1
|
Sagar B, Gupta S, Verma SK, Reddy YVM, Shukla S. Navigating cancer therapy: Harnessing the power of peptide-drug conjugates as precision delivery vehicles. Eur J Med Chem 2025; 283:117131. [PMID: 39647418 DOI: 10.1016/j.ejmech.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Cancer treatment is a formidable challenge due to the adverse effects associated with non-selective therapies like chemotherapy and radiotherapy. This review article primarily centers on the application of Peptide-Drug Conjugates (PDCs) for delivering cancer treatment. PDCs represent a promising class of precision medicines, harnessing the unique attributes of peptides in conjunction with non-peptide components. The covalent linking of peptides and drugs through specialized connectors characterizes PDCs. These constructs play a pivotal role in delivering drugs directly to tumor sites with high precision. PDCs encompass three pivotal components: a targeting ligand, a cytotoxic ligand, and a carefully chosen linker. The selection of these elements is crucial to maximize the efficiency of PDCs. PDCs offer a multitude of advantages over conventional drug molecules, including enhanced specificity, reduced off-target effects, and an improved therapeutic profile. The peptide component within PDCs can be customized to specifically adhere to disease-specific receptors or biomarkers, facilitating targeted drug delivery and accumulation in afflicted cells or tissues. This targeted approach enables the controlled release of therapeutic payloads at the localized site, resulting in heightened effectiveness and minimized systemic toxicity. Diverse linker strategies are employed to ensure the stable connection between the peptide and non-peptide components, ensuring controlled drug release at the desired location of action. The peptides utilized in these treatments encompass cell-penetrating peptides, peptides designed to target tumor cells, and those aimed at the nucleus of cancer cells. While certain clinical trials have been conducted, and some PDCs are currently in use for cancer treatment, it's essential to acknowledge that PDCs have their limitations, such as low stability in plasma, fast elimination and limited oral bioavailability. Ongoing research endeavors seek to surmount these challenges and further establish PDCs as potent agents for cancer treatment. This review sheds light on recent advancements in the design, delivery, and applications of PDCs, while also highlighting the prevailing challenges and charting a path for future research directions.
Collapse
Affiliation(s)
- Bulbul Sagar
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016, New Delhi, India
| | - Sarthak Gupta
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016, New Delhi, India
| | - Sarvesh Kumar Verma
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India
| | | | - Shefali Shukla
- Sri Venkateswara College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Grabeck J, Mayer J, Miltz A, Casoria M, Quagliata M, Meinberger D, Klatt AR, Wielert I, Maier B, Papini AM, Neundorf I. Triazole-Bridged Peptides with Enhanced Antimicrobial Activity and Potency against Pathogenic Bacteria. ACS Infect Dis 2024; 10:2717-2727. [PMID: 38885643 DOI: 10.1021/acsinfecdis.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
There are still no linear antimicrobial peptides (AMPs) available as a treatment option against bacterial infections. This is caused by several drawbacks that come with AMPs such as limited proteolytic stability and low selectivity against human cells. In this work, we screened a small library of rationally designed new peptides based on the cell-penetrating peptide sC18* toward their antimicrobial activity. We identified several effective novel AMPs and chose one out of this group to further increase its potency. Therefore, we introduced a triazole bridge at different positions to provide a preformed helical structure, assuming that this modification would improve (i) proteolytic stability and (ii) membrane activity. Indeed, placing the triazole bridge within the hydrophilic part of the linear analogue highly increased membrane activity as well as stability against enzymatic digestion. The new peptides, 8A and 8B, demonstrated high activity against several bacterial species tested including pathogenic N. gonorrhoeae and methicillin-resistant S. aureus. Since they exhibited significantly good tolerability against human fibroblast and blood cells, these novel peptides offer true alternatives for future clinical applications and are worth studying in more detail.
Collapse
Affiliation(s)
- Joshua Grabeck
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Jacob Mayer
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Axel Miltz
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Michele Casoria
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Denise Meinberger
- University of Cologne, Faculty of Medicine, Institute for Clinical Chemistry, Kerpener Str. 62, 50937 Cologne, Germany
| | - Andreas R Klatt
- University of Cologne, Faculty of Medicine, Institute for Clinical Chemistry, Kerpener Str. 62, 50937 Cologne, Germany
| | - Isabelle Wielert
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Physics, Institute for Biological Physics, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Berenike Maier
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Physics, Institute for Biological Physics, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Ines Neundorf
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute of Biochemistry, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
3
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Pirhaghi M, Mamashli F, Moosavi-Movahedi F, Arghavani P, Amiri A, Davaeil B, Mohammad-Zaheri M, Mousavi-Jarrahi Z, Sharma D, Langel Ü, Otzen DE, Saboury AA. Cell-Penetrating Peptides: Promising Therapeutics and Drug-Delivery Systems for Neurodegenerative Diseases. Mol Pharm 2024; 21:2097-2117. [PMID: 38440998 DOI: 10.1021/acs.molpharmaceut.3c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | | | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Ahmad Amiri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Bagher Davaeil
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mahya Mohammad-Zaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Zahra Mousavi-Jarrahi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C 1592-224, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
5
|
Kim H, Taslakjian B, Kim S, Tirrell MV, Guler MO. Therapeutic Peptides, Proteins and their Nanostructures for Drug Delivery and Precision Medicine. Chembiochem 2024; 25:e202300831. [PMID: 38408302 DOI: 10.1002/cbic.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Peptide and protein nanostructures with tunable structural features, multifunctionality, biocompatibility and biomolecular recognition capacity enable development of efficient targeted drug delivery tools for precision medicine applications. In this review article, we present various techniques employed for the synthesis and self-assembly of peptides and proteins into nanostructures. We discuss design strategies utilized to enhance their stability, drug-loading capacity, and controlled release properties, in addition to the mechanisms by which peptide nanostructures interact with target cells, including receptor-mediated endocytosis and cell-penetrating capabilities. We also explore the potential of peptide and protein nanostructures for precision medicine, focusing on applications in personalized therapies and disease-specific targeting for diagnostics and therapeutics in diseases such as cancer.
Collapse
Affiliation(s)
- HaRam Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Boghos Taslakjian
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Sarah Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Matthew V Tirrell
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| |
Collapse
|
6
|
Mező G, Gomena J, Ranđelović I, Dókus EL, Kiss K, Pethő L, Schuster S, Vári B, Vári-Mező D, Lajkó E, Polgár L, Kőhidai L, Tóvári J, Szabó I. Oxime-Linked Peptide-Daunomycin Conjugates as Good Tools for Selection of Suitable Homing Devices in Targeted Tumor Therapy: An Overview. Int J Mol Sci 2024; 25:1864. [PMID: 38339141 PMCID: PMC10855781 DOI: 10.3390/ijms25031864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.
Collapse
Affiliation(s)
- Gábor Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Jacopo Gomena
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
| | - Endre Levente Dókus
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Krisztina Kiss
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Lilla Pethő
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| | - Sabine Schuster
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Institute of Chemistry, ELTE, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Diána Vári-Mező
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - Lívia Polgár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary; (E.L.); (L.P.); (L.K.)
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary; (I.R.); (B.V.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ildikó Szabó
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (J.G.); (E.L.D.); (L.P.); (S.S.); (D.V.-M.); (I.S.)
| |
Collapse
|
7
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Bugatti K. A Brief Guide to Preparing a Peptide-Drug Conjugate. Chembiochem 2023; 24:e202300254. [PMID: 37288718 DOI: 10.1002/cbic.202300254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
Peptide-drug conjugates (PDCs) have recently emerged as interesting hybrid constructs not only for targeted therapy, but also for the early diagnosis of different pathologies. In most cases, the crucial step in the PDC synthesis is the final conjugation step, where a specific drug is bound to a particular peptide-/peptidomimetic-targeting unit. Thus, this concept paper aims to give a short guide to determining the finest conjugation reaction, by considering in particular the reaction conditions, the stability of the linker and the major pros and cons of each reaction. Based on the recent PDCs reported in literature, the most common and efficient conjugation methods will be systematically presented and compared, generating a short guide to consult while planning the synthesis of a novel peptide-drug conjugate.
Collapse
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
9
|
Gong L, Zhao H, Liu Y, Wu H, Liu C, Chang S, Chen L, Jin M, Wang Q, Gao Z, Huang W. Research advances in peptide‒drug conjugates. Acta Pharm Sin B 2023; 13:3659-3677. [PMID: 37719380 PMCID: PMC10501876 DOI: 10.1016/j.apsb.2023.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Peptide‒drug conjugates (PDCs) are drug delivery systems consisting of a drug covalently coupled to a multifunctional peptide via a cleavable linker. As an emerging prodrug strategy, PDCs not only preserve the function and bioactivity of the peptides but also release the drugs responsively with the cleavable property of the linkers. Given the ability to significantly improve the circulation stability and targeting of drugs in vivo and reduce the toxic side effects of drugs, PDCs have already been extensively applied in drug delivery. Herein, we review the types and mechanisms of peptides, linkers and drugs used to construct PDCs, and summarize the clinical applications and challenges of PDC drugs.
Collapse
Affiliation(s)
- Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangyan Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Zambra M, Ranđelović I, Talarico F, Borbély A, Svajda L, Tóvári J, Mező G, Bodero L, Colombo S, Arrigoni F, Fasola E, Gazzola S, Piarulli U. Optimizing the enzymatic release of MMAE from isoDGR-based small molecule drug conjugate by incorporation of a GPLG-PABC enzymatically cleavable linker. Front Pharmacol 2023; 14:1215694. [PMID: 37492088 PMCID: PMC10363981 DOI: 10.3389/fphar.2023.1215694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) and Small Molecule-Drug Conjugates (SMDCs) represent successful examples of targeted drug-delivery technologies for overcoming unwanted side effects of conventional chemotherapy in cancer treatment. In both strategies, a cytotoxic payload is connected to the tumor homing moiety through a linker that releases the drug inside or in proximity of the tumor cell, and that represents a key component for the final therapeutic effect of the conjugate. Here, we show that the replacement of the Val-Ala-p-aminobenzyloxycarbamate linker with the Gly-Pro-Leu-Gly-p-aminobenzyloxycarbamate (GPLG-PABC) sequence as enzymatically cleavable linker in the SMDC bearing the cyclo[DKP-isoDGR] αVβ3 integrin ligand as tumor homing moiety and the monomethyl auristatin E (MMAE) as cytotoxic payload led to a 4-fold more potent anti-tumoral effect of the final conjugate on different cancer cell lines. In addition, the synthesized conjugate resulted to be significantly more potent than the free MMAE when tested following the "kiss-and-run" protocol, and the relative potency were clearly consistent with the expression of the αVβ3 integrin receptor in the considered cancer cell lines. In vitro enzymatic cleavage tests showed that the GPLG-PABC linker is cleaved by lysosomal enzymes, and that the released drug is observable already after 15 min of incubation. Although additional data are needed to fully characterize the releasing capacity of GPLG-PABC linker, our findings are of therapeutic significance since we are introducing an alternative to other well-established enzymatically sensitive peptide sequences that might be used in the future for generating more efficient and less toxic drug delivery systems.
Collapse
Affiliation(s)
- Marco Zambra
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Ivan Ranđelović
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Francesco Talarico
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group and Faculty of Science, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Laura Svajda
- KINETO Lab Ltd., Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - József Tóvári
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Lizeth Bodero
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Sveva Colombo
- Science and High Technology Department, University of Insubria, Como, Italy
- Department of Chemistry Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - Federico Arrigoni
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Elettra Fasola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Silvia Gazzola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Umberto Piarulli
- Science and High Technology Department, University of Insubria, Como, Italy
| |
Collapse
|
11
|
Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M. Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B 2023; 13:498-516. [PMID: 36873165 PMCID: PMC9978859 DOI: 10.1016/j.apsb.2022.07.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
Peptide-drug conjugates (PDCs) are the next generation of targeted therapeutics drug after antibody-drug conjugates (ADCs), with the core benefits of enhanced cellular permeability and improved drug selectivity. Two drugs are now approved for market by US Food and Drug Administration (FDA), and in the last two years, the pharmaceutical companies have been developing PDCs as targeted therapeutic candidates for cancer, coronavirus disease 2019 (COVID-19), metabolic diseases, and so on. The therapeutic benefits of PDCs are significant, but poor stability, low bioactivity, long research and development time, and slow clinical development process as therapeutic agents of PDC, how can we design PDCs more effectively and what is the future direction of PDCs? This review summarises the components and functions of PDCs for therapeutic, from drug target screening and PDC design improvement strategies to clinical applications to improve the permeability, targeting, and stability of the various components of PDCs. This holds great promise for the future of PDCs, such as bicyclic peptide‒toxin coupling or supramolecular nanostructures for peptide-conjugated drugs. The mode of drug delivery is determined according to the PDC design and current clinical trials are summarised. The way is shown for future PDC development.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Xinli Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
12
|
Mohri K, Nhat KPH, Zouda M, Warashina S, Wada Y, Watanabe Y, Tagami S, Mukai H. Lasso peptide microcin J25 variant containing RGD motif as a PET probe for integrin a v ß 3 in tumor imaging. Eur J Pharm Sci 2023; 180:106339. [PMID: 36414157 DOI: 10.1016/j.ejps.2022.106339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Microcin J25 (MccJ25), a lasso peptide, has a unique 3-D interlocked structure that provides high stability under acidic conditions, at high temperatures, and in the presence of proteases. In this study, we generated a positron emission tomography (PET) probe based on MccJ25 analog with an RGD motif and investigated their pharmacokinetics and utility for integrin αvβ3 imaging in tumors. The MccJ25 variant with an RGD motif in the loop region and a lysine substitution at the C-terminus (MccJ25(RGDF)GtoK) was produced in E. coli transfected with plasmid DNA containing the MccJ25 biosynthetic gene cluster (mcjABCD). [64Cu]Cu-MccJ25(RGDF)GtoK was synthesized using the C-terminal lysine labeled with copper-64 (t1/2 = 12.7 h) via a bifunctional chelator; it showed stability in 90% mouse plasma for 45 min. Using PET imaging for integrin αvβ3 positive U87MG tumor bearing mice, [64Cu]Cu-MccJ25(RGDF)GtoK could clearly distinguish the tumor, and its accumulation was significantly higher than that of MccJ25(GIGT)GtoK without the binding motif for integrin αvβ3. Furthermore, MccJ25(RGDF)GtoK enabled visualization of only U87MG tumors but not MCF-7 tumors with low integrin αvβ3 expression in double tumor-bearing mice. In ex vivo biodistribution analysis, the integrin αvβ3 non-specific accumulation of [64Cu]Cu-MccJ25(RGDF)GtoK was significantly lower in various tissues, except for the kidneys, as compared to the control probe ([64Cu]Cu-cyclic RGD peptide). These results of the present study indicate that 64Cu-labeling methods are appropriate for the synthesis of MccJ25-based PET probes, and [64Cu]Cu-MccJ25 variants are useful tools for cancer molecular imaging.
Collapse
Affiliation(s)
- Kohta Mohri
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kim Phuong Huynh Nhat
- Laboratory for Advanced Biomolecular Engineering, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Maki Zouda
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shota Warashina
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shunsuke Tagami
- Laboratory for Advanced Biomolecular Engineering, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| |
Collapse
|
13
|
Kaihani S, Sadeghzadeh N, Abediankenari S, Abedi SM. [ 99mTc]-labeling and evaluation of a new linear peptide for imaging of glioblastoma as a α vβ 3-positive tumor. Ann Nucl Med 2022; 36:976-985. [PMID: 36097232 DOI: 10.1007/s12149-022-01786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE In this study, we designed a new linear 6-Hydrazinonicotinamide (HYNIC)-conjugated peptide (HYNIC-KRWrNM) (M-6) and labeled with technetium-99m for gamma imaging of glioblastoma as a αvβ3-positive tumor. We evaluated tumor targeting ability of this radio-peptide and compared with previous 99mTc-labeled HYNIC-conjugated RGD analogue peptides. PROCEDURES One new linear peptide (HYNIC-KRWrNM) (M-6) was designed and labeled with technetium-99m in the presence of 2-[[1,3-dihydroxy-2-(hydroxymethyl) propan-2-yl] amino] acetic acid (Tricine)/Ethylenediamine-N,N'-diacetic acid (EDDA) as co-ligand system. Then, this 99mTc-labeled peptide ([99mTc]Tc-M-7) was evaluated for in vitro stability in saline and serum, specific binding assay, internalization, and binding affinity (Kd). In addition, we performed biodistribution study and planar imaging on nude mice bearing U87-MG xenograft as a αvβ3-positive tumor. RESULTS The radiochemical yield of [99mTc]Tc-M-7 was obtained ˃95%. This 99mTc-labeled peptide remained stable and intact in saline solution after 24 h incubation. In addition, metabolic stability of this 99mTc-labeled peptide was obtained ˃60% after 4 h incubation in serum. The Kd value for [99mTc]Tc-M-7 was obtained 5.2 ± 1.0 nM. Based on biodistribution results in nude mice bearing U87-MG xenograft, tumor/muscle activity ratio was 6.22 and decreased to 1.89 in blocking group at the same time point (4 h p.i.). The blocking experiment results also indicated that tumor uptake and kidney uptake were αvβ3-mediated. In comparison with previous HYNIC-conjugated RGD analogue peptides, kidneys had the highest uptake of this 99mTc-labeled peptide (52.29 ± 11.48 at 1.5 h p.i. and 27.04 ± 0.66%ID/g at 4 h p.i.). Finally, similar to previous 99mTc-labeled HYNIC-conjugated RGD analogue peptides, [99mTc]Tc-M-7 showed acceptable tumor uptake after 4 h post-injection (based on ROI technique, target-to-background activity ratio = 3.80). CONCLUSIONS This small linear 99mTc-labeled peptide, with high affinity to αvβ3 integrin, desirable water solubility, and cost efficient, demonstrates a potent tumor targeting ability as well as previous HYNIC-conjugated RGD analogue peptides. Hence, [99mTc]Tc-M-7 can be of service to as a new candidate for early detection of αvβ3-positive tumors.
Collapse
Affiliation(s)
- Sajad Kaihani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48471-93698, Mazandaran, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48471-93698, Mazandaran, Iran.
| | - Saeid Abediankenari
- Immunogenetics Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
15
|
Comparing Variants of the Cell-Penetrating Peptide sC18 to Design Peptide-Drug Conjugates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196656. [PMID: 36235193 PMCID: PMC9570898 DOI: 10.3390/molecules27196656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Herein, the design and synthesis of peptide-drug conjugates (PDCs) including different variants of the cell-penetrating peptide sC18 is presented. We first generated a series of novel sequence mutants of sC18 having either amino acid deletions and/or substitutions, and then tested their biological activity. The effects of histidine substituents were found to be not meaningful for sC18 uptake and cell selectivity. Moreover, building a nearly perfect amphipathic structure within a shortened sC18 derivative provided a peptide that was highly membrane-active, but also too cytotoxic. As a result, the most promising analog was sC18ΔE, which stands out due to its higher uptake efficacy compared to parent sC18. In the last set of experiments, we let the peptides react with the cytotoxic drug doxorubicin by Thiol-Michael addition to form novel PDCs. Our results indicate that sC18ΔE could be a more efficient drug carrier than parent sC18 for biomedical applications. However, cellular uptake using endocytosis and resulting entrapment of cargo inside vesicles is still a major critical step to overcome in CPP-containing peptide-drug development.
Collapse
|
16
|
Yang JS, Lu K, Li CX, Zhao ZH, Zhang XM, Zhang FM, Tu YQ. Chiral 1,2,3-Triazolium Salt Catalyzed Asymmetric Mono- and Dialkylation of 2,5-Diketopiperazines with the Construction of Tetrasubstituted Carbon Centers. Angew Chem Int Ed Engl 2022; 61:e202114129. [PMID: 34981881 DOI: 10.1002/anie.202114129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/07/2022]
Abstract
Novel asymmetric mono- and dialkylation reactions of α-substituted 2,5-diketopiperazines catalyzed by new chiral spirocyclic-amide-derived triazolium organocatalysts have been developed, resulting in a range of enantioenriched 2,5-diketopiperazine derivatives containing one or two tetrasubstituted carbon stereocenters. The reactions feature high yields (up to 98%), and excellent cis-diastereo- and enantioselectivities (up to >20:1 dr, >99 % ee), and they provide a new asymmetric synthetic approach to important functionalized 2,5-diketopiperazine skeletons. Furthermore, a possible reaction mechanism was proposed based on both control experiments and extensive DFT calculations.
Collapse
Affiliation(s)
- Ju-Song Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chen-Xiao Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zu-Hang Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Yang J, Lu K, Li C, Zhao Z, Zhang X, Zhang F, Tu Y. Chiral 1,2,3‐Triazolium Salt Catalyzed Asymmetric Mono‐ and Dialkylation of 2,5‐Diketopiperazines with the Construction of Tetrasubstituted Carbon Centers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ju‐Song Yang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Chen‐Xiao Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Zu‐Hang Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Xiao‐Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Fu‐Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yong‐Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
18
|
Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2022; 10:1965418. [PMID: 34402743 PMCID: PMC8794253 DOI: 10.1080/21688370.2021.1965418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
This review concentrates on the research concerning conjugates of anticancer drugs with versatile cell-penetrating peptides (CPPs). For a better insight into the relationship between the components of the constructs, it starts with the characteristic of the peptides and considers its following aspects: mechanisms of cellular internalization, interaction with cancer-modified membranes, selectivity against tumor tissue. Also, CPPs with anticancer activity have been distinguished and summarized with their mechanisms of action. With respect to the conjugates, the preclinical studies (in vitro, in vivo) indicated that they possess several merits in comparison to the parent drugs. They concerned not only better cellular internalization but also other improvements in pharmacokinetics (e.g. access to the brain tissue) and pharmacodynamics (e.g. overcoming drug resistance). The anticancer activity of the conjugates was usually superior to that of the unconjugated drug. Certain anticancer CPPs and conjugates entered clinical trials.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
19
|
Lützenburg T, Burdina N, Scholz MS, Neundorf I. Improving Membrane Activity and Cargo Delivery Efficacy of a Cell-Penetrating Peptide by Loading with Carboranes. Pharmaceutics 2021; 13:2075. [PMID: 34959356 PMCID: PMC8709211 DOI: 10.3390/pharmaceutics13122075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have emerged as versatile tools to increase the intracellular accumulation of different kinds of cargoes. For an efficient cellular uptake and drug delivery, their organization into a distinct and stable secondary structure at the outer surface of the plasma membrane is a hallmark and supports optimal lipid-peptide interactions. Incorporation of hydrophobic moieties, such as carboranes (CBs), has the potential to increase the lipophilicity of peptides, and thus, to facilitate the formation of secondary structures. Herein, we present synthesis and biophysical as well as biological characterization of carborane-CPP conjugates having incorporated one or more CB clusters. Our results highlight the possibility to modulate the secondary structure of CPPs by the addition of CB's leading to constructs with altered membrane activity and promising use in terms of nucleic acid delivery.
Collapse
Affiliation(s)
- Tamara Lützenburg
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; (T.L.); (N.B.)
| | - Nele Burdina
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; (T.L.); (N.B.)
| | - Matthias S. Scholz
- Pharmaceutical Chemistry I & II, Pharmaceutical Institute, Faculty of Mathematics and Natural Sciences, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany;
| | - Ines Neundorf
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany; (T.L.); (N.B.)
| |
Collapse
|
20
|
Synthesis of Cell-Penetrating Peptide Coated Silica Nanoparticles and Their Physicochemical and Biological Characterization. Methods Mol Biol 2021. [PMID: 34766285 DOI: 10.1007/978-1-0716-1752-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The surface decoration of nanoparticles with cell-penetrating peptides (CPPs) represents a common technique for intracellular delivery of nanotherapeutics. Conjugate formation can be performed via covalent or non-covalent strategies. Here, we describe on the synthesis of silica nanoparticles, a well-known inorganic drug delivery vehicle type, and their surface modification with cell-penetrating peptides using sC18 and derivatives thereof. Moreover, physicochemical as well as biological characterization methods, including cellular uptake measurements, of particle-peptide conjugates are described.
Collapse
|
21
|
Wang W, Zhang X, Huang R, Hirschbiegel CM, Wang H, Ding Y, Rotello VM. In situ activation of therapeutics through bioorthogonal catalysis. Adv Drug Deliv Rev 2021; 176:113893. [PMID: 34333074 PMCID: PMC8440397 DOI: 10.1016/j.addr.2021.113893] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | | | - Huaisong Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
22
|
Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: a review. J Nanobiotechnology 2021; 19:255. [PMID: 34425832 PMCID: PMC8381574 DOI: 10.1186/s12951-021-01002-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although nanomedicine have greatly developed and human life span has been extended, we have witnessed the soared incidence of central nervous system (CNS) diseases including neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), ischemic stroke, and brain tumors, which have severely damaged the quality of life and greatly increased the economic and social burdens. Moreover, partial small molecule drugs and almost all large molecule drugs (such as recombinant protein, therapeutic antibody, and nucleic acid) cannot cross the blood-brain barrier. Therefore, it is especially important to develop a drug delivery system that can effectively deliver therapeutic drugs to the central nervous system for the treatment of central nervous system diseases. Cell penetrating peptides (CPPs) provide a potential strategy for the transport of macromolecules through the blood-brain barrier. This study analyzed and summarized the progress of CPPs in CNS diseases from three aspects: CPPs, the conjugates of CPPs and drug, and CPPs modified nanoparticles to provide scientific basis for the application of CPPs for CNS diseases.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pan Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhe Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dereje Kebebe
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
23
|
Noguchi K, Obuki M, Sumi H, Klußmann M, Morimoto K, Nakai S, Hashimoto T, Fujiwara D, Fujii I, Yuba E, Takatani-Nakase T, Neundorf I, Nakase I. Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery. Mol Pharm 2021; 18:3290-3301. [PMID: 34365796 DOI: 10.1021/acs.molpharmaceut.1c00244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The antimicrobial protein CAP18 (approximate molecular weight: 18 000), which was first isolated from rabbit granulocytes, comprises a C-terminal fragment that has negatively charged lipopolysaccharide binding activity. In this study, we found that CAP18 (106-121)-derived (sC18)2 peptides have macropinocytosis-inducible biological functions. In addition, we found that these peptides are highly applicable for use as extracellular vesicle (exosomes, EV)-based intracellular delivery, which is expected to be a next-generation drug delivery carrier. Here, we demonstrate that dimerized (sC18)2 peptides can be easily introduced on EV membranes when modified with a hydrophobic moiety, and that they show high potential for enhanced cellular uptake of EVs. By glycosaminoglycan-dependent induction of macropinocytosis, cellular EV uptake in targeted cells was strongly increased by the peptide modification made to EVs, and intriguingly, our herein presented technique is efficiently applicable for the cytosolic delivery of the biologically cell-killing functional toxin protein, saporin, which was artificially encapsulated in the EVs by electroporation, suggesting a useful technique for EV-based intracellular delivery of biofunctional molecules.
Collapse
Affiliation(s)
- Kosuke Noguchi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Momoko Obuki
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Haruka Sumi
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Merlin Klußmann
- Department of Chemistry, Biochemistry, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| | - Kenta Morimoto
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shinya Nakai
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takuya Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Daisuke Fujiwara
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.,Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zülpicher Strasse 47a, D-50674 Cologne, Germany
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.,NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
24
|
|
25
|
Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater Sci 2021; 9:1153-1188. [PMID: 33355322 DOI: 10.1039/d0bm01755h] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the field of nanotherapeutics, gaining cellular entry into the cytoplasm of the target cell continues to be an ultimate challenge. There are many physicochemical factors such as charge, size and molecular weight of the molecules and delivery vehicles, which restrict their cellular entry. Hence, to dodge such situations, a class of short peptides called cell-penetrating peptides (CPPs) was brought into use. CPPs can effectively interact with the cell membrane and can assist in achieving the desired intracellular entry. Such strategy is majorly employed in the field of cancer therapy and diagnosis, but now it is also used for other purposes such as evaluation of atherosclerotic plaques, determination of thrombin levels and HIV therapy. Thus, the current review expounds on each of these mentioned aspects. Further, the review briefly summarizes the basic know-how of CPPs, their utility as therapeutic molecules, their use in cancer therapy, tumor imaging and their assistance to nanocarriers in improving their membrane penetrability. The review also discusses the challenges faced with CPPs pertaining to their stability and also mentions the strategies to overcome them. Thus, in a nutshell, this review will assist in understanding how CPPs can present novel possibilities for resolving the conventional issues faced with the present-day nanotherapeutics.
Collapse
Affiliation(s)
- Kalyani Desale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
26
|
Bodero L, Parente S, Arrigoni F, Klimpel A, Neundorf I, Gazzola S, Piarulli U. Synthesis and Biological Evaluation of an
iso
DGR‐Paclitaxel Conjugate Containing a Cell‐Penetrating Peptide to Promote Cellular Uptake. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lizeth Bodero
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Federico Arrigoni
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Annika Klimpel
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Ines Neundorf
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| |
Collapse
|
27
|
Battistini L, Bugatti K, Sartori A, Curti C, Zanardi F. RGD Peptide‐Drug Conjugates as Effective Dual Targeting Platforms: Recent Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lucia Battistini
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Kelly Bugatti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Andrea Sartori
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Claudio Curti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Franca Zanardi
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| |
Collapse
|
28
|
Baranyai Z, Biri-Kovács B, Krátký M, Szeder B, Debreczeni ML, Budai J, Kovács B, Horváth L, Pári E, Németh Z, Cervenak L, Zsila F, Méhes E, Kiss É, Vinšová J, Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J Med Chem 2021; 64:2982-3005. [PMID: 33719423 DOI: 10.1021/acs.jmedchem.0c01399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB. Tuftsin derivatives were used to target the neuropilin-1 transport system for selectivity and better tumor penetration. Moreover, SynB3-tuftsin tandem compounds were synthesized to combine the beneficial properties of these peptides. Most of the conjugates showed high and selective efficacy against glioblastoma cells. SynB3 and tandem derivatives demonstrated superior cellular internalization. The penetration profile of the conjugates was determined on a lipid monolayer and Transwell co-culture system with noncontact HUVEC-U87 monolayers as simple ex vivo and in vitro BBB models. Importantly, in 3D spheroids, daunomycin-peptide conjugates possessed a better tumor penetration ability than daunomycin. These conjugates are promising tools for the delivery systems with tunable features.
Collapse
Affiliation(s)
- Zsuzsa Baranyai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.,Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Márta L Debreczeni
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Johanna Budai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Bence Kovács
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary
| | - Lilla Horváth
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Edit Pári
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Zsuzsanna Németh
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - László Cervenak
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
29
|
Gayraud F, Klußmann M, Neundorf I. Recent Advances and Trends in Chemical CPP-Drug Conjugation Techniques. Molecules 2021; 26:molecules26061591. [PMID: 33805680 PMCID: PMC7998868 DOI: 10.3390/molecules26061591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
This review summarizes recent developments in conjugation techniques for the synthesis of cell-penetrating peptide (CPP)–drug conjugates targeting cancer cells. We will focus on small organic molecules as well as metal complexes that were used as cytostatic payloads. Moreover, two principle ways of coupling chemistry will be discussed direct conjugation as well as the use of bifunctional linkers. While direct conjugation of the drug to the CPP is still popular, the use of bifunctional linkers seems to gain increasing attention as it offers more advantages related to the linker chemistry. Thus, three main categories of linkers will be highlighted, forming either disulfide acid-sensitive or stimuli-sensitive bonds. All techniques will be thoroughly discussed by their pros and cons with the aim to help the reader in the choice of the optimal conjugation technique that might be used for the synthesis of a given CPP–drug conjugate
Collapse
|
30
|
Haseloer A, Lützenburg T, Strache JP, Neudörfl J, Neundorf I, Klein A. Building up Pt II -Thiosemicarbazone-Lysine-sC18 Conjugates. Chembiochem 2021; 22:694-704. [PMID: 32909347 PMCID: PMC7894172 DOI: 10.1002/cbic.202000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Three chiral tridentate N^N^S coordinating pyridine-carbaldehyde (S)-N4-(α-methylbenzyl)thiosemicarbazones (HTSCmB) were synthesised along with lysine-modified derivatives. One of them was selected and covalently conjugated to the cell-penetrating peptide sC18 by solid-phase peptide synthesis. The HTSCmB model ligands, the HTSCLp derivatives and the peptide conjugate rapidly and quantitatively form very stable PtII chlorido complexes [Pt(TSC)Cl] when treated with K2 PtCl4 in solution. The Pt(CN) derivatives were obtained from one TSCmB model complex and the peptide conjugate complex through Cl- →CN- exchange. Ligands and complexes were characterised by NMR, IR spectroscopy, HR-ESI-MS and single-crystal XRD. Intriguingly, no decrease in cell viability was observed when testing the biological activity of the lysine-tagged HdpyTSCLp, its sC18 conjugate HdpyTSCL-sC18 or the PtCl and Pt(CN) conjugate complexes in three different cell lines. Thus, given the facile and effective preparation of such Pt-TSC-peptide conjugates, these systems might pave the way for future use in late-stage labelling with Pt radionuclides and application in nuclear medicine.
Collapse
Affiliation(s)
- Alexander Haseloer
- Universität zu Köln, Department für ChemieInstitut für Anorganische ChemieGreinstraße 650939KölnGermany
| | - Tamara Lützenburg
- Universität zu KölnDepartment für Chemie, Institut für BiochemieZülpicher Strasse 47a50674KölnGermany
| | - Joss Pepe Strache
- Universität zu Köln, Department für ChemieInstitut für Anorganische ChemieGreinstraße 650939KölnGermany
| | - Jörg Neudörfl
- Universität zu KölnDepartment für Chemie, Institut für Organische ChemieGreinstraße 450939KölnGermany
| | - Ines Neundorf
- Universität zu KölnDepartment für Chemie, Institut für BiochemieZülpicher Strasse 47a50674KölnGermany
| | - Axel Klein
- Universität zu Köln, Department für ChemieInstitut für Anorganische ChemieGreinstraße 650939KölnGermany
| |
Collapse
|
31
|
Cirillo M, Giacomini D. Molecular Delivery of Cytotoxic Agents via Integrin Activation. Cancers (Basel) 2021; 13:299. [PMID: 33467465 PMCID: PMC7830197 DOI: 10.3390/cancers13020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Integrins are cell adhesion receptors overexpressed in tumor cells. A direct inhibition of integrins was investigated, but the best inhibitors performed poorly in clinical trials. A gained attention towards these receptors arouse because they could be target for a selective transport of cytotoxic agents. Several active-targeting systems have been developed to use integrins as a selective cell entrance for some antitumor agents. The aim of this review paper is to report on the most recent results on covalent conjugates between integrin ligands and antitumor drugs. Cytotoxic drugs thus conjugated through specific linker to integrin ligands, mainly RGD peptides, demonstrated that the covalent conjugates were more selective against tumor cells and hopefully with fewer side effects than the free drugs.
Collapse
Affiliation(s)
| | - Daria Giacomini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
32
|
De-shielding of activatable cell-penetrating peptides: recognizing and releasing in activation process. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04339-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Alas M, Saghaeidehkordi A, Kaur K. Peptide-Drug Conjugates with Different Linkers for Cancer Therapy. J Med Chem 2020; 64:216-232. [PMID: 33382619 DOI: 10.1021/acs.jmedchem.0c01530] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug conjugates are chemotherapeutic or cytotoxic agents covalently linked to targeting ligands such as an antibody or a peptide via a linker. While antibody-drug conjugates (ADCs) are now clinically established for cancer therapy, peptide-drug conjugates (PDCs) are gaining recognition as a new modality for targeted drug delivery with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate plays a key role in the circulation time of the conjugate and release of the drug for full activity at the target site. Herein, we highlight the main linker chemistries utilized in the design of PDCs and discuss representative examples of PDCs with different linker chemistries with the related outcome in cell and animal studies.
Collapse
Affiliation(s)
- Mona Alas
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| |
Collapse
|
34
|
Panzeri S, Arosio D, Gazzola S, Belvisi L, Civera M, Potenza D, Vasile F, Kemker I, Ertl T, Sewald N, Reiser O, Piarulli U. Cyclic RGD and isoDGR Integrin Ligands Containing cis-2-amino-1-cyclopentanecarboxylic ( cis-β-ACPC) Scaffolds. Molecules 2020; 25:molecules25245966. [PMID: 33339382 PMCID: PMC7766232 DOI: 10.3390/molecules25245966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-β-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvβ3 and α5β1 receptors using biotinylated vitronectin (αvβ3) and fibronectin (α5β1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvβ3 over α5β1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvβ3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVβ3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.
Collapse
Affiliation(s)
- Silvia Panzeri
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Daniela Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie Chimiche (SCITEC), Giulio Natta, Via C. Golgi 19, 20133 Milan, Italy;
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Isabell Kemker
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Correspondence:
| |
Collapse
|
35
|
Feni L, Jütten L, Parente S, Piarulli U, Neundorf I, Diaz D. Cell-penetrating peptides containing 2,5-diketopiperazine (DKP) scaffolds as shuttles for anti-cancer drugs: conformational studies and biological activity. Chem Commun (Camb) 2020; 56:5685-5688. [PMID: 32319458 DOI: 10.1039/d0cc01490g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of linear and cyclic peptidomimetics composed of a cell-penetrating peptide and a non-natural, bifunctional 2,5-diketopiperazine scaffold is reported. Conformational studies revealed well-defined helical structures in micellar medium for linear structures, while cyclic peptidomimetics were more flexible. Biological investigations showed higher membrane-activity of cyclic derivatives allowing their use as shuttles for anti-cancer drugs.
Collapse
Affiliation(s)
- Lucia Feni
- University of Cologne, Department of Chemistry, Biochemistry, Zülpicher Str. 47a, D-50674 Cologne, Germany.
| | - Linda Jütten
- University of Cologne, Department of Chemistry, Organic Chemistry, Greinstraße 4, D-50939, Cologne, Germany.
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Ines Neundorf
- University of Cologne, Department of Chemistry, Biochemistry, Zülpicher Str. 47a, D-50674 Cologne, Germany.
| | - Dolores Diaz
- University of Cologne, Department of Chemistry, Organic Chemistry, Greinstraße 4, D-50939, Cologne, Germany.
| |
Collapse
|
36
|
Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer. J Control Release 2020; 330:1220-1228. [PMID: 33248708 DOI: 10.1016/j.jconrel.2020.11.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Biological barriers hamper the efficient delivery of drugs and genes to targeted sites. Cell penetrating peptides (CPP) have the ability to rapidly internalize across biological membranes. CPP have been effective for delivery of various chemotherapeutic agents used to combat cancer. CPP can enhance delivery of drugs to a targeted site when combined with tumor targeting peptides. CPP can be linked with various cargos like nanoparticles, micelles and liposomes to deliver drugs and genes to the cancer cell. Here, we focus on CPP mediated delivery of drugs to the tumor sites, delivery of genes (siRNA,pDNA) and co-delivery of drugs and genes to combat drug resistance.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Departments of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
37
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic low molecular-weight carrier-drug conjugates. Bioorg Chem 2020; 104:104311. [PMID: 33142423 DOI: 10.1016/j.bioorg.2020.104311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/20/2020] [Indexed: 12/30/2022]
Abstract
Inefficient transportation of polar metabolic inhibitors through cell membranes of eukaryotic and prokaryotic cells precludes their direct use as drug candidates in chemotherapy. One of the possible solutions to this problem is application of the 'Trojan horse' strategy, i.e. conjugation of an active substance with a molecular carrier of organic or inorganic nature, facilitating membrane penetration. In this work, the synthetic strategies used in rational design and preparation of conjugates of bioactive agents with three types of organic low molecular-weight carriers have been reviewed. These include iron-chelating agents, siderophores and cell-penetrating peptides. Moreover, a less known but very promising "molecular umbrella" conjugation strategy has been presented. Special attention has been paid on appropriate linking strategies, especially these allowing intracellular drug release after internalisation of a conjugate.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
38
|
Kurrikoff K, Vunk B, Langel Ü. Status update in the use of cell-penetrating peptides for the delivery of macromolecular therapeutics. Expert Opin Biol Ther 2020; 21:361-370. [PMID: 32938243 DOI: 10.1080/14712598.2021.1823368] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In this review, recent developments and applications with cell-penetrating peptides (CPP) are discussed. CPPs are widely used tools for the delivery of various macromolecular therapeutics, such as proteins and nucleic acids. AREAS COVERED The current review focuses on recent important advances and reports that demonstrate high clinical and translational potential. Most important clinical developments have occurred with the CPP-drug conjugate approaches that target various protein-protein interactions, and these have been highlighted subsequently. Most of the applications are targeting cancer, but recently, noteworthy advances have taken place in the field of antisense oligonucleotides and muscular dystrophies, lung targeting, and trans-BBB targeting. EXPERT OPINION Successful applications and clinical development with the drug conjugate approaches are discussed. On the other hand, the reasons of why the nanoparticle approaches are not as far in development are analyzed.
Collapse
Affiliation(s)
- Kaido Kurrikoff
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Birgit Vunk
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Ülo Langel
- University of Tartu, Institute of Technology, Tartu, Estonia.,Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
39
|
Krzyscik MA, Zakrzewska M, Otlewski J. Site-Specific, Stoichiometric-Controlled, PEGylated Conjugates of Fibroblast Growth Factor 2 (FGF2) with Hydrophilic Auristatin Y for Highly Selective Killing of Cancer Cells Overproducing Fibroblast Growth Factor Receptor 1 (FGFR1). Mol Pharm 2020; 17:2734-2748. [PMID: 32501706 PMCID: PMC7588128 DOI: 10.1021/acs.molpharmaceut.0c00419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
In
spite of significant progress in the field of targeted anticancer
therapy, the FDA has approved only five ADC-based drugs. Hence the
search for new targeted anticancer agents is an unfulfilled necessity.
Here, we present novel types of protein–drug conjugates (PDCs)
that exhibit superior anticancer activities. Instead of a monoclonal
antibody, we used fibroblast growth factor 2 (FGF2) as a targeting
molecule. FGF2 is a natural ligand of fibroblast growth factor receptor
1 (FGFR1), a transmembrane receptor overproduced in various types
of cancers. We synthesized site-specific and stoichiometric-controlled
conjugates of FGF2 with a highly potent, hydrophilic derivative of
auristatin called auristatin Y. To increase the hydrophilicity and
hydrodynamic radius of conjugates, we employed PEG4 and PEG27 molecules
as a spacer between the targeting molecule and the cytotoxic payload.
All conjugates were selective to FGFR1-positive cell lines, effectively
internalized via the FGFR1-dependent pathway, and exhibited a highly
cytotoxic effect only on FGFR1-positive cancer cell lines.
Collapse
|
40
|
Zhang W, Taheri-Ledari R, Hajizadeh Z, Zolfaghari E, Ahghari MR, Maleki A, Hamblin MR, Tian Y. Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. NANOSCALE 2020; 12:3855-3870. [PMID: 31996884 DOI: 10.1039/c9nr09687f] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe a novel antibiotic delivery system based on magnetic nanoparticles (NPs) conjugated to a cell-penetrating peptide (CPP). Silica-coated iron oxide NPs were produced via a co-deposition method, and coated by a polyvinyl alcohol (PVA) polymeric network via physicochemical binding. Vancomycin (VAN) was then entrapped into this PVA network. A hexapeptide sequence Gly-Ala-Phe-Pro-His-Arg, was synthesized in the solid phase and then conjugated onto the surface of the magnetic NPs. The drug ratio incorporation into the carrier system and drug release were monitored through precise analysis. Confocal microscopy showed that the NPs could be internalized into Staphylococcus aureus and Escherichia coli bacterial cells. The antimicrobial effects of VAN were significantly enhanced by this system with a low dosage of VAN. Advantages include rapid targeted-drug delivery process, drug dose reduction, and equal effects on both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, P.R. China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Zoleikha Hajizadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ehsan Zolfaghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA. and Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section of South Renmin Road, Chengdu 610041, P.R. China.
| |
Collapse
|
41
|
Gessner I, Klimpel A, Klußmann M, Neundorf I, Mathur S. Interdependence of charge and secondary structure on cellular uptake of cell penetrating peptide functionalized silica nanoparticles. NANOSCALE ADVANCES 2020; 2:453-462. [PMID: 36133977 PMCID: PMC9418617 DOI: 10.1039/c9na00693a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 05/23/2023]
Abstract
The capability of cell-penetrating peptides (CPPs) to enable translocation of cargos across biological barriers shows promising pharmaceutical potential for the transport of drug molecules, as well as nanomaterials, into cells. Herein, we report on the optimization of a CPP, namely sC18, in terms of its translocation efficiency and investigate new CPPs regarding their interaction with silica nanoparticles (NPs). First, alanine scanning of sC18 yielded 16 cationic peptides from which two were selected for further studies. Whereas in the first case, a higher positive net charge and enhanced amphipathicity resulted in significantly higher internalization rates than sC18, the second one demonstrated reduced cellular uptake efficiencies and served as a control. We then attached these CPPs to silica nanoparticles of different sizes (50, 150 and 300 nm) via electrostatic interactions and could demonstrate that the secondary alpha-helical structure of the peptides was preserved. Following this, cellular uptake studies using HeLa cells showed that the tested CPP-NPs were successfully translocated into HeLa cells in a size-dependent manner. Moreover, depending on the CPP used, we realized differences in translocation efficiency, which were similar to what we had observed for the free peptides. All in all, we highlight the high potential of sequential fine-tuning of CPPs and provide novel insights into their interplay with inorganic biologically benign nanoparticles. Given the high cellular permeability of CPPs and their ability to translocate into a wide spectrum of cell types, our studies may stimulate future research of CPPs with inorganic nanocarrier surfaces.
Collapse
Affiliation(s)
- Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| | - Annika Klimpel
- Institute of Biochemistry, University of Cologne Zuelpicher Str. 47 50674 Cologne Germany
| | - Merlin Klußmann
- Institute of Biochemistry, University of Cologne Zuelpicher Str. 47 50674 Cologne Germany
| | - Ines Neundorf
- Institute of Biochemistry, University of Cologne Zuelpicher Str. 47 50674 Cologne Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne Greinstr. 6 50939 Cologne Germany
| |
Collapse
|
42
|
Gai Y, Jiang Y, Long Y, Sun L, Liu Q, Qin C, Zhang Y, Zeng D, Lan X. Evaluation of an Integrin α vβ 3 and Aminopeptidase N Dual-Receptor Targeting Tracer for Breast Cancer Imaging. Mol Pharm 2020; 17:349-358. [PMID: 31829615 PMCID: PMC7486978 DOI: 10.1021/acs.molpharmaceut.9b01134] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrin αvβ3 and aminopeptidase N (APN, also known as CD13) are two important targets involved in the regulation of angiogenesis, tumor proliferation, invasion, and metastasis. In this study, we developed a heterodimeric tracer consisting of arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) peptides targeting αvβ3 and CD13, respectively, for PET imaging of breast cancer. The NGR peptide was first modified with N3-NOtB2 and then conjugated to BCN-PEG4-c(RGDyK) via copper-free click chemistry. The resulting precursor was purified and radiolabeled with gallium-68. Small-animal PET/CT imaging and post-imaging biodistribution studies were performed in mice bearing human breast cancer MCF-7, MDA-MB-231, MDA-MB-468, and MX-1 xenografts and pulmonary metastases models. The expression levels of αvβ3 and CD13 in tumors were checked via immunochemical staining. The heterodimeric tracer was successfully synthesized and radiolabeled with gallium-68 at a molar activity of 45-100 MBq/nmol at the end of synthesis. It demonstrated high in vitro and in vivo stability. In static PET/CT imaging studies, the MCF-7 tumor could be clearly visualized and exhibited higher uptake at 30 min post injection of 68Ga-NGR-RGD than that of either 68Ga-RGD or 68Ga-NGR alone. High specificity was shown in blocking studies using Arg-Gly-Asp (RGD) and Asp-Gly-Arg (NGR) peptides. The MCF-7 tumor exhibited the highest uptake of 68Ga-NGR-RGD followed by MDA-MB-231, MDA-MB-468, and MX-1 tumors. This was consistent with their expression levels of CD13 and αvβ3 as confirmed by western blot and immunohistochemical staining. Metastatic lesions in the lungs were clearly detectable on 68Ga-NGR-RGD PET/CT imaging in mouse models of pulmonary metastases. 68Ga-NGR-RGD, a CD13 and αvβ3 dual-receptor targeting tracer, showed higher binding avidities, targeting efficiency, and longer tumor retention time compared with monomeric 68Ga-NGR and 68Ga-RGD. Its promising in vivo performance makes it an ideal candidate for future clinical translation.
Collapse
Affiliation(s)
- Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingi Sun
- Center for Radiochemistry Research, Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dexing Zeng
- Center for Radiochemistry Research, Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|