkably simple approach to provide selectively labeled antibodies with improved properties.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
26
|
Hamilton JZ, Pires TA, Mitchell JA, Cochran JH, Emmerton KK, Zaval M, Stone IJ, Anderson ME, Jin S, Waight AB, Lyon RP, Senter PD, Jeffrey SC, Burke PJ. Improving Antibody-Tubulysin Conjugates through Linker Chemistry and Site-Specific Conjugation. ChemMedChem 2021; 16:1077-1081. [PMID: 33369163 PMCID: PMC8048973 DOI: 10.1002/cmdc.202000889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Tubulysins have emerged in recent years as a compelling drug class for delivery to tumor cells via antibodies. The ability of this drug class to exert bystander activity while retaining potency against multidrug-resistant cell lines differentiates them from other microtubule-disrupting agents. Tubulysin M, a synthetic analogue, has proven to be active and well tolerated as an antibody-drug conjugate (ADC) payload, but has the liability of being susceptible to acetate hydrolysis at the C11 position, leading to attenuated potency. In this work, we examine the ability of the drug-linker and conjugation site to preserve acetate stability. Our findings show that, in contrast to a more conventional protease-cleavable dipeptide linker, the β-glucuronidase-cleavable glucuronide linker protects against acetate hydrolysis and improves ADC activity in vivo. In addition, site-specific conjugation can positively impact both acetate stability and in vivo activity. Together, these findings provide the basis for a highly optimized delivery strategy for tubulysin M.
Collapse
Affiliation(s)
| | - Thomas A. Pires
- Department of ChemistryUniversity of Illinois at Urbana-Champaign505 South Mathews Ave.Urbana, IL61801USA
| | | | | | | | - Margo Zaval
- Seagen Inc.21823 30th Drive SEBothell, WA98021USA
| | | | | | - Steven Jin
- Seagen Inc.21823 30th Drive SEBothell, WA98021USA
| | - Andrew B. Waight
- Protein SciencesDiscovery BiologicsMerck Research Laboratories213 E Grand Ave.South San Francisco, CA94080USA
| | | | | | | | | |
Collapse
|
27
|
Vollmar BS, Frantz C, Schutten MM, Zhong F, Del Rosario G, Go MAT, Yu SF, Leipold DD, Kamath AV, Ng C, Xu K, Dela Cruz-Chuh J, Kozak KR, Chen J, Xu Z, Wai J, Adhikari P, Erickson HK, Dragovich PS, Polson AG, Pillow TH. Calicheamicin Antibody-Drug Conjugates with Improved Properties. Mol Cancer Ther 2021; 20:1112-1120. [PMID: 33722856 DOI: 10.1158/1535-7163.mct-20-0035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate. We report herein that the resulting homogeneous conjugates possess minimal aggregation and display high in vivo stability with 50% of the drug remaining conjugated to the antibody after 21 days. Furthermore, these calicheamicin ADCs are highly efficacious in mouse models of both solid tumor (HER2+ breast cancer) and hematologic malignancies (CD22+ non-Hodgkin lymphoma). Safety studies in rats with this novel calicheamicin ADC revealed an increased tolerability compared with that reported for Mylotarg. Overall, we demonstrate that applying novel linker chemistry with site-specific conjugation affords an improved, next-generation calicheamicin ADC.
Collapse
Affiliation(s)
| | - Chris Frantz
- Genentech, Inc., South San Francisco, California
| | | | - Fiona Zhong
- Genentech, Inc., South San Francisco, California
| | | | | | - Shang-Fan Yu
- Genentech, Inc., South San Francisco, California
| | | | | | - Carl Ng
- Genentech, Inc., South San Francisco, California
| | - Keyang Xu
- Genentech, Inc., South San Francisco, California
| | | | | | | | - Zijin Xu
- WuXi AppTec Co., Ltd, Shanghai, China
| | - John Wai
- WuXi AppTec Co., Ltd, Shanghai, China
| | | | | | | | | | | |
Collapse
|
28
|
Chuprakov S, Ogunkoya AO, Barfield RM, Bauzon M, Hickle C, Kim YC, Yeo D, Zhang F, Rabuka D, Drake PM. Tandem-Cleavage Linkers Improve the In Vivo Stability and Tolerability of Antibody-Drug Conjugates. Bioconjug Chem 2021; 32:746-754. [PMID: 33689309 DOI: 10.1021/acs.bioconjchem.1c00029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although peptide motifs represent the majority of cleavable linkers used in clinical-stage antibody-drug conjugates (ADCs), the sequences are often sensitive to cleavage by extracellular enzymes, such as elastase, which leads to systemic release of the cytotoxic payload. This action reduces the therapeutic index by causing off-target toxicities that can be dose-limiting. For example, a common side-effect of ADCs made using peptide-cleavable linkers is myelosuppression, including neutropenia. Only a few reports describe methods for optimizing peptide linkers to maintain efficient and potent tumor payload delivery while enhancing circulating stability. Herein, we address these critical limitations through the development of a tandem-cleavage linker strategy, where two sequential enzymatic cleavage events mediate payload release. We prepared dipeptides that are protected from degradation in the circulation by a sterically encumbering glucuronide moiety. Upon ADC internalization and lysosomal degradation, the monosaccharide is removed and the exposed dipeptide is degraded, which liberates the attached payload inside the target cell. We used CD79b-targeted monomethyl auristatin E (MMAE) conjugates as our model system and compared the stability, efficacy, and tolerability of ADCs made with tandem-cleavage linkers to ADCs made using standard technology with the vedotin linker. The results, where rat studies showed dramatically improved tolerability in the hematopoietic compartment, highlight the role that linker stability plays in efficacy and tolerability and also offer a means of improving an ADC's therapeutic index for improved patient outcomes.
Collapse
Affiliation(s)
- Stepan Chuprakov
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Ayodele O Ogunkoya
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Robyn M Barfield
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Maxine Bauzon
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Colin Hickle
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Yun Cheol Kim
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Dominick Yeo
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Fangjiu Zhang
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - David Rabuka
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| | - Penelope M Drake
- Catalent Pharma Solutions, 5959 Horton Street, Suite 400, Emeryville, California 94608, United States
| |
Collapse
|
29
|
Lee BI, Park SJ, Park Y, Shin SH, Choi JM, Park MJ, Lim JH, Kim SY, Lee H, Shin YG. Assessments of the In Vitro and In Vivo Linker Stability and Catabolic Fate for the Ortho Hydroxy-Protected Aryl Sulfate Linker by Immuno-Affinity Capture Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometric Assay. Pharmaceutics 2021; 13:pharmaceutics13010125. [PMID: 33478046 PMCID: PMC7836004 DOI: 10.3390/pharmaceutics13010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Antibody-drug conjugate (ADC) linkers play an important role in determining the safety and efficacy of ADC. The Ortho Hydroxy-Protected Aryl Sulfate (OHPAS) linker is a newly developed linker in the form of a di-aryl sulfate structure consisting of phenolic payload and self-immolative group (SIG). In this study, using two bioanalytical approaches (namely "bottom-up" and "middle-up" approaches) via the liquid chromatography-quadrupole time-of-flight mass spectrometric (LC-qTOF-MS) method, in vitro and in vivo linker stability experiments were conducted for the OHPAS linker. For comparison, the valine-citrulline-p-aminobenzyloxycarbonyl (VC-PABC) linker was also evaluated under the same experimental conditions. In addition, the catabolite identification experiments at the subunit intact protein level were simultaneously performed to evaluate the catabolic fate of ADCs. As a result, the OHPAS linker was stable in the in vitro mouse/human plasma as well as in vivo pharmacokinetic studies in mice, whereas the VC-PABC linker was relatively unstable in mice in vitro and in vivo. This is because the VC-PABC linker was sensitive to a hydrolytic enzyme called carboxylesterase 1c (Ces1c) in mouse plasma. In conclusion, the OHPAS linker appears to be a good linker for ADC, and further experiments would be warranted to demonstrate the efficacy and toxicity related to the OHPAS linker.
Collapse
Affiliation(s)
- Byeong ill Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
| | - Seo-jin Park
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
| | - Yuri Park
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
| | - Seok-Ho Shin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
| | - Jang-mi Choi
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
| | - Min-jae Park
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
| | - Jeong-hyeon Lim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
| | - Sun Young Kim
- IntoCell Inc., 101, Sinildong-ro, Daedeok-gu, Daejeon 34324, Korea; (S.Y.K.); (H.L.)
| | - Hyangsook Lee
- IntoCell Inc., 101, Sinildong-ro, Daedeok-gu, Daejeon 34324, Korea; (S.Y.K.); (H.L.)
| | - Young G. Shin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, Korea; (B.i.L.); (S.-j.P.); (Y.P.); (S.-H.S.); (J.-m.C.); (M.-j.P.); (J.-h.L.)
- Correspondence: ; Tel.: +82-42-821-5931
| |
Collapse
|
30
|
Anselmi M, Borbély A, Figueras E, Michalek C, Kemker I, Gentilucci L, Sewald N. Linker Hydrophilicity Modulates the Anticancer Activity of RGD-Cryptophycin Conjugates. Chemistry 2021; 27:1015-1022. [PMID: 32955139 PMCID: PMC7839693 DOI: 10.1002/chem.202003471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Indexed: 12/27/2022]
Abstract
Most anticancer agents are hydrophobic and can easily penetrate the tumor cell membrane by passive diffusion. This may impede the development of highly effective and tumor-selective treatment options. A hydrophilic β-glucuronidase-cleavable linker was used to connect the highly potent antimitotic agent cryptophycin-55 glycinate with the αv β3 integrin ligand c(RGDfK). Incorporation of the self-immolative linker containing glucuronic acid results in lower cytotoxicity than that of the free payload, suggesting that hydrophilic sugar linkers can preclude passive cellular uptake. In vitro drug-release studies and cytotoxicity assays demonstrated the potential of this small molecule-drug conjugate, providing guidance for the development of therapeutics containing hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Michele Anselmi
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
- Department of Chemistry“G. Ciamician” University of Bolognavia Selmi 240126BolognaItaly
| | - Adina Borbély
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Eduard Figueras
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Carmela Michalek
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Isabell Kemker
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Luca Gentilucci
- Department of Chemistry“G. Ciamician” University of Bolognavia Selmi 240126BolognaItaly
| | - Norbert Sewald
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
31
|
|
32
|
Holte D, Lyssikatos JP, Valdiosera AM, Swinney Z, Sisodiya V, Sandoval J, Lee C, Aujay MA, Tchelepi RB, Hamdy OM, Gu C, Lin B, Sarvaiya H, Pysz MA, Laysang A, Williams S, Jun Lee D, Holda MK, Purcell JW, Gavrilyuk J. Evaluation of PNU-159682 antibody drug conjugates (ADCs). Bioorg Med Chem Lett 2020; 30:127640. [PMID: 33127540 DOI: 10.1016/j.bmcl.2020.127640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022]
Abstract
PNU-159682 is a highly potent secondary metabolite of nemorubicin belonging to the anthracycline class of natural products. Due to its extremely high potency and only partially understood mechanism of action, it was deemed an interesting starting point for the development of a new suite of linker drugs for antibody drug conjugates (ADCs). Structure activity relationships were explored on the small molecule which led to six linker drugs being developed for conjugation to antibodies. Herein we describe the synthesis of novel PNU-159682 derivatives and the subsequent linker drugs as well as the corresponding biological evaluations of the small molecules and ADCs.
Collapse
Affiliation(s)
- Dane Holte
- AbbVie Chemical Development & Manufacturing, 995 East Arques Avenue, Sunnyvale, CA 94085, USA.
| | - Joseph P Lyssikatos
- Enliven Therapeutics, 6200 Lookout Road, First Floor, Boulder, CO 80301, USA
| | | | - Zachary Swinney
- Mantra Bio, 455 Mission Bay Boulevard, South San Francisco, CA 94158, USA
| | - Vikram Sisodiya
- Denali Therapeutics, 161 Oyster Point Bloulevard, South San Francisco, CA 94080, USA
| | - Joseph Sandoval
- Fate Therapeutics, 3535 General Atomics Court, Suite 200, San Diego 92121, USA
| | - Christina Lee
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Monette A Aujay
- Enliven Therapeutics, 6200 Lookout Road, First Floor, Boulder, CO 80301, USA
| | - Robert B Tchelepi
- Bolt Biotherapeutics, 640 Galveston Drive, Redwood City, CA 94063, USA
| | - Omar M Hamdy
- Applied Molecular Transport, 1 Tower Place, Suite 850, South San Francisco, CA 94080, USA
| | - Christine Gu
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA; AbbVie Research & Development, 995 East Arques Avenue, Sunnyvale, CA 94085, USA
| | - Baiwei Lin
- Maze Therapeutics, 131 Oyster Point Blvd, Suite 200, South San Francisco, CA 94080, USA
| | - Hetal Sarvaiya
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Marybeth A Pysz
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Amy Laysang
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Samuel Williams
- ArsenalBio, Inc. 2 Tower Place, South San Francisco, CA 94080, USA
| | - Dong Jun Lee
- AbbVie Research & Development, 995 East Arques Avenue, Sunnyvale, CA 94085, USA
| | - Magda K Holda
- AbbVie Research & Development, 1500 Seaport Blvd, Redwood City, CA 94063, USA
| | - James W Purcell
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| | - Julia Gavrilyuk
- AbbVie Research & Development, 400 East Jamie Court, South San Francisco, CA 94080, USA
| |
Collapse
|
33
|
Yu SF, Lee DW, Zheng B, Del Rosario G, Leipold D, Booler H, Zhong F, Carrasco-Triguero M, Hong K, Yan P, Rowntree RK, Schutten MM, Pillow T, Sadowsky JD, Dragovich PS, Polson AG. An Anti-CD22- seco-CBI-Dimer Antibody-Drug Conjugate (ADC) for the Treatment of Non-Hodgkin Lymphoma That Provides a Longer Duration of Response than Auristatin-Based ADCs in Preclinical Models. Mol Cancer Ther 2020; 20:340-346. [PMID: 33273056 DOI: 10.1158/1535-7163.mct-20-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
We are interested in developing a second generation of antibody-drug conjugates (ADCs) for the treatment of non-Hodgkin lymphoma (NHL) that could provide a longer duration of response and be more effective in indolent NHL than the microtubule-inhibiting ADCs pinatuzumab vedotin [anti-CD22-vc-monomethyl auristatin E (MMAE)] and polatuzumab vedotin (anti-CD79b-vc-MMAE). Pinatuzumab vedotin (anti-CD22-vc-MMAE) and polatuzumab vedotin (anti-CD79b-vc-MMAE) are ADCs that contain the microtubule inhibitor MMAE. Clinical trial data suggest that these ADCs have promising efficacy for the treatment of NHL; however, some patients do not respond or become resistant to the ADCs. We tested an anti-CD22 ADC with a seco-CBI-dimer payload, thio-Hu anti-CD22-(LC:K149C)-SN36248, and compared it with pinatuzumab vedotin for its efficacy and duration of response in xenograft models and its ability to deplete normal B cells in cynomolgus monkeys. We found that anti-CD22-(LC:K149C)-SN36248 was effective in xenograft models resistant to pinatuzumab vedotin, gave a longer duration of response, had a different mechanism of resistance, and was able to deplete normal B cells better than pinatuzumab vedotin. These studies provide evidence that anti-CD22-(LC:K149C)-SN36248 has the potential for longer duration of response and more efficacy in indolent NHL than MMAE ADCs and may provide the opportunity to improve outcomes for patients with NHL.
Collapse
Affiliation(s)
- Shang-Fan Yu
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Donna W Lee
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Bing Zheng
- Research and Early Development, Genentech Inc., South San Francisco, California
| | | | - Douglas Leipold
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Helen Booler
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Fiona Zhong
- Research and Early Development, Genentech Inc., South San Francisco, California
| | | | - Kyu Hong
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Peter Yan
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Rebecca K Rowntree
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Melissa M Schutten
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Thomas Pillow
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Jack D Sadowsky
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Peter S Dragovich
- Research and Early Development, Genentech Inc., South San Francisco, California
| | - Andrew G Polson
- Research and Early Development, Genentech Inc., South San Francisco, California.
| |
Collapse
|
34
|
Yip V, Figueroa I, Latifi B, Masih S, Ng C, Leipold D, Kamath A, Shen BQ. Anti-Lymphocyte Antigen 6 Complex, Locus E- Seco-Cyclopropabenzindol-4-One-Dimer Antibody-Drug Conjugate That Forms Adduct with α1-Microglobulin Demonstrates Slower Systemic Antibody Clearance and Reduced Tumor Distribution in Animals. Drug Metab Dispos 2020; 48:1247-1256. [PMID: 33020064 DOI: 10.1124/dmd.120.000145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023] Open
Abstract
Anti-Ly6E-seco-cyclopropabenzindol-4-one dimer antibody-drug conjugate (ADC) has been reported to form an adduct with α1-microglobulin (A1M) in animal plasma, but with unknown impact on ADC PK and tissue distribution. In this study, we compared the PK and tissue distribution of anti-Ly6E ADC with unconjugated anti-Ly6E mAb in rodents and monkeys. For PK studies, animals received an intravenous administration of anti-Ly6E ADC or unconjugated anti-Ly6E mAb. Plasma samples were analyzed for total antibody (Tab) levels and A1M adduct formation. PK parameters were generated from dose-normalized plasma concentrations. Tissue distribution was determined in tumor-bearing mice after a single intravenous dosing of radiolabeled ADC or mAb. Tissue radioactivity levels were analyzed using a gamma counter. The impact of A1M adduct formation on target cell binding was assessed in an in vitro cell binding assay. The results show that ADC Tab clearance was slower than that of mAb in mice and rats but faster than mAb in monkeys. Correspondingly, the formation of A1M adduct appeared to be faster and higher in mice, followed by rats, and slowest in monkeys. Although ADC tended to show an overall lower distribution to normal tissues, it had a strikingly reduced distribution to tumors compared with mAb, likely due to A1M adduct formation interfering with target binding, as demonstrated by the in vitro cell binding assay. Together, these data 1) demonstrate that anti-Ly6E ADC that forms A1M adduct had slower systemic clearance with strikingly reduced tumor distribution and 2) highlight the importance of selecting an appropriate linker-drug for successful ADC development. SIGNIFICANCE STATEMENT: Anti-lymphocyte antigen 6 complex, locus E, ADC with seco-cyclopropabenzindol-4-one-dimer payload formed adduct with A1M, which led to a decrease in systemic clearance but also attenuated tumor distribution. These findings demonstrate the importance of selecting an appropriate linker-drug for ADC development and also highlight the value of a mechanistic understanding of ADC biotransformation, which could provide insight into ADC molecule design, optimization, and selection.
Collapse
Affiliation(s)
- Victor Yip
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Isabel Figueroa
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Brandon Latifi
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Shab Masih
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Carl Ng
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Doug Leipold
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Amrita Kamath
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| |
Collapse
|
35
|
Lai Q, Wu M, Wang R, Lai W, Tao Y, Lu Y, Wang Y, Yu L, Zhang R, Peng Y, Jiang X, Fu Y, Wang X, Zhang Z, Guo C, Liao W, Zhang Y, Kang T, Chen H, Yao Y, Gou L, Yang J. Cryptophycin-55/52 based antibody-drug conjugates: Synthesis, efficacy, and mode of action studies. Eur J Med Chem 2020; 199:112364. [PMID: 32402935 DOI: 10.1016/j.ejmech.2020.112364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 02/05/2023]
Abstract
Cryptophycin-52 (CR52), a tubulin inhibitor, exhibits promising antitumor activity in vitro (picomolar level) and in mouse xenograft models. However, the narrow therapeutic window in clinical trials limits its further development. Antibody-drug conjugate (ADC), formed by coupling cytotoxic compound (payload) to an antibody via a linker, can deliver drug to tumor locations in a targeted manner by antibody, enhancing the therapeutic effects and reducing toxic and side effects. In this study, we aim to explore the possibility of CR52-based ADC for tumor targeted therapy. Due to the lack of a coupling site in CR52, its prodrug cryptophycin-55 (CR55) containing a free hydroxyl was synthesized and conjugated to the model antibody trastuzumab (anti-HER2 antibody drug approved by FDA for breast cancer therapy) via the linkers based on Mc-NHS and Mc-Val-Cit-PAB-PNP. The average drug-to-antibody ratios (DARs) of trastuzumab-CR55 conjugates (named T-L1-CR55, T-L2-CR55, and T-L3-CR55) were 3.50, 3.29, and 3.35, respectively. These conjugates exhibited potent cytotoxicity in HER2-positive tumor cell lines with IC50 values at low nanomolar levels (0.58-1.19 nM). Further, they displayed significant antitumor activities at the doses of 10 mg/kg in established ovarian cancer (SKOV3) and gastric cancer (NCI-N87) xenograft models without overt toxicities. Finally, the drug releases were analyzed and the results indicated that T-L3-CR55 was able to effectively release CR55 and further epoxidized to CR52, which may be responsible for its best performance in antitumor activities. In conclusion, our results demonstrated that these conjugates have the potential for tumor targeted therapy, which provides insights to further research the CR55/CR52-based ADC for tumor therapy.
Collapse
Affiliation(s)
- Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ruixue Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yiran Tao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center/ Sichuan University, Chengdu, PR China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, PR China
| | - Ruirui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wei Liao
- The 32265 Army Hospital of PLA, Guangzhou, PR China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tairan Kang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Hao Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yuqin Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center/ Sichuan University, Chengdu, PR China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
36
|
Gauzy-Lazo L, Sassoon I, Brun MP. Advances in Antibody–Drug Conjugate Design: Current Clinical Landscape and Future Innovations. SLAS DISCOVERY 2020; 25:843-868. [DOI: 10.1177/2472555220912955] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The targeted delivery of potent cytotoxic molecules into cancer cells is considered a promising anticancer strategy. The design of clinically effective antibody–drug conjugates (ADCs), in which biologically active drugs are coupled through chemical linkers to monoclonal antibodies, has presented challenges for pharmaceutical researchers. After 30 years of intensive research and development activities, only seven ADCs have been approved for clinical use; two have received fast-track designation and two breakthrough therapy designation from the Food and Drug Administration. There is continued interest in the field, as documented by the growing number of candidates in clinical development. This review aims to summarize the most recent innovations that have been applied to the design of ADCs undergoing early- and late-stage clinical trials. Discovery and rational optimization of new payloads, chemical linkers, and antibody formats have improved the therapeutic index of next-generation ADCs, ultimately resulting in improved clinical benefit for the patients.
Collapse
Affiliation(s)
| | - Ingrid Sassoon
- Immuno-Oncology Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | | |
Collapse
|
37
|
Schmidt JJ, Khatri Y, Brody SI, Zhu C, Pietraszkiewicz H, Valeriote FA, Sherman DH. A Versatile Chemoenzymatic Synthesis for the Discovery of Potent Cryptophycin Analogs. ACS Chem Biol 2020; 15:524-532. [PMID: 31961651 DOI: 10.1021/acschembio.9b00998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cryptophycins are a family of macrocyclic depsipeptide natural products that display exceptionally potent antiproliferative activity against drug-resistant cancers. Unique challenges facing the synthesis and derivatization of this complex group of molecules motivated us to investigate a chemoenzymatic synthesis designed to access new analogs for biological evaluation. The cryptophycin thioesterase (CrpTE) and the cryptophycin epoxidase (CrpE) are a versatile set of enzymes that catalyze macrocyclization and epoxidation of over 20 natural cryptophycin metabolites. Thus, we envisioned a drug development strategy involving their use as standalone biocatalysts for production of unnatural derivatives. Herein, we developed a scalable synthesis of 12 new unit A-B-C-D linear chain elongation intermediates containing heterocyclic aromatic groups as alternatives to the native unit A benzyl group. N-Acetyl cysteamine activated forms of each intermediate were assessed for conversion to macrocyclic products using wild type CrpTE, which demonstrated the exceptional flexibility of this enzyme. Semipreparative scale reactions were conducted for isolation and structural characterization of new cryptophycins. Each was then evaluated as a substrate for CrpE P450 and its ability to generate the epoxidized products from these substrates that possess altered electronics at the unit A styrenyl double bond position. Finally, biological evaluation of the new cryptophycins revealed a des-β-epoxy analog with low picomolar potency, previously limited to cryptophycins bearing epoxide functionality.
Collapse
Affiliation(s)
| | | | | | | | - Halina Pietraszkiewicz
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan 48202, United States
| | - Frederick A. Valeriote
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan 48202, United States
| | | |
Collapse
|
38
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
39
|
Han L, Zhao Y, Zhang Q. Conjugation Site Analysis by MS/MS Protein Sequencing. Methods Mol Biol 2020; 2078:221-233. [PMID: 31643060 DOI: 10.1007/978-1-4939-9929-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In-depth knowledge about the site of drug-linker conjugation is important for the understanding of the conjugation efficiency and the exact locations of payloads for antibody-drug conjugates (ADCs). Here we describe a peptide mapping-based protocol, covering sample preparation procedure, LC-MS/MS setup, and data processing (auto and manual), to determine the locations of drug-linker attachment on mAbs. In comparison with classical mAb peptide mapping, some improvements will be highlighted for maintaining hydrophobic drug-loaded peptides in solution, enabling efficient chromatographic separation and mass spectrometric detection, and allowing for their unambiguous identification in LC-MS/MS map by using diagnostic fragmentation ions of the payload.
Collapse
Affiliation(s)
- Linjie Han
- Process Analytical Chemistry, AbbVie Inc., North Chicago, IL, USA.
| | - Yanqun Zhao
- Process Analytical Chemistry, AbbVie Inc., North Chicago, IL, USA
| | - Qunying Zhang
- Process Analytical Chemistry, AbbVie Inc., North Chicago, IL, USA
| |
Collapse
|
40
|
Adhikari P, Zacharias N, Ohri R, Sadowsky J. Site-Specific Conjugation to Cys-Engineered THIOMAB™ Antibodies. Methods Mol Biol 2020; 2078:51-69. [PMID: 31643049 DOI: 10.1007/978-1-4939-9929-3_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antibodies bearing engineered cysteine residues (termed THIOMAB™ antibodies) enable the site-selective attachment of a drug, label or other payload for specific delivery to certain tissues (e.g., tumors). This Chapter describes detailed methods we have developed and optimized for the conjugation, purification and analysis of THIOMAB™ antibody drug conjugates (TDCs).
Collapse
Affiliation(s)
- Pragya Adhikari
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Neelie Zacharias
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Rachana Ohri
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Jack Sadowsky
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
41
|
Zhang D, Dragovich PS, Yu SF, Ma Y, Pillow TH, Sadowsky JD, Su D, Wang W, Polson A, Khojasteh SC, Hop CE. Exposure-Efficacy Analysis of Antibody-Drug Conjugates Delivering an Excessive Level of Payload to Tissues. Drug Metab Dispos 2019; 47:1146-1155. [DOI: 10.1124/dmd.119.087023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
|
42
|
Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety. Molecules 2019; 24:molecules24101855. [PMID: 31091786 PMCID: PMC6572008 DOI: 10.3390/molecules24101855] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022] Open
Abstract
Peptides constitute molecular diversity with unique molecular mechanisms of action that are proven indispensable in the management of many human diseases, but of only a mere fraction relative to more traditional small molecule-based medicines. The integration of these two therapeutic modalities offers the potential to enhance and broaden pharmacology while minimizing dose-dependent toxicology. This review summarizes numerous advances in drug design, synthesis and development that provide direction for next-generation research endeavors in this field. Medicinal studies in this area have largely focused upon the application of peptides to selectively enhance small molecule cytotoxicity to more effectively treat multiple oncologic diseases. To a lesser and steadily emerging extent peptides are being therapeutically employed to complement and diversify the pharmacology of small molecule drugs in diseases other than just cancer. No matter the disease, the purpose of the molecular integration remains constant and it is to achieve superior therapeutic outcomes with diminished adverse effects. We review linker technology and conjugation chemistries that have enabled integrated and targeted pharmacology with controlled release. Finally, we offer our perspective on opportunities and obstacles in the field.
Collapse
|
43
|
Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics 2019; 11:pharmaceutics11050220. [PMID: 31067748 PMCID: PMC6571972 DOI: 10.3390/pharmaceutics11050220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor targeting has emerged as an advantageous approach to improving the efficacy and safety of cytotoxic agents or radiolabeled ligands that do not preferentially accumulate in the tumor tissue. The somatostatin receptors (SSTRs) belong to the G-protein-coupled receptor superfamily and they are overexpressed in many neuroendocrine tumors (NETs). SSTRs can be efficiently targeted with octreotide, a cyclic octapeptide that is derived from native somatostatin. The conjugation of cargoes to octreotide represents an attractive approach for effective tumor targeting. In this study, we conjugated octreotide to cryptophycin, which is a highly cytotoxic depsipeptide, through the protease cleavable Val-Cit dipeptide linker using two different self-immolative moieties. The biological activity was investigated in vitro and the self-immolative part largely influenced the stability of the conjugates. Replacement of cryptophycin by the infrared cyanine dye Cy5.5 was exploited to elucidate the tumor targeting properties of the conjugates in vitro and in vivo. The compound efficiently and selectively internalized in cells overexpressing SSTR2 and accumulated in xenografts for a prolonged time. Our results on the in vivo properties indicate that octreotide may serve as an efficient delivery vehicle for tumor targeting.
Collapse
|
44
|
Viricel W, Fournet G, Beaumel S, Perrial E, Papot S, Dumontet C, Joseph B. Monodisperse polysarcosine-based highly-loaded antibody-drug conjugates. Chem Sci 2019; 10:4048-4053. [PMID: 31015945 PMCID: PMC6457330 DOI: 10.1039/c9sc00285e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Antibody-drug conjugates (ADCs) convey highly potent anticancer drugs to antigen-expressing tumor cells, thereby sparing healthy tissues throughout the body. Pharmacokinetics and tolerability of ADCs are predominantly influenced by the drug-antibody ratio (DAR) of the conjugates, which is to-date limited to a value of 3-4 drugs per antibody in ADCs under clinical investigations. Here, we report the synthesis of monodisperse (i.e. discrete) polysarcosine compounds and their use as a hydrophobicity masking entity for the construction of highly-loaded homogeneous β-glucuronidase-responsive antibody-drug conjugates (ADCs). The highly hydrophilic drug-linker platform described herein improves drug-loading, physicochemical properties, pharmacokinetics and in vivo antitumor efficacy of the resulting conjugates.
Collapse
Affiliation(s)
- Warren Viricel
- Mablink Bioscience SA , 14 rue Waldeck Rousseau , 69006 Lyon , France .
| | - Guy Fournet
- Université de Lyon , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR CNRS 5246 , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Sabine Beaumel
- Université de Lyon , Centre de Recherche en Cancérologie de Lyon , INSERM 1052 , CNRS 5286 , 8 avenue Rockefeller , 69008 Lyon , France
| | - Emeline Perrial
- Université de Lyon , Centre de Recherche en Cancérologie de Lyon , INSERM 1052 , CNRS 5286 , 8 avenue Rockefeller , 69008 Lyon , France
| | - Sébastien Papot
- Université de Poitiers , Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP) , UMR CNRS 7285 , Groupe "Systèmes Moléculaires Programmés" , 4 rue Michel-Brunet, TSA 51106 , 86073 Poitiers , France
- Seekyo SA , 4 rue Carol Heitz , 86000 Poitiers , France
| | - Charles Dumontet
- Université de Lyon , Centre de Recherche en Cancérologie de Lyon , INSERM 1052 , CNRS 5286 , 8 avenue Rockefeller , 69008 Lyon , France
| | - Benoît Joseph
- Université de Lyon , Institut de Chimie et Biochimie Moléculaires et Supramoléculaires , UMR CNRS 5246 , 43 Boulevard du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| |
Collapse
|
45
|
Su D, Chen J, Cosino E, dela Cruz-Chuh J, Davis H, Del Rosario G, Figueroa I, Goon L, He J, Kamath AV, Kaur S, Kozak KR, Lau J, Lee D, Lee MV, Leipold D, Liu L, Liu P, Lu GL, Nelson C, Ng C, Pillow TH, Polakis P, Polson AG, Rowntree RK, Saad O, Safina B, Stagg NJ, Tercel M, Vandlen R, Vollmar BS, Wai J, Wang T, Wei B, Xu K, Xue J, Xu Z, Yan G, Yao H, Yu SF, Zhang D, Zhong F, Dragovich PS. Antibody–Drug Conjugates Derived from Cytotoxic seco-CBI-Dimer Payloads Are Highly Efficacious in Xenograft Models and Form Protein Adducts In Vivo. Bioconjug Chem 2019; 30:1356-1370. [DOI: 10.1021/acs.bioconjchem.9b00133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dian Su
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ely Cosino
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Helen Davis
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Isabel Figueroa
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanne Goon
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jintang He
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Amrita V. Kamath
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Surinder Kaur
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R. Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey Lau
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donna Lee
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - M. Violet Lee
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Douglas Leipold
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Luna Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Chris Nelson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul Polakis
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew G. Polson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K. Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ola Saad
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Safina
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicola J. Stagg
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard Vandlen
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Breanna S. Vollmar
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Tao Wang
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Juanjuan Xue
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zijin Xu
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Gang Yan
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fiona Zhong
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S. Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
46
|
Borbély A, Figueras E, Martins A, Esposito S, Auciello G, Monteagudo E, Di Marco A, Summa V, Cordella P, Perego R, Kemker I, Frese M, Gallinari P, Steinkühler C, Sewald N. Synthesis and Biological Evaluation of RGD⁻Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics 2019; 11:E151. [PMID: 30939768 PMCID: PMC6523311 DOI: 10.3390/pharmaceutics11040151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvβ₃, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)⁻cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvβ₃ expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscopy.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Simone Esposito
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Giulio Auciello
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Edith Monteagudo
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | | | - Vincenzo Summa
- IRBM S.p.A, Via Pontina km. 30,600, IT-00071 Pomezia (Rome), Italy.
| | - Paola Cordella
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Raffaella Perego
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| | - Paola Gallinari
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
| | - Christian Steinkühler
- Exiris s.r.l., Via di Castel Romano 100, IT-00128 Rome, Italy.
- Italfarmaco S.p.A., Via dei Lavoratori, 54, IT-20092 Cinisello Balsamo (Milano), Italy.
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, DE-33615 Bielefeld, Germany.
| |
Collapse
|
47
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
48
|
Khera E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs 2019; 32:465-480. [PMID: 30132210 DOI: 10.1007/s40259-018-0302-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugate (ADC) development has evolved greatly over the last 3 decades, including the Food and Drug Administration (FDA) approval of several new drugs. However, translating ADCs from the design stage and preclinical promise to clinical success has been a major hurdle for the field, particularly for solid tumors. The challenge in clinical development can be attributed to the difficulty in connecting the design of these multifaceted agents with the impact on clinical efficacy, especially with the accelerated development of 'next-generation' ADCs containing a variety of innovative biophysical developments. Given their complex nature, there is an urgent need to integrate holistic ADC characterization approaches. This includes comprehensive in vivo assessment of systemic, intratumoral and cellular pharmacokinetics, pharmacodynamics, toxicodynamics, and interactions with the immune system, with the aim of optimizing the ADC therapeutic window. Pharmacokinetic/pharmacodynamic factors influencing the ADC therapeutic window include (1) selecting optimal target and ADC components for prolonged and stable plasma circulation to increase tumoral uptake with minimal non-specific systemic toxicity, (2) balancing homogeneous intratumoral distribution with efficient cellular uptake, and (3) translating improved ADC potency to better clinical efficacy. Balancing beneficial immunological effects such as Fc-mediated and payload-mediated immune cell activation against harmful immunogenic/toxic effects is also an emerging concern for ADCs. Here, we review practical considerations for tracking ADC efficacy and toxicity, as aided by high-resolution biomolecular and immunological tools, quantitative pharmacology, and mathematical models, all of which can elucidate the relative contributions of the multitude of interactions governing the ADC therapeutic window.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Dickgiesser S, Kellner R, Kolmar H, Rasche N. Site-Specific Conjugation of Thiol-Reactive Cytotoxic Agents to Nonnative Cysteines of Engineered Monoclonal Antibodies. Methods Mol Biol 2019; 2033:1-14. [PMID: 31332743 DOI: 10.1007/978-1-4939-9654-4_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antibody-drug conjugates (ADCs) have been proven to be a successful therapeutic concept, allowing targeted delivery of highly potent active pharmaceutical ingredients (HPAPIs) selectively to tumor tissue. So far, HPAPIs have been mainly attached to the antibody via a chemical reaction of the payload with lysine or cysteine side chains of the antibody backbone. However, these conventional conjugation technologies result in formation of rather heterogeneous products with undesired properties. To overcome the limitations of heterogeneous ADC mixtures, several site-specific conjugation technologies have been developed over the last years. Originally pioneered by scientist from Genentech with their work on THIOMABs, several engineered cysteine mAb ADCs (ECM-ADCs) are now investigated in clinical trials. Here, we describe in detail how to engineer additional cysteines into antibodies and efficiently use them as highly site-specific conjugation sites for HPAPIs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents, Immunological
- Cell Proliferation/drug effects
- Cysteine/chemistry
- Cysteine/genetics
- Cytotoxins/chemistry
- Cytotoxins/genetics
- Cytotoxins/immunology
- Cytotoxins/pharmacology
- Humans
- Immunoconjugates/chemistry
- Immunoconjugates/genetics
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Mice
- Mutagenesis, Site-Directed
- Protein Engineering
- Sulfhydryl Compounds/chemistry
- Trastuzumab/chemistry
- Trastuzumab/genetics
- Trastuzumab/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | - Roland Kellner
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nicolas Rasche
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
50
|
Datta-Mannan A, Choi H, Stokell D, Tang J, Murphy A, Wrobleski A, Feng Y. The Properties of Cysteine-Conjugated Antibody-Drug Conjugates Are Impacted by the IgG Subclass. AAPS JOURNAL 2018; 20:103. [DOI: 10.1208/s12248-018-0263-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
|