1
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2025; 31:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2025; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
3
|
Chen ZL, Chen W, Wang F, Jiang JH, Dong WR. A thiol-selective and acid-stable protein modification strategy using an electron-deficient yne reagent. Org Biomol Chem 2024; 22:7311-7315. [PMID: 39163001 DOI: 10.1039/d4ob01037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A protein modification strategy was developed based on a thiol-yne click reaction using an electron-deficient yne reagent. This approach demonstrated exceptional selectivity towards thiols and exhibited rapid kinetics, resulting in conjugates with superior acid stability. The conjugation of IgG with an indole-derived fluorophore was achieved for the imaging of PD-L1 in cancer cells.
Collapse
Affiliation(s)
- Zhi-Liang Chen
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China.
- School of Pharmacy, Shaoyang University, Shaoyang, 422000, P. R China
| | - Wen Chen
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wan-Rong Dong
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
4
|
Amacher JF, Antos JM. Sortases: structure, mechanism, and implications for protein engineering. Trends Biochem Sci 2024; 49:596-610. [PMID: 38692993 DOI: 10.1016/j.tibs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| | - John M Antos
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
5
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
6
|
Journeaux T, Bernardes GJL. Homogeneous multi-payload antibody-drug conjugates. Nat Chem 2024; 16:854-870. [PMID: 38760431 DOI: 10.1038/s41557-024-01507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 05/19/2024]
Abstract
Many systemic cancer chemotherapies comprise a combination of drugs, yet all clinically used antibody-drug conjugates (ADCs) contain a single-drug payload. These combination regimens improve treatment outcomes by producing synergistic anticancer effects and slowing the development of drug-resistant cell populations. In an attempt to replicate these regimens and improve the efficacy of targeted therapy, the field of ADCs has moved towards developing techniques that allow for multiple unique payloads to be attached to a single antibody molecule with high homogeneity. However, the methods for generating such constructs-homogeneous multi-payload ADCs-are both numerous and complex owing to the plethora of reactive functional groups that make up the surface of an antibody. Here, by summarizing and comparing the methods of both single- and multi-payload ADC generation and their key preclinical and clinical results, we provide a timely overview of this relatively new area of research. The methods discussed range from branched linker installation to the incorporation of unnatural amino acids, with a generalized comparison tool of the most promising modification strategies also provided. Finally, the successes and challenges of this rapidly growing field are critically evaluated, and from this, future areas of research and development are proposed.
Collapse
Affiliation(s)
- Toby Journeaux
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Tanriver M, Müller M, Levasseur MD, Richards D, Majima S, DeMello A, Yamauchi Y, Bode JW. Peptide-Directed Attachment of Hydroxylamines to Specific Lysines of IgG Antibodies for Bioconjugations with Acylboronates. Angew Chem Int Ed Engl 2024; 63:e202401080. [PMID: 38421342 DOI: 10.1002/anie.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The role of monoclonal antibodies as vehicles to deliver payloads has evolved as a powerful tool in cancer therapy in recent years. The clinical development of therapeutic antibody conjugates with precise payloads holds great promise for targeted therapeutic interventions. The use of affinity-peptide mediated functionalization of native off-the-shelf antibodies offers an effective approach to selectively modify IgG antibodies with a drug-antibody ratio (DAR) of 2. Here, we report the traceless, peptide-directed attachment of two hydroxylamines to native IgGs followed by chemoselective potassium acyltrifluoroborate (KAT) ligation with quinolinium acyltrifluoroborates (QATs), which provide enhanced ligation rates with hydroxylamines under physiological conditions. By applying KAT ligation to the modified antibodies, conjugation of small molecules, proteins, and oligonucleotides to off-the-shelf IgGs proceeds efficiently, in good yields, and with simultaneous cleavage of the affinity peptide-directing moiety.
Collapse
Affiliation(s)
- Matthias Tanriver
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Marco Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Mikail D Levasseur
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniel Richards
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Sohei Majima
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrew DeMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Yohei Yamauchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
8
|
de Veer SJ, Zhou Y, Durek T, Craik DJ, Rehm FBH. Tertiary amide bond formation by an engineered asparaginyl ligase. Chem Sci 2024; 15:5248-5255. [PMID: 38577369 PMCID: PMC10988630 DOI: 10.1039/d3sc06352f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Transpeptidases are powerful tools for site-specific protein modification, enabling the production of tailored biologics to investigate protein function and aiding the development of next-generation therapeutics and diagnostics. Although protein labelling at the N- or C-terminus is readily accomplished using a range of established transpeptidases, these reactions are generally limited to forming products that are linked by a standard (secondary) amide bond. Here we show that, unlike other widely used transpeptidases, an engineered asparaginyl ligase is able to efficiently synthesise tertiary amide bonds by accepting diverse secondary amine nucleophiles. These reactions proceed efficiently under mild conditions (near-neutral pH) and allow the optimal recognition elements for asparaginyl ligases (P1 Asn and P2'' Leu) to be preserved. Certain products, particularly proline-containing products, were found to be protected from recognition by the enzyme, allowing for straightforward sequential labelling of proteins. Additionally, incorporation of 4-azidoproline enables one-pot dual labelling directly at the ligation junction. These capabilities further expand the chemical diversity of asparaginyl ligase-catalysed reactions and provide an alternative approach for straightforward, successive modification of protein substrates.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - Yan Zhou
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
9
|
Arnott ZLP, Morgan HE, Hollingsworth K, Stevenson CME, Collins LJ, Tamasanu A, Machin DC, Dolan JP, Kamiński TP, Wildsmith GC, Williamson DJ, Pickles IB, Warriner SL, Turnbull WB, Webb ME. Quantitative N- or C-Terminal Labelling of Proteins with Unactivated Peptides by Use of Sortases and a d-Aminopeptidase. Angew Chem Int Ed Engl 2024; 63:e202310862. [PMID: 38072831 DOI: 10.1002/anie.202310862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 01/13/2024]
Abstract
Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling.
Collapse
Affiliation(s)
- Zoe L P Arnott
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present address: Centre for Process Innovation, Central Park, The Nigel Perry Building, 1 Union St, Darlington, DL1 1GL, United Kingdom
| | - Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: Ashfield MedComms, City Tower, Piccadilly Plaza, Manchester, M1 4BT, United Kingdom
| | - Kristian Hollingsworth
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Charlotte M E Stevenson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Lawrence J Collins
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Alexandra Tamasanu
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Darren C Machin
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jonathan P Dolan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: School of Chemical and Physical Sciences & Centre for Glycoscience Research and Training, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Tomasz P Kamiński
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Gemma C Wildsmith
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Daniel J Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: Iksuda Therapeutics, The Biosphere, Draymans Way, Newcastle upon Tyne, NE4 5BX, United Kingdom
| | - Isabelle B Pickles
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Present Address: York Structural Biology Laboratory, Department of Biology, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Stuart L Warriner
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
van der Wulp W, Luu W, Ressing ME, Schuurman J, van Kasteren SI, Guelen L, Hoeben RC, Bleijlevens B, Heemskerk MHM. Antibody-epitope conjugates deliver immunogenic T-cell epitopes more efficiently when close to cell surfaces. MAbs 2024; 16:2329321. [PMID: 38494955 PMCID: PMC10950288 DOI: 10.1080/19420862.2024.2329321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Antibody-mediated delivery of immunogenic viral CD8+ T-cell epitopes to redirect virus-specific T cells toward cancer cells is a promising new therapeutic avenue to increase the immunogenicity of tumors. Multiple strategies for viral epitope delivery have been shown to be effective. So far, most of these have relied on a free C-terminus of the immunogenic epitope for extracellular delivery. Here, we demonstrate that antibody-epitope conjugates (AECs) with genetically fused epitopes to the N-terminus of the antibody can also sensitize tumors for attack by virus-specific CD8+ T cells. AECs carrying epitopes genetically fused at the N-terminus of the light chains of cetuximab and trastuzumab demonstrate an even more efficient delivery of the T-cell epitopes compared to AECs with the epitope fused to the C-terminus of the heavy chain. We demonstrate that this increased efficiency is not caused by the shift in location of the cleavage site from the N- to the C-terminus, but by its increased proximity to the cell surface. We hypothesize that this facilitates more efficient epitope delivery. These findings not only provide additional insights into the mechanism of action of AECs but also broaden the possibilities for genetically fused AECs as an avenue for the redirection of multiple virus-specific T cells toward tumors.
Collapse
Affiliation(s)
- W. van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - W. Luu
- Genmab, Utrecht, The Netherlands
| | - M. E. Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - S. I. van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - R. C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - M. H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
van der Wulp W, Remst DFG, Kester MGD, Hagedoorn RS, Parren PWHI, van Kasteren SI, Schuurman J, Hoeben RC, Ressing ME, Bleijlevens B, Heemskerk MHM. Antibody-mediated delivery of viral epitopes to redirect EBV-specific CD8 + T-cell immunity towards cancer cells. Cancer Gene Ther 2024; 31:58-68. [PMID: 37945970 PMCID: PMC10794138 DOI: 10.1038/s41417-023-00681-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | | | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
13
|
Debon A, Siirola E, Snajdrova R. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS AU 2023; 3:1267-1283. [PMID: 37234110 PMCID: PMC10207132 DOI: 10.1021/jacsau.2c00617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Enzymes have firmly established themselves as bespoke catalysts for small molecule transformations in the pharmaceutical industry, from early research and development stages to large-scale production. In principle, their exquisite selectivity and rate acceleration can also be leveraged for modifying macromolecules to form bioconjugates. However, available catalysts face stiff competition from other bioorthogonal chemistries. In this Perspective, we seek to illuminate applications of enzymatic bioconjugation in the face of an expanding palette of new drug modalities. With these applications, we wish to highlight some examples of current successes and pitfalls of using enzymes for bioconjugation along the pipeline and try to illustrate opportunities for further development.
Collapse
Affiliation(s)
- Aaron Debon
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Elina Siirola
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Radka Snajdrova
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| |
Collapse
|
14
|
Hemu X, Chan NY, Liew HT, Hu S, Zhang X, Serra A, Lescar J, Liu CF, Tam JP. Substrate-binding glycine residues are major determinants for hydrolase and ligase activity of plant legumains. THE NEW PHYTOLOGIST 2023; 238:1534-1545. [PMID: 36843268 DOI: 10.1111/nph.18841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Peptide asparaginyl ligases (PALs) are useful tools for precision modifications of proteins and live-cell surfaces by ligating peptides after Asn/Asp (Asx). They share high sequence and structural similarity to plant legumains that are generally known as asparaginyl endopeptidases (AEPs), thus making it challenging to identify PALs from AEPs. In this study, we investigate 875 plant species from algae to seed plants with available sequence data in public databases to identify new PALs. We conducted evolutionary trace analysis on 1500 plant legumains, including eight known PALs, to identify key residues that could differentiate ligases and proteases, followed by recombinant expression and functional validation of 16 novel legumains. Previously, we showed that the substrate-binding sequences flanking the catalytic site can strongly influence the enzymatic direction of a legumain and which we named as ligase-activity determinants (LADs). Here, we show that two conserved substrate-binding Gly residues of LADs are critical, but negative determinants for ligase activity. Our results suggest that specific glycine residues are molecular determinants to identify PALs and AEPs as two different legumain subfamilies, accounting for c. 1% and 88%, respectively.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Ning-Yu Chan
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Heng Tai Liew
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Side Hu
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- Neuroscience Area, +Pec Proteomics Research Group (+PPRG), Faculty of Medicine, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), University of Lleida, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| |
Collapse
|
15
|
Bednar RM, Karplus PA, Mehl RA. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem Biol 2023; 30:343-361. [PMID: 36977415 PMCID: PMC10764108 DOI: 10.1016/j.chembiol.2023.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
The ability to selectively modify proteins at two or more defined locations opens new avenues for manipulating, engineering, and studying living systems. As a chemical biology tool for the site-specific encoding of non-canonical amino acids into proteins in vivo, genetic code expansion (GCE) represents a powerful tool to achieve such modifications with minimal disruption to structure and function through a two-step "dual encoding and labeling" (DEAL) process. In this review, we summarize the state of the field of DEAL using GCE. In doing so, we describe the basic principles of GCE-based DEAL, catalog compatible encoding systems and reactions, explore demonstrated and potential applications, highlight emerging paradigms in DEAL methodologies, and propose novel solutions to current limitations.
Collapse
Affiliation(s)
- Riley M Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
16
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Hemu X, Zhang X, Chang HY, Poh JE, Tam JP. Consensus design and engineering of an efficient and high-yield peptide asparaginyl ligase for protein cyclization and ligation. J Biol Chem 2023; 299:102997. [PMID: 36764523 PMCID: PMC10017362 DOI: 10.1016/j.jbc.2023.102997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Plant legumains are Asn/Asp-specific endopeptidases that have diverse functions in plants. Peptide asparaginyl ligases (PALs) are a special legumain subtype that primarily catalyze peptide bond formation rather than hydrolysis. PALs are versatile protein engineering tools but are rarely found in nature. To overcome this limitation, here we describe a two-step method to design and engineer a high-yield and efficient recombinant PAL based on commonly found asparaginyl endopeptidases. We first constructed a consensus sequence derived from 1500 plant legumains to design the evolutionarily stable legumain conLEG that could be produced in E. coli with 20-fold higher yield relative to that for natural legumains. We then applied the ligase-activity determinant hypothesis to exploit conserved residues in PAL substrate-binding pockets and convert conLEG into conPAL1-3. Functional studies showed that conLEG is primarily a hydrolase, whereas conPALs are ligases. Importantly, conPAL3 is a superefficient and broadly active PAL for protein cyclization and ligation.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Yi Chang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Jin En Poh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
18
|
Yamazaki S, Matsuda Y. Tag‐Free Enzymatic Modification for Antibody−Drug Conjugate Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202203753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services 11040 Roselle Street San Diego CA 92121 United States
| |
Collapse
|
19
|
Dolan JP, Machin DC, Dedola S, Field RA, Webb ME, Turnbull WB. Synthesis of cholera toxin B subunit glycoconjugates using site-specific orthogonal oxime and sortase ligation reactions. Front Chem 2022; 10:958272. [PMID: 36186584 PMCID: PMC9515619 DOI: 10.3389/fchem.2022.958272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The chemoenzymatic synthesis of a series of dual N- and C-terminal-functionalized cholera toxin B subunit (CTB) glycoconjugates is described. Mucin 1 peptides bearing different levels of Tn antigen glycosylation [MUC1(Tn)] were prepared via solid-phase peptide synthesis. Using sortase-mediated ligation, the MUC1(Tn) epitopes were conjugated to the C-terminus of CTB in a well-defined manner allowing for high-density display of the MUC1(Tn) epitopes. This work explores the challenges of using sortase-mediated ligation in combination with glycopeptides and the practical considerations to obtain high levels of conjugation. Furthermore, we describe methods to combine two orthogonal labeling methodologies, oxime- and sortase-mediated ligation, to expand the biochemical toolkit and produce dual N- and C-terminal-labeled conjugates.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Darren C. Machin
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| | | | - Robert A. Field
- Iceni Glycoscience Ltd., Norwich, United Kingdom
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Michael E. Webb
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre of Structural Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Zeng Y, Shi W, Dong Q, Li W, Zhang J, Ren X, Tang C, Liu B, Song Y, Wu Y, Diao X, Zhou H, Huang H, Tang F, Huang W. A Traceless Site‐Specific Conjugation on Native Antibodies Enables Efficient One‐Step Payload Assembly. Angew Chem Int Ed Engl 2022; 61:e202204132. [DOI: 10.1002/anie.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Zeng
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wei Shi
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Qian Dong
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Wanzhen Li
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| | - Jianxin Zhang
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Caihong Tang
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Bo Liu
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yuanli Song
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yali Wu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Hu Zhou
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - He Huang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Feng Tang
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Wei Huang
- School of Pharmaceutical Science and Technology Hangzhou Institute of Advanced Study Hangzhou 310024 China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Materia Medica Chinese Academy of Sciences No. 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- School of Chinese Materia Medica Nanjing University of Chinese Medicine No. 138 Xianlin Road Nanjing 210023 China
| |
Collapse
|
21
|
Zeng Y, Shi W, Dong Q, Li W, Zhang J, Ren X, Tang C, Liu B, Song Y, Wu Y, Diao X, Zhou H, Huang H, Tang F, Huang W. A Traceless Site‐Specific Conjugation on Native Antibodies Enables Efficient One‐Step Payload Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Zeng
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wei Shi
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Qian Dong
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wanzhen Li
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Jianxin Zhang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Xuelian Ren
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Caihong Tang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Bo Liu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Yuanli Song
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Yali Wu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center 555 Zuchongzhi Rd CHINA
| | - Xingxing Diao
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center 555 Zuchongzhi Rd CHINA
| | - Hu Zhou
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - He Huang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Feng Tang
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Biotherapeutic center CHINA
| | - Wei Huang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Medicinal Chemistry Zuchongzhi Road 555 201203 Shanghai CHINA
| |
Collapse
|
22
|
Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev 2022; 51:4121-4145. [PMID: 35510539 PMCID: PMC9126251 DOI: 10.1039/d0cs01148g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases. We highlight chemical and biochemical strategies taken to optimise peptide and protein modification using peptide ligases.![]()
Collapse
Affiliation(s)
- Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
23
|
Shi W, Li W, Zhang J, Li T, Song Y, Zeng Y, Dong Q, Lin Z, Gong L, Fan S, Tang F, Huang W. One-step synthesis of site-specific antibody-drug conjugates by reprograming IgG glycoengineering with LacNAc-based substrates. Acta Pharm Sin B 2022; 12:2417-2428. [PMID: 35646546 PMCID: PMC9136568 DOI: 10.1016/j.apsb.2021.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosite-specific antibody‒drug conjugatess (gsADCs), harnessing Asn297 N-glycan of IgG Fc as the conjugation site for drug payloads, usually require multi-step glycoengineering with two or more enzymes, which limits the substrate diversification and complicates the preparation process. Herein, we report a series of novel disaccharide-based substrates, which reprogram the IgG glycoengineering to one-step synthesis of gsADCs, catalyzed by an endo-N-acetylglucosaminidase (ENGase) of Endo-S2. IgG glycoengineering via ENGases usually has two steps: deglycosylation by wild-type (WT) ENGases and transglycosylation by mutated ENGases. But in the current method, we have found that disaccharide LacNAc oxazoline can be efficiently assembled onto IgG by WT Endo-S2 without hydrolysis of the product, which enables the one-step glycoengineering directly from native antibodies. Further studies on substrate specificity revealed that this approach has excellent tolerance on various modification of 6-Gal motif of LacNAc. Within 1 h, one-step synthesis of gsADC was achieved using the LacNAc-toxin substrates including structures free of bioorthogonal groups. These gsADCs demonstrated good homogeneity, buffer stability, in vitro and in vivo anti-tumor activity. This work presents a novel strategy using LacNAc-based substrates to reprogram the multi-step IgG glycoengineering to a one-step manner for highly efficient synthesis of gsADCs.
Collapse
Affiliation(s)
- Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanzhen Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yakai Song
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Zeng
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Qian Dong
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeng Lin
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Likun Gong
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuquan Fan
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
24
|
Study on activation mechanism and cleavage sites of recombinant butelase-1 zymogen derived from Clitoria ternatea. Biochimie 2022; 199:12-22. [DOI: 10.1016/j.biochi.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022]
|
25
|
Voigt J, Meyer C, Bordusa F. Synthesis of Multiple Bispecific Antibody Formats with Only One Single Enzyme Based on Enhanced Trypsiligase. Int J Mol Sci 2022; 23:ijms23063144. [PMID: 35328563 PMCID: PMC8952323 DOI: 10.3390/ijms23063144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/10/2023] Open
Abstract
Bispecific antibodies (bsAbs) were first developed in the 1960s and are now emerging as a leading class of immunotherapies for cancer treatment with the potential to further improve clinical efficacy and safety. Many different formats of bsAbs have been established in the last few years, mainly generated genetically. Here we report on a novel, flexible, and fast chemo–enzymatic, as well as purely enzymatic strategies, for generating bispecific antibody fragments by covalent fusion of two functional antibody Fab fragments (Fabs). For the chemo–enzymatic approach, we first modified the single Fabs site-specifically with click anchors using an enhanced Trypsiligase variant (eTl) and afterward converted the modified Fabs into the final heterodimers via click chemistry. Regarding the latter, we used the strain-promoted alkyne-azide cycloaddition (SPAAC) and inverse electron-demand Diels–Alder reaction (IEDDA) click approaches well known for their fast reaction kinetics and fewer side reactions. For applications where the non-natural linkages or hydrophobic click chemistry products might interfere, we developed two purely enzymatic alternatives enabling C- to C- and C- to N-terminal coupling of the two Fabs via a native peptide bond. This simple system could be expanded into a modular system, eliminating the need for extensive genetic engineering. The bispecific Fab fragments (bsFabs) produced here to bind the growth factors ErbB2 and ErbB3 with similar KD values, such as the sole Fabs. Tested in breast cancer cell lines, we obtained biologically active bsFabs with improved properties compared to its single Fab counterparts.
Collapse
|
26
|
Rehm FBH, Tyler TJ, de Veer SJ, Craik DJ, Durek T. Enzymatic C-to-C Protein Ligation. Angew Chem Int Ed Engl 2022; 61:e202116672. [PMID: 35018698 PMCID: PMC9303898 DOI: 10.1002/anie.202116672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 01/11/2023]
Abstract
Transpeptidase-catalyzed protein and peptide modifications have been widely utilized for generating conjugates of interest for biological investigation or therapeutic applications. However, all known transpeptidases are constrained to ligating in the N-to-C orientation, limiting the scope of attainable products. Here, we report that an engineered asparaginyl ligase accepts diverse incoming nucleophile substrate mimetics, particularly when a means of selectively quenching the reactivity of byproducts released from the recognition sequence is employed. In addition to directly catalyzing formation of l-/d- or α-/β-amino acid junctions, we find C-terminal Leu-ethylenediamine (Leu-Eda) motifs to be bona fide mimetics of native N-terminal Gly-Leu sequences. Appending a C-terminal Leu-Eda to synthetic peptides or, via an intein-splicing approach, to recombinant proteins enables direct transpeptidase-catalyzed C-to-C ligations. This work significantly expands the synthetic scope of enzyme-catalyzed protein transpeptidation reactions.
Collapse
Affiliation(s)
- Fabian B. H. Rehm
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - Tristan J. Tyler
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - Simon J. de Veer
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - David J. Craik
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| | - Thomas Durek
- Institute for Molecular BioscienceAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQLD 4072Australia
| |
Collapse
|
27
|
Bierlmeier J, Álvaro‐Benito M, Scheffler M, Sturm K, Rehkopf L, Freund C, Schwarzer D. Sortase‐vermittelte Multi‐Fragment‐Kopplung durch Ligationsstellen‐Schaltung. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Bierlmeier
- Interfakultäres Institut für Biochemie Universität Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Deutschland
| | - Miguel Álvaro‐Benito
- Institute of Chemistry and Biochemistry Freie Universität Berlin Thielallee 63 D-14195 Berlin Deutschland
| | - Maren Scheffler
- Interfakultäres Institut für Biochemie Universität Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Deutschland
| | - Kristina Sturm
- Interfakultäres Institut für Biochemie Universität Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Deutschland
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology Universität Genf 30 Quai E. Ansermet 1211 Genf Schweiz
| | - Luisa Rehkopf
- Interfakultäres Institut für Biochemie Universität Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Deutschland
| | - Christian Freund
- Institute of Chemistry and Biochemistry Freie Universität Berlin Thielallee 63 D-14195 Berlin Deutschland
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie Universität Tübingen Auf der Morgenstelle 34 D-72076 Tübingen Deutschland
| |
Collapse
|
28
|
Bierlmeier J, Álvaro‐Benito M, Scheffler M, Sturm K, Rehkopf L, Freund C, Schwarzer D. Sortase-Mediated Multi-Fragment Assemblies by Ligation Site Switching. Angew Chem Int Ed Engl 2022; 61:e202109032. [PMID: 34735044 PMCID: PMC9299656 DOI: 10.1002/anie.202109032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/24/2022]
Abstract
Sortase-mediated ligation (SML) is a powerful tool of protein chemistry allowing the ligation of peptides containing LPxTG sorting motifs and N-terminal glycine nucleophiles. The installation of a sorting motif into the product prohibits the assembly of multiple fragments by SML. Here we report multi-fragment SML based on switchable sortase substrates. Substitution of the Leu residue by disulfide-containing Cys(StBu) results in active sorting motifs, which are inactivatable by reduction. In combination with a photo-protected N-Gly nucleophile, multi-fragment SML is enabled by repetitive cycles of SML and ligation site switching. The feasibility of this approach was demonstrated by a proof-of-concept four-fragment ligation, the assembly of peptide probes for bivalent chromatin binding proteins and oligomerization of peptide antigens. Biochemical and immuno-assays demonstrated functionality of these probes rendering them promising tools for immunology and chromatin biochemistry.
Collapse
Affiliation(s)
- Jan Bierlmeier
- Interfakultäres Institut für BiochemieUniversität TübingenAuf der Morgenstelle 3472076TübingenGermany
| | - Miguel Álvaro‐Benito
- Institute of Chemistry and BiochemistryFreie Universität BerlinThielallee 6314195BerlinGermany
| | - Maren Scheffler
- Interfakultäres Institut für BiochemieUniversität TübingenAuf der Morgenstelle 3472076TübingenGermany
| | - Kristina Sturm
- Interfakultäres Institut für BiochemieUniversität TübingenAuf der Morgenstelle 3472076TübingenGermany
- Structural Plant Biology Laboratory, Department of Botany and Plant BiologyUniversity of Geneva30 Quai E. Ansermet1211GenevaSwitzerland
| | - Luisa Rehkopf
- Interfakultäres Institut für BiochemieUniversität TübingenAuf der Morgenstelle 3472076TübingenGermany
| | - Christian Freund
- Institute of Chemistry and BiochemistryFreie Universität BerlinThielallee 6314195BerlinGermany
| | - Dirk Schwarzer
- Interfakultäres Institut für BiochemieUniversität TübingenAuf der Morgenstelle 3472076TübingenGermany
| |
Collapse
|
29
|
Rehm FBH, Tyler TJ, de Veer SJ, Craik DJ, Durek T. Enzymatic C‐to‐C Protein Ligation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabian B. H. Rehm
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - Tristan J. Tyler
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - Simon J. de Veer
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - David J. Craik
- The University of Queensland Institute for Molecular Bioscience Chemistry and Structural Biology AUSTRALIA
| | - Thomas Durek
- The University of Queensland Institute for Molecular Bioscience 306 Carmody RdLvl 7 North 4072 Brisbane AUSTRALIA
| |
Collapse
|
30
|
Zhang D, Wang Z, Hu S, Lescar J, Tam JP, Liu CF. Vypal2: A Versatile Peptide Ligase for Precision Tailoring of Proteins. Int J Mol Sci 2021; 23:ijms23010458. [PMID: 35008882 PMCID: PMC8745061 DOI: 10.3390/ijms23010458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The last two decades have seen an increasing demand for new protein-modification methods from the biotech industry and biomedical research communities. Owing to their mild aqueous reaction conditions, enzymatic methods based on the use of peptide ligases are particularly desirable. In this regard, the recently discovered peptidyl Asx-specific ligases (PALs) have emerged as powerful biotechnological tools in recent years. However, as a new class of peptide ligases, their scope and application remain underexplored. Herein, we report the use of a new PAL, VyPAL2, for a diverse range of protein modifications. We successfully showed that VyPAL2 was an efficient biocatalyst for protein labelling, inter-protein ligation, and protein cyclization. The labelled or cyclized protein ligands remained functionally active in binding to their target receptors. We also demonstrated on-cell labelling of protein ligands pre-bound to cellular receptors and cell-surface engineering via modifying a covalently anchored peptide substrate pre-installed on cell-surface glycans. Together, these examples firmly establish Asx-specific ligases, such as VyPAL2, as the biocatalysts of the future for site-specific protein modification, with a myriad of applications in basic research and drug discovery.
Collapse
|
31
|
Cao Y, Bi X. Butelase-1 as the Prototypical Peptide Asparaginyl Ligase and Its Applications: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Apley KD, Laflin AD, Johnson SN, Batrash N, Griffin JD, Berkland CJ, DeKosky BJ. Optimized Production of Fc Fusion Proteins by Sortase Enzymatic Ligation. Ind Eng Chem Res 2021; 60:16839-16853. [PMID: 38646185 PMCID: PMC11031256 DOI: 10.1021/acs.iecr.1c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fc fusions are a growing class of drugs comprising an antibody Fc domain covalently linked to a protein or peptide and can pose manufacturing challenges. In this study we evaluated three synthetic approaches to generate Fc fusions, using Fc-insulin as a model drug candidate. Engineered human IgG1 was digested with HRV3C to produce an Fc fragment with a C-terminal sortase tag (Fc-LPETGGH6). The synthesis of Fc-insulin2 from Fc-LPETGGH6 was evaluated with direct sortase-mediated ligation (SML) and two chemoenzymatic strategies. Direct SML was performed with triglycine-insulin, and chemoenzymatic strategies used to SML fuse either triglycine-azide or triglycine-DBCO prior to linking insulin with copper-catalyzed or strain-promoted azidealkyne cycloaddition. Reaction conditions were optimized by evaluating reagent concentrations, relative equivalents, temperature, and time. Direct SML provided the most effective reaction yields, converting 60-70% of Fc-LPETGGH6 to Fc-insulin2, whereas our optimized chemoenzymatic synthesis converted 30-40% of Fc-LPETGGH6 to Fc-insulin2. Here we show that SML is a practical and efficient method to synthesize Fc fusions and provide an optimized pathway for fusion drug synthesis.
Collapse
Affiliation(s)
- Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Noora Batrash
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, Department of Chemical and Petroleum Engineering, and Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, Department of Chemical and Petroleum Engineering, and Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Liew HT, To J, Zhang X, Hemu X, Chan NY, Serra A, Sze SK, Liu CF, Tam JP. The legumain McPAL1 from Momordica cochinchinensis is a highly stable Asx-specific splicing enzyme. J Biol Chem 2021; 297:101325. [PMID: 34710371 PMCID: PMC8600085 DOI: 10.1016/j.jbc.2021.101325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.
Collapse
Affiliation(s)
- Heng Tai Liew
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ning-Yu Chan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aida Serra
- IMDEA Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Cantoblanco, Madrid, Spain; Proteored - Instituto de Salud Carlos III (ISCIII), Campus UAM, Cantoblanco, Madrid, Spain
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
34
|
Rehm FBH, Tyler TJ, Yap K, de Veer SJ, Craik DJ, Durek T. Enzymatic C-Terminal Protein Engineering with Amines. J Am Chem Soc 2021; 143:19498-19504. [PMID: 34761936 DOI: 10.1021/jacs.1c08976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemoenzymatic protein and peptide modification is a powerful means of generating defined, homogeneous conjugates for a range of applications. However, the use of transpeptidases is limited by the need to prepare synthetic peptide conjugates to be ligated, bulky recognition tags remaining in the product, and inefficient substrate turnover. Here, we report a peptide/protein labeling strategy that utilizes a promiscuous, engineered transpeptidase to irreversibly incorporate diverse, commercially available amines at a C-terminal asparagine. To demonstrate the utility of this approach, we prepare a protein-drug conjugate, generate a genetically inaccessible C-to-C protein fusion, and site specifically label both termini of a single protein in sequential steps.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan J Tyler
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
35
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
36
|
Yamazaki S, Shikida N, Takahashi K, Matsuda Y, Inoue K, Shimbo K, Mihara Y. Lipoate-acid ligase a modification of native antibody: Synthesis and conjugation site analysis. Bioorg Med Chem Lett 2021; 51:128360. [PMID: 34537330 DOI: 10.1016/j.bmcl.2021.128360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
Bioconjugation is an important chemical biology research focus, especially in the development of methods to produce pharmaceutical bioconjugates and antibody-drug conjugates (ADCs). In this report, an enzyme-catalyzed conjugation method combined with a chemical reaction was used to modify a native antibody under mild reaction conditions. Our investigation revealed that lipoic-acid ligase (LplA) modifies native IgG1 with biased site-specificity. An intact mass analysis revealed that 98.3% of IgG1 was modified by LplA and possessed at least one molecule of octanocic acid. The average number of modifications per antibody was calculated to be 4.6. Peptide mapping analysis revealed that the modified residues were K225, K249 and K363 in the Fc region, and K30, K76 and K136 in the heavy chain and K39/K42, K169, K188 and K190 in the light chain of the Fab region. Careful evaluation including solvent exposed amino acid analysis suggested that these conjugate sites were not only solvent exposed but also biased by the site-specificity of LplA. Furthermore, antibody fragment conjugation may be able to take advantage of this enzymatic approach. This feasibility study serves as a demonstration for preparing enzymatically modified antibodies with conjugation site analysis.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan.
| | - Natsuki Shikida
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| | | | - Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| | - Kota Inoue
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan.
| | - Yasuhiro Mihara
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan
| |
Collapse
|
37
|
Chen Y, Zhang D, Zhang X, Wang Z, Liu CF, Tam JP. Site-Specific Protein Modifications by an Engineered Asparaginyl Endopeptidase from Viola canadensis. Front Chem 2021; 9:768854. [PMID: 34746098 PMCID: PMC8568951 DOI: 10.3389/fchem.2021.768854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Asparaginyl endopeptidases (AEPs) or legumains are Asn/Asp (Asx)-specific proteases that break peptide bonds, but also function as peptide asparaginyl ligases (PALs) that make peptide bonds. This ligase activity can be used for site-specific protein modifications in biochemical and biotechnological applications. Although AEPs are common, PALs are rare. We previously proposed ligase activity determinants (LADs) of these enzymes that could determine whether they catalyze formation or breakage of peptide bonds. LADs are key residues forming the S2 and S1' substrate-binding pockets flanking the S1 active site. Here, we build on the LAD hypothesis with the engineering of ligases from proteases by mutating the S2 and S1' pockets of VcAEP, an AEP from Viola canadensis. Wild type VcAEP yields <5% cyclic product from a linear substrate at pH 6.5, whereas the single mutants VcAEP-V238A (Vc1a) and VcAEP-Y168A (Vc1b) targeting the S2 and S1' substrate-binding pockets yielded 34 and 61% cyclic products, respectively. The double mutant VcAEP-V238A/Y168A (Vc1c) targeting both the S2 and S1' substrate-binding pockets yielded >90% cyclic products. Vc1c had cyclization efficiency of 917,759 M-1s-1, which is one of the fastest rates for ligases yet reported. Vc1c is useful for protein engineering applications, including labeling of DARPins and cell surface MCF-7, as well as producing cyclic protein sfGFP. Together, our work validates the importance of LADs for AEP ligase activity and provides valuable tools for site-specific modification of proteins and biologics.
Collapse
Affiliation(s)
- Yu Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Dingpeng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Synzymes and Natural Products Center, Nanyang Technological University, Singapore, Singapore
- Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
38
|
Mogilevsky CS, Lobba MJ, Brauer DD, Marmelstein AM, Maza JC, Gleason JM, Doudna JA, Francis MB. Synthesis of Multi-Protein Complexes through Charge-Directed Sequential Activation of Tyrosine Residues. J Am Chem Soc 2021; 143:13538-13547. [PMID: 34382787 DOI: 10.1021/jacs.1c03079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Site-selective protein-protein coupling has long been a goal of chemical biology research. In recent years, that goal has been realized to varying degrees through a number of techniques, including the use of tyrosinase-based coupling strategies. Early publications utilizing tyrosinase from Agaricus bisporus(abTYR) showed the potential to convert tyrosine residues into ortho-quinone functional groups, but this enzyme is challenging to produce recombinantly and suffers from some limitations in substrate scope. Initial screens of several tyrosinase candidates revealed that the tyrosinase from Bacillus megaterium (megaTYR) is an enzyme that possesses a broad substrate tolerance. We use the expanded substrate preference as a starting point for protein design experiments and show that single point mutants of megaTYR are capable of activating tyrosine residues in various sequence contexts. We leverage this new tool to enable the construction of protein trimers via a charge-directed sequential activation of tyrosine residues (CDSAT).
Collapse
Affiliation(s)
- Casey S Mogilevsky
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marco J Lobba
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel D Brauer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alan M Marmelstein
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jamie M Gleason
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States.,Gladstone Institutes, San Francisco, California 94158, United States.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States.,Innovative Genomics Institute, University of California, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Tang TMS, Luk LYP. Asparaginyl endopeptidases: enzymology, applications and limitations. Org Biomol Chem 2021; 19:5048-5062. [PMID: 34037066 PMCID: PMC8209628 DOI: 10.1039/d1ob00608h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Asparaginyl endopeptidases (AEP) are cysteine proteases found in mammalian and plant cells. Several AEP isoforms from plant species were found to exhibit transpeptidase activity which is integral for the key head-to-tail cyclisation reaction during the biosynthesis of cyclotides. Since many plant AEPs exhibit excellent enzyme kinetics for peptide ligation via a relatively short substrate recognition sequence, they have become appealing tools for peptide and protein modification. In this review, research focused on the enzymology of AEPs and their applications in polypeptide cyclisation and labelling will be presented. Importantly, the limitations of using AEPs and opportunities for future research and innovation will also be discussed.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
40
|
Zhang D, Wang Z, Hu S, Balamkundu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. pH-Controlled Protein Orthogonal Ligation Using Asparaginyl Peptide Ligases. J Am Chem Soc 2021; 143:8704-8712. [PMID: 34096285 DOI: 10.1021/jacs.1c02638] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptide asparaginyl ligases (PALs) catalyze transpeptidation at the Asn residue of a short Asn-Xaa1-Xaa2 tripeptide motif. Due to their high catalytic activity toward the P1-Asn substrates at around neutral pH, PALs have been used extensively for peptide ligation at asparaginyl junctions. PALs also bind to aspartyl substrates, but only when the γCOOH of P1-Asp remains in its neutral, protonated form, which usually requires an acidic pH. However, this limits the availability of the amine nucleophile and, consequently, the ligation efficiency at aspartyl junctions. Because of this perceived inefficiency, the use of PALs for Asp-specific ligation remains largely unexplored. We found that PAL enzymes, such as VyPAL2, display appreciable catalytic activities toward P1-Asp substrates at pH 4-5, which are at least 2 orders of magnitude higher than that of sortase A, making them practically useful for both intra- and intermolecular ligations. This also allows sequential ligations, first at Asp and then at Asn junctions, because the newly formed aspartyl peptide bond is resistant to the ligase at the pH used for asparaginyl ligation in the second step. Using this pH-controlled orthogonal ligation method, we dually labeled truncated sfGFP with a cancer-targeting peptide and a doxorubicin derivative at the respective N- and C-terminal ends in the N-to-C direction. In addition, a fluorescein tag and doxorubicin derivative were tagged to an EGFR-targeting affibody in the C-to-N direction. This study shows that the pH-dependent catalytic activity of PAL enzymes can be exploited to prepare multifunction protein biologics for pharmacological applications.
Collapse
Affiliation(s)
- Dingpeng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Side Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
41
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site-Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021; 60:13757-13777. [PMID: 33258535 PMCID: PMC8248073 DOI: 10.1002/anie.202012034] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Site-selective protein functionalization serves as an invaluable tool for investigating protein structures and functions in complicated cellular environments and accomplishing semi-synthetic protein conjugates such as traceable therapeutics with improved features. Dual functionalization of proteins allows the incorporation of two different types of functionalities at distinct location(s), which greatly expands the features of native proteins. The attachment and crosstalk of a fluorescence donor and an acceptor dye provides fundamental insights into the folding and structural changes of proteins upon ligand binding in their native cellular environments. Moreover, the combination of drug molecules with different modes of action, imaging agents or stabilizing polymers provides new avenues to design precision protein therapeutics in a reproducible and well-characterizable fashion. This review aims to give a timely overview of the recent advancements and a future perspective of this relatively new research area. First, the chemical toolbox for dual functionalization of proteins is discussed and compared. The strengths and limitations of each strategy are summarized in order to enable readers to select the most appropriate method for their envisaged applications. Thereafter, representative applications of these dual-modified protein bioconjugates benefiting from the synergistic/additive properties of the two synthetic moieties are highlighted.
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
42
|
Tan DJY, Cheong VV, Lim KW, Phan AT. A modular approach to enzymatic ligation of peptides and proteins with oligonucleotides. Chem Commun (Camb) 2021; 57:5507-5510. [PMID: 34036975 DOI: 10.1039/d1cc01348c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Joining peptides and oligonucleotides offers potential benefits, but current methods remain laborious. Here we present a novel approach towards enzymatic ligation of the two modalities through the development of tag phosphoramidites as adaptors that can be readily incorporated onto oligonucleotides. This simple and highly efficient approach paves the way towards streamlined development and production of peptide/protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Derrick Jing Yang Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | | | | | | |
Collapse
|
43
|
Rehm FBH, Tyler TJ, Xie J, Yap K, Durek T, Craik DJ. Asparaginyl Ligases: New Enzymes for the Protein Engineer's Toolbox. Chembiochem 2021; 22:2079-2086. [PMID: 33687132 DOI: 10.1002/cbic.202100071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Indexed: 01/11/2023]
Abstract
Enzyme-catalysed site-specific protein modifications enable the precision manufacture of conjugates for the study of protein function and/or for therapeutic or diagnostic applications. Asparaginyl ligases are a class of highly efficient transpeptidases with the capacity to modify proteins bearing only a tripeptide recognition motif. Herein, we review the types of protein modification that are accessible using these enzymes, including N- and C-terminal protein labelling, head-to-tail cyclisation, and protein-protein conjugation. We describe the progress that has been made to engineer highly efficient ligases as well as efforts to chemically manipulate the enzyme reaction to favour product formation. These enzymes are powerful additions to the protein engineer's toolbox.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan J Tyler
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Xie
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
44
|
Wang Z, Zhang D, Hemu X, Hu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics 2021; 11:5863-5875. [PMID: 33897886 PMCID: PMC8058723 DOI: 10.7150/thno.53615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Protein theranostics integrate both diagnostic and treatment functions on a single disease-targeting protein. However, the preparation of these multimodal agents remains a major challenge. Ideally, conventional recombinant proteins should be used as starting materials for modification with the desired detection and therapeutic functionalities, but simple chemical strategies that allow the introduction of two different modifications into a protein in a site-specific manner are not currently available. We recently discovered two highly efficient peptide ligases, namely butelase-1 and VyPAL2. Although both ligate at asparaginyl peptide bonds, these two enzymes are bio-orthogonal with distinguishable substrate specificities, which can be exploited to introduce distinct modifications onto a protein. Methods: We quantified substrate specificity differences between butelase-1 and VyPAL2, which provide orthogonality for a tandem ligation method for protein dual modifications. Recombinant proteins or synthetic peptides engineered with the preferred recognition motifs of butelase-1 and VyPAL2 at their respective C- and N-terminal ends could be modified consecutively by the action of the two ligases. Results: Using this method, we modified an EGFR-targeting affibody with a fluorescein tag and a mitochondrion-lytic peptide at its respective N- and C-terminal ends. The dual-labeled protein was found to be a selective bioimaging and cytotoxic agent for EGFR-positive A431 cancer cells. In addition, the method was used to prepare a cyclic form of the affibody conjugated with doxorubicin. Both modified affibodies showed increased cytotoxicity to A431 cells by 10- and 100-fold compared to unconjugated doxorubicin and the free peptide, respectively. Conclusion: Bio-orthogonal tandem ligation using two asparaginyl peptide ligases with differential substrate specificities is a straightforward approach for the preparation of multifunctional protein biologics as potential theranostics.
Collapse
|
45
|
Permana D, Minamihata K, Goto M, Kamiya N. Strategies for Making Multimeric and Polymeric Bifunctional Protein Conjugates and Their Applications as Bioanalytical Tools. ANAL SCI 2021; 37:425-437. [PMID: 33455962 DOI: 10.2116/analsci.20scr07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymes play a central role in the detection of target molecules in biotechnological fields. Most probes used in detection are bifunctional proteins comprising enzymes and binding proteins conjugated by chemical reactions. To create a highly sensitive detection probe, it is essential to increase the enzyme-to-binding protein ratio in the probe. However, if the chemical reactions required to prepare the probe are insufficiently site-specific, the detection probe may lose functionality. Genetic modifications and enzyme-mediated post-translational modifications (PTMs) can ensure the site-specific conjugation of proteins. They are therefore promising strategies for the production of detection probes with high enzyme contents, i.e., polymeric bifunctional proteins. Herein, we review recent advances in the preparation of bifunctional protein conjugates and polymeric bifunctional protein conjugates for detection. We have summarized research on genetically fused proteins and enzymatically prepared polymeric bifunctional proteins, and will discuss the potential use of protein polymers in various detection applications.
Collapse
Affiliation(s)
- Dani Permana
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Kampus LIPI Bandung
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
46
|
Podracky CJ, An C, DeSousa A, Dorr BM, Walsh DM, Liu DR. Laboratory evolution of a sortase enzyme that modifies amyloid-β protein. Nat Chem Biol 2021; 17:317-325. [PMID: 33432237 PMCID: PMC7904614 DOI: 10.1038/s41589-020-00706-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
Epitope-specific enzymes are powerful tools for site-specific protein modification but generally require genetic manipulation of the target protein. Here, we describe the laboratory evolution of the bacterial transpeptidase sortase A to recognize the LMVGG sequence in endogenous amyloid-β (Aβ) protein. Using a yeast display selection for covalent bond formation, we evolved a sortase variant that prefers LMVGG substrates from a starting enzyme that prefers LPESG substrates, resulting in a >1,400-fold change in substrate preference. We used this evolved sortase to label endogenous Aβ in human cerebrospinal fluid, enabling the detection of Aβ with sensitivities rivaling those of commercial assays. The evolved sortase can conjugate a hydrophilic peptide to Aβ42, greatly impeding the ability of the resulting protein to aggregate into higher-order structures. These results demonstrate laboratory evolution of epitope-specific enzymes toward endogenous targets as a strategy for site-specific protein modification without target gene manipulation and enable potential future applications of sortase-mediated labeling of Aβ peptides.
Collapse
Affiliation(s)
- Christopher J. Podracky
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Chihui An
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Brent M. Dorr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
47
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site‐Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
48
|
Lu Z, Truex NL, Melo MB, Cheng Y, Li N, Irvine DJ, Pentelute BL. IgG-Engineered Protective Antigen for Cytosolic Delivery of Proteins into Cancer Cells. ACS CENTRAL SCIENCE 2021; 7:365-378. [PMID: 33655074 PMCID: PMC7908032 DOI: 10.1021/acscentsci.0c01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/05/2023]
Abstract
Therapeutic immunotoxins composed of antibodies and bacterial toxins provide potent activity against malignant cells, but joining them with a defined covalent bond while maintaining the desired function is challenging. Here, we develop novel immunotoxins by dovetailing full-length immunoglobulin G (IgG) antibodies and nontoxic anthrax proteins, in which the C terminus of the IgG heavy chain is connected to the side chain of anthrax toxin protective antigen. This strategy enabled efficient conjugation of protective antigen variants to trastuzumab (Tmab) and cetuximab (Cmab) antibodies. The conjugates effectively perform intracellular delivery of edema factor and N terminus of lethal factor (LFN) fused with diphtheria toxin and Ras/Rap1-specific endopeptidase. Each conjugate shows high specificity for cells expressing human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), respectively, and potent activity across six Tmab- and Cmab-resistant cell lines. The conjugates also exhibit increased pharmacokinetics and pronounced in vivo safety, which shows promise for further therapeutic development.
Collapse
Affiliation(s)
- Zeyu Lu
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nicholas L. Truex
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mariane B. Melo
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Ragon
Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yiran Cheng
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Na Li
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J. Irvine
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Ragon
Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Howard Hughes
Medical Institute, 4000
Jones Bridge Road, Chevy Chase, Maryland 20815, United
States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- E-mail:
| |
Collapse
|
49
|
Le Gall CM, van der Schoot JMS, Ramos-Tomillero I, Khalily MP, van Dalen FJ, Wijfjes Z, Smeding L, van Dalen D, Cammarata A, Bonger KM, Figdor CG, Scheeren FA, Verdoes M. Dual Site-Specific Chemoenzymatic Antibody Fragment Conjugation Using CRISPR-Based Hybridoma Engineering. Bioconjug Chem 2021; 32:301-310. [PMID: 33476135 PMCID: PMC7898269 DOI: 10.1021/acs.bioconjchem.0c00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Functionalized antibodies
and antibody fragments have found applications
in the fields of biomedical imaging, theranostics, and antibody–drug
conjugates (ADC). In addition, therapeutic and theranostic approaches
benefit from the possibility to deliver more than one type of cargo
to target cells, further challenging stochastic labeling strategies.
Thus, bioconjugation methods to reproducibly obtain defined homogeneous
conjugates bearing multiple different cargo molecules, without compromising
target affinity, are in demand. Here, we describe a straightforward
CRISPR/Cas9-based strategy to rapidly engineer hybridoma cells to
secrete Fab′ fragments bearing two distinct site-specific labeling
motifs, which can be separately modified by two different sortase
A mutants. We show that sequential genetic editing of the heavy chain
(HC) and light chain (LC) loci enables the generation of a stable
cell line that secretes a dual tagged Fab′ molecule (DTFab′),
which can be easily isolated. To demonstrate feasibility, we functionalized
the DTFab′ with two distinct cargos in a site-specific manner.
This technology platform will be valuable in the development of multimodal
imaging agents, theranostics, and next-generation ADCs.
Collapse
Affiliation(s)
- Camille M Le Gall
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Oncode Institute, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Johan M S van der Schoot
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Oncode Institute, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Iván Ramos-Tomillero
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| | - Melek Parlak Khalily
- Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris J van Dalen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Zacharias Wijfjes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| | - Liyan Smeding
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Duco van Dalen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Anna Cammarata
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands.,Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Oncode Institute, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| | - Ferenc A Scheeren
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| |
Collapse
|
50
|
Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker JS, Carroll JS, Spring DR. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305-1353. [PMID: 33290462 DOI: 10.1039/d0cs00310g] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|