1
|
Wang X, Hu D, Wang PG, Yang S. Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis. Bioconjug Chem 2024; 35:1699-1710. [PMID: 39470173 DOI: 10.1021/acs.bioconjchem.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Perry G Wang
- Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
2
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
3
|
Lamba M, Singh PR, Bandyopadhyay A, Goswami A. Synthetic 18F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Med Chem 2024; 15:1899-1920. [PMID: 38911154 PMCID: PMC11187557 DOI: 10.1039/d4md00033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
The concept of positron emission tomography (PET) based imaging was developed more than 40 years ago. It has been a widely adopted technique for detecting and staging numerous diseases in clinical settings, particularly cancer, neuro- and cardio-diseases. Here, we reviewed the evolution of PET and its advantages over other imaging modalities in clinical settings. Primarily, this review discusses recent advances in the synthesis of 18F radiolabeled biomolecules in light of the widely accepted performance for effective PET. The discussion particularly emphasizes the 18F-labeling chemistry of carbohydrates, lipids, amino acids, oligonucleotides, peptides, and protein molecules, which have shown promise for PET imaging in recent decades. In addition, we have deliberated on how 18F-labeled biomolecules enable the detection of metabolic changes at the cellular level and the selective imaging of gross anatomical localization via PET imaging. In the end, the review discusses the future perspective of PET imaging to control disease in clinical settings. We firmly believe that collaborative multidisciplinary research will further widen the comprehensive applications of PET approaches in the clinical management of cancer and other pathological outcomes.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| |
Collapse
|
4
|
Weng J, Huang Z, Liu Y, Wen X, Miao Y, Xu JJ, Ye D. Controlled In Situ Self-Assembly of Biotinylated Trans-Cyclooctene Nanoparticles for Orthogonal Dual-Pretargeted Near-Infrared Fluorescence and Magnetic Resonance Imaging. J Am Chem Soc 2024; 146:13163-13175. [PMID: 38698548 DOI: 10.1021/jacs.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.
Collapse
Affiliation(s)
- Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yili Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Tsuchihashi S, Nakashima K, Watanabe H, Ono M. Synthesis and evaluation of novel trifunctional chelating agents for pretargeting approach using albumin binder to improve tumor accumulation. Nucl Med Biol 2024; 132-133:108911. [PMID: 38614036 DOI: 10.1016/j.nucmedbio.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION The pretargeting approach consists of in vivo ligation between pre-injected antibodies and low-molecular-weight radiolabeled effectors. The advantage of the pretargeting approach is to improve a tumor-to-background ratio, but the disadvantage is to compromise tumor accumulation. In this study, we applied albumin binder (ALB) to the pretargeting approach to overcome low tumor accumulation. METHODS We synthesized two novel trifunctional effectors containing an ALB moiety, a chelator, and a different tetrazine and two corresponding effectors without an ALB moiety. Albumin-binding assays and stability assays were performed using 111In-labeled effectors. Measurements of reaction rate constant were conducted using 111In-labeled effectors and anti-HER2 antibody trastuzumab modified by trans-cyclooctene, which drives the click reaction with tetrazine. Biodistribution studies using HER2-expressing tumor-bearing mice were performed with or without the pretargeting approach. RESULTS In albumin-binding assays, ALB-containing effectors exhibited a marked binding to albumin. Two ALB-containing effectors showed the difference in the reactivity and the slight difference in the stability. In biodistribution studies without the pretargeting approach, two ALB-containing effectors showed different pharmacokinetics in blood retention. With the pretargeting approach, the tumor accumulation was improved by the introduction of ALB and the highest tumor accumulation was observed in using the ALB-containing effector with higher blood retention. CONCLUSION These results suggest that the application of ALB to the pretargeting approach is effective to improve tumor accumulation, and the structure of tetrazine influences the utility of ALB-containing effectors.
Collapse
Affiliation(s)
- Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Suzuki H, Kannaka K, Uehara T. Approaches to Reducing Normal Tissue Radiation from Radiolabeled Antibodies. Pharmaceuticals (Basel) 2024; 17:508. [PMID: 38675468 PMCID: PMC11053530 DOI: 10.3390/ph17040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Radiolabeled antibodies are powerful tools for both imaging and therapy in the field of nuclear medicine. Radiolabeling methods that do not release radionuclides from parent antibodies are essential for radiolabeling antibodies, and practical radiolabeling protocols that provide high in vivo stability have been established for many radionuclides, with a few exceptions. However, several limitations remain, including undesirable side effects on the biodistribution profiles of antibodies. This review summarizes the numerous efforts made to tackle this problem and the recent advances, mainly in preclinical studies. These include pretargeting approaches, engineered antibody fragments and constructs, the secondary injection of clearing agents, and the insertion of metabolizable linkages. Finally, we discuss the potential of these approaches and their prospects for further clinical application.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; (K.K.); (T.U.)
| | | | | |
Collapse
|
7
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Yang H, Zeng X, Liu J, Li J, Li Y, Zhang Q, Shu L, Liu H, Wang X, Liang Y, Hu J, Huang L, Guo Z, Zhang X. A proof-of-concept study on bioorthogonal-based pretargeting and signal amplify radiotheranostic strategy. J Nanobiotechnology 2024; 22:101. [PMID: 38462598 PMCID: PMC10926607 DOI: 10.1186/s12951-024-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Radiotheranostics differs from the vast majority of other cancer therapies in its capacity for simultaneous imaging and therapy, and it is becoming more widely implemented. A balance between diagnostic and treatment requirements is essential for achieving effective radiotheranostics. Herein, we propose a proof-of-concept strategy aiming to address the profound differences in the specific requirements of the diagnosis and treatment of radiotheranostics. RESULTS To validate the concept, we designed an s-tetrazine (Tz) conjugated prostate-specific membrane antigen (PSMA) ligand (DOTA-PSMA-Tz) for 68Ga or 177Lu radiolabeling and tumor radiotheranostics, a trans-cyclooctene (TCO) modified Pd@Au nanoplates (Pd@Au-PEG-TCO) for signal amplification, respectively. We then demonstrated this radiotheranostic strategy in the tumor-bearing mice with the following three-step procedures: (1) i.v. injection of the [68Ga]Ga-PSMA-Tz for diagnosis; (2) i.v. injection of the signal amplification module Pd@Au-PEG-TCO; (3) i.v. injection of the [177Lu]Lu-PSMA-Tz for therapy. Firstly, this strategy was demonstrated in 22Rv1 tumor-bearing mice via positron emission tomography (PET) imaging with [68Ga]Ga-PSMA-Tz. We observed significantly higher tumor uptake (11.5 ± 0.8%ID/g) with the injection of Pd@Au-PEG-TCO than with the injection [68Ga]Ga-PSMA-Tz alone (5.5 ± 0.9%ID/g). Furthermore, we validated this strategy through biodistribution studies of [177Lu]Lu-PSMA-Tz, with the injection of the signal amplification module, approximately five-fold higher tumor uptake of [177Lu]Lu-PSMA-Tz (24.33 ± 2.53% ID/g) was obtained when compared to [177Lu]Lu-PSMA-Tz alone (5.19 ± 0.26%ID/g) at 48 h post-injection. CONCLUSION In summary, the proposed strategy has the potential to expand the toolbox of pretargeted radiotherapy in the field of theranostics.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingchao Li
- PET Center, Department of Nuclear Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yun Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linlin Shu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ji Hu
- HTA Co., Ltd., No. 1 Sanqiang Road, Fangshan District, Beijing, 102413, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
9
|
Schlein E, Rokka J, Odell LR, van den Broek SL, Herth MM, Battisti UM, Syvänen S, Sehlin D, Eriksson J. Synthesis and evaluation of fluorine-18 labelled tetrazines as pre-targeting imaging agents for PET. EJNMMI Radiopharm Chem 2024; 9:21. [PMID: 38446356 PMCID: PMC10917718 DOI: 10.1186/s41181-024-00250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.
Collapse
Affiliation(s)
- Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden
| | | | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden.
- PET Centre, Uppsala University Hospital, 751 85, Uppsala, Sweden.
| |
Collapse
|
10
|
Dai L, Zhang X, Zhou S, Li J, Pan L, Liao C, Wang Z, Chen Y, Shen G, Li L, Tian R, Sun H, Liu Z, Zhang S, Wu H. Pretargeted radiotherapy and synergistic treatment of metastatic, castration-resistant prostate cancer using cross-linked, PSMA-targeted lipoic acid nanoparticles. J Mater Chem B 2024; 12:2324-2333. [PMID: 38324337 DOI: 10.1039/d3tb02543h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is a currently incurable disease associated with high mortality. Novel therapeutic approaches for CRPC are urgently needed to improve prognosis. In this study, we developed cross-linked, PSMA-targeted lipoic acid nanoparticles (cPLANPs), which can interact with transmembrane glycoprotein to accumulate inside prostate cancer cells, where they upregulate caspase-3, downregulate anti-apoptotic B-cell lymphoma-2 (BCL-2), and thereby induce apoptosis. The trans-cyclooctene (TCO) decoration on cPLANPs acts as a bioorthogonal handle allowing pretargeted single-photon emission computed tomography and radiotherapy, which revealed significantly enhanced tumor accumulation and minimal off-target toxicity in our experiments. The developed strategy showed a strong synergistic anti-cancer effect in vivo, with a tumor inhibition rate of up to 95.6% after 14 days of treatment. Our results suggest the potential of combining bioorthogonal pretargeted radiotherapy with suitable PSMA-targeted nanoparticles for the treatment of metastatic CRPC.
Collapse
Affiliation(s)
- Liqun Dai
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siming Zhou
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Jie Li
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ying Chen
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Hongbao Sun
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Haoxing Wu
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| |
Collapse
|
11
|
Si G, Hapuarachchige S, Lesniak W, Artemov D. PET-MR Guided, Pre-targeted delivery to HER2(+) Breast Cancer Model. RESEARCH SQUARE 2024:rs.3.rs-3974001. [PMID: 38464126 PMCID: PMC10925432 DOI: 10.21203/rs.3.rs-3974001/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Purpose: HER2(+) metastatic breast cancer (mBC) is one of the most aggressive and lethal cancer types among females. While initially effective, targeted therapeutic approaches with trastuzumab and pertuzumab antibodies and antibody-drug conjugates (ADC) lack long-term efficacy against HER2(+) mBC and can cause severe systemic toxicity due to off-target effects. Therefore, the development of novel targeted delivery platforms that minimize toxicity and increase therapeutic efficacy is critical to the treatment of HER2(+) breast cancer (BC). A pretargeting delivery platform can minimize the non-specific accumulation and off-target toxicity caused by traditional one-step delivery method by separating the single delivery step into a pre-targeting step with high-affinity biomarker binding ligand followed by the subsequent delivery step of therapeutic component with fast clearance. Each delivery component is functionalized with bioorthogonal reactive groups that quickly react in situ , forming cross-linked clusters on the cell surface, which facilitates rapid internalization and intracellular delivery of therapeutics. Procedures: We have successfully developed a click chemistry-based pretargeting platform for HER2(+) BC enabling PET-MR image guidance for reduced radiation dose, high sensitivity, and good soft tissue contrast. Radiolabeled trastuzumab and superparamagnetic iron-oxide carriers (uSPIO) were selected as pretargeting and delivery components, respectively. HER2(+) BT-474 cell line and corresponding xenografts were used for in vitro and in vivo studies. Results: An enhanced tumor accumulation as well as tumor- to-organ accumulation ratio was observed in pretargeted mice up to 24 h post uSPIO injection. A 40% local T 1 decrease in the pretargeted mice tumor was observed within 4 h, and an overall 15% T 1 drop was retained for 24 h post uSPIO injection. Conclusions: Prolonged tumor retention and increased tumor-to-organ accumulation ratio provided a solid foundation for pretargeted image-guided delivery approach for in vivo applications.
Collapse
|
12
|
Dudchak R, Podolak M, Holota S, Szewczyk-Roszczenko O, Roszczenko P, Bielawska A, Lesyk R, Bielawski K. Click chemistry in the synthesis of antibody-drug conjugates. Bioorg Chem 2024; 143:106982. [PMID: 37995642 DOI: 10.1016/j.bioorg.2023.106982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.
Collapse
Affiliation(s)
- Rostyslav Dudchak
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Magdalena Podolak
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine.
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| |
Collapse
|
13
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
14
|
Adhikari K, Dewulf J, Vangestel C, Van der Veken P, Stroobants S, Elvas F, Augustyns K. Characterization of Structurally Diverse 18F-Labeled d-TCO Derivatives as a PET Probe for Bioorthogonal Pretargeted Imaging. ACS OMEGA 2023; 8:38252-38262. [PMID: 37867688 PMCID: PMC10586181 DOI: 10.1021/acsomega.3c04597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Background: The pretargeted imaging strategy using inverse electron demand Diels-Alder (IEDDA) cycloaddition between a trans-cyclooctene (TCO) and tetrazine (Tz) has emerged and rapidly grown as a promising concept to improve radionuclide imaging and therapy in oncology. This strategy has mostly relied on the use of radiolabeled Tz together with TCO-modified targeting vectors leading to a rapid growth of the number of available radiolabeled tetrazines, while only a few radiolabeled TCOs are currently reported. Here, we aim to develop novel and structurally diverse 18F-labeled cis-dioxolane-fused TCO (d-TCO) derivatives to further expand the bioorthogonal toolbox for in vivo ligation and evaluate their potential for positron emission tomography (PET) pretargeted imaging. Results: A small series of d-TCO derivatives were synthesized and tested for their reactivity against tetrazines, with all compounds showing fast reaction kinetics with tetrazines. A fluorescence-based pretargeted blocking study was developed to investigate the in vivo ligation of these compounds without labor-intensive prior radiochemical development. Two compounds showed excellent in vivo ligation results with blocking efficiencies of 95 and 97%. Two novel 18F-labeled d-TCO radiotracers were developed, from which [18F]MICA-214 showed good in vitro stability, favorable pharmacokinetics, and moderate in vivo stability. Micro-PET pretargeted imaging with [18F]MICA-214 in mice bearing LS174T tumors treated with tetrazine-modified CC49 monoclonal antibody (mAb) (CC49-Tz) showed significantly higher uptake in tumor tissue in the pretargeted group (CC49-Tz 2.16 ± 0.08% ID/mL) when compared to the control group with nonmodified mAb (CC49 1.34 ± 0.07% ID/mL). Conclusions: A diverse series of fast-reacting fluorinated d-TCOs were synthesized. A pretargeted blocking approach in tumor-bearing mice allowed the choice of a lead compound with fast reaction kinetics with Tz. A novel 18F-labeled d-TCO tracer was developed and used in a pretargeted PET imaging approach, allowing specific tumor visualization in a mouse model of colorectal cancer. Although further optimization of the radiotracer is needed to enhance the tumor-to-background ratios for pretargeted imaging, we anticipate that the 18F-labeled d-TCO will find use in studies where increased hydrophilicity and fast bioconjugation are required.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| | - Jonatan Dewulf
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Christel Vangestel
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | | | - Sigrid Stroobants
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Filipe Elvas
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
15
|
Li Y, Ling Y, Loehr MO, Chaabane S, Cheng OW, Zhao K, Wu C, Büscher M, Weber J, Stomakhine D, Munker M, Pientka R, Christ SB, Dobbelstein M, Luedtke NW. DNA templated Click Chemistry via 5-vinyl-2'-deoxyuridine and an acridine-tetrazine conjugate induces DNA damage and apoptosis in cancer cells. Life Sci 2023; 330:122000. [PMID: 37541577 DOI: 10.1016/j.lfs.2023.122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
AIMS Click Chemistry is providing valuable tools to biomedical research, but its direct use in therapies remains nearly unexplored. For cancer treatment, nucleoside analogues (NA) such as 5-vinyl-2'-deoxyuridine (VdU) can be metabolically incorporated into cancer cell DNA and subsequently "clicked" to form a toxic product. The inverse electron-demand Diels-Alder (IEDDA) reaction between VdU and an acridine-tetrazine conjugate (PINK) has previously been used to label cell nuclei of cultured cells. Here, we report tandem usage of VdU and PINK to induce cytotoxicity. MAIN METHODS Cell lines were subsequently treated with VdU and PINK, and cell viability was measured via well confluency and 3D tumor spheroid assays. DNA damage and apoptosis were evaluated using Western Blotting and cell cycle analysis by flow cytometry. Double stranded DNA break (DSB) formation was measured using the comet assay. Apoptosis was assessed by fluorescent detection of externalized phosphatidylserine residues. KEY FINDINGS We report that the combination of VdU and PINK synergistically induces cytotoxicity in cultured human cells. The combination of VdU and PINK strongly reduced cell viability in 2D and 3D cultured cancer cells. Mechanistically, the compounds induced DNA damage through DSB formation, which leads to S-phase accumulation and apoptosis. SIGNIFICANCE The combination of VdU and PINK represents a novel and promising DNA-templated "click" approach for cancer treatment via selective induction of DNA damage.
Collapse
Affiliation(s)
- Yizhu Li
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany.
| | - Yurong Ling
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Morten O Loehr
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Sabrina Chaabane
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Oh Wan Cheng
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Kaifeng Zhao
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Chao Wu
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Moritz Büscher
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Jana Weber
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Daria Stomakhine
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada
| | - Marina Munker
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Ronja Pientka
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Sarah B Christ
- 2(nd) Medical Clinic, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22 81675 Munich, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Canada
| |
Collapse
|
16
|
Abstract
As chemical biologists sought methods to modify and study biomolecules in their native environments, the need for bioorthogonal chemical reactions emerged. These fast and selective reactions between otherwise inert, abiotic functional groups have enabled exploration of some of the most intriguing and challenging questions in chemical biology. Further, the ability to perform organic reactions in cells and organisms has led to important applications in clinical spaces, and one reaction is now an integral part of a phase 2 trial for treating solid tumors. Given that bioorthogonal chemistry was a recipient of the 2022 Nobel Prize, we expect this field to be even more energized. Here, we highlight some of the most recent studies in this sphere and how these set the stage for where bioorthogonal chemistry is headed.
Collapse
Affiliation(s)
- Kaitlin M. Hartung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Klauser PC, Chopra S, Cao L, Bobba KN, Yu B, Seo Y, Chan E, Flavell RR, Evans MJ, Wang L. Covalent Proteins as Targeted Radionuclide Therapies Enhance Antitumor Effects. ACS CENTRAL SCIENCE 2023; 9:1241-1251. [PMID: 37396859 PMCID: PMC10311652 DOI: 10.1021/acscentsci.3c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 07/04/2023]
Abstract
Molecularly targeted radionuclide therapies (TRTs) struggle with balancing efficacy and safety, as current strategies to increase tumor absorption often alter drug pharmacokinetics to prolong circulation and normal tissue irradiation. Here we report the first covalent protein TRT, which, through reacting with the target irreversibly, increases radioactive dose to the tumor without altering the drug's pharmacokinetic profile or normal tissue biodistribution. Through genetic code expansion, we engineered a latent bioreactive amino acid into a nanobody, which binds to its target protein and forms a covalent linkage via the proximity-enabled reactivity, cross-linking the target irreversibly in vitro, on cancer cells, and on tumors in vivo. The radiolabeled covalent nanobody markedly increases radioisotope levels in tumors and extends tumor residence time while maintaining rapid systemic clearance. Furthermore, the covalent nanobody conjugated to the α-emitter actinium-225 inhibits tumor growth more effectively than the noncovalent nanobody without causing tissue toxicity. Shifting the protein-based TRT from noncovalent to covalent mode, this chemical strategy improves tumor responses to TRTs and can be readily scaled to diverse protein radiopharmaceuticals engaging broad tumor targets.
Collapse
Affiliation(s)
- Paul C. Klauser
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Shalini Chopra
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Li Cao
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Bingchen Yu
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Emily Chan
- Department
of Pathology, University of California San
Francisco, San Francisco, California 94158, United States
| | - Robert R. Flavell
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Michael J. Evans
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
18
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
19
|
Timperanza C, Jensen H, Bäck T, Lindegren S, Aneheim E. Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211. Pharmaceuticals (Basel) 2023; 16:ph16040595. [PMID: 37111352 PMCID: PMC10145095 DOI: 10.3390/ph16040595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
To enhance targeting efficacy in the radioimmunotherapy of disseminated cancer, several pretargeting strategies have been developed. In pretargeted radioimmunotherapy, the tumor is pretargeted with a modified monoclonal antibody that has an affinity for both tumor antigens and radiolabeled carriers. In this work, we aimed to synthesize and evaluate poly-L-lysine-based effector molecules for pretargeting applications based on the tetrazine and trans-cyclooctene reaction using 211At for targeted alpha therapy and 125I as a surrogate for the imaging radionuclides 123, 124I. Poly-L-lysine in two sizes was functionalized with a prosthetic group, for the attachment of both radiohalogens, and tetrazine, to allow binding to the trans-cyclooctene-modified pretargeting agent, maintaining the structural integrity of the polymer. Radiolabeling resulted in a radiochemical yield of over 80% for astatinated poly-L-lysines and a range of 66-91% for iodinated poly-L-lysines. High specific astatine activity was achieved without affecting the stability of the radiopharmaceutical or the binding between tetrazine and transcyclooctene. Two sizes of poly-L-lysine were evaluated, which displayed similar blood clearance profiles in a pilot in vivo study. This work is a first step toward creating a pretargeting system optimized for targeted alpha therapy with 211At.
Collapse
Affiliation(s)
- Chiara Timperanza
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Holger Jensen
- PET and Cyclotron Unit, KF-3982, Copenhagen University Hospital, DK2100 Copenhagen, Denmark
| | - Tom Bäck
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Sture Lindegren
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Emma Aneheim
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, 413 45 Gothenburg, Sweden
| |
Collapse
|
20
|
Kauffman N, Morrison J, O’Brien K, Fan J, Zinn KR. Intra-Arterial Delivery of Radiopharmaceuticals in Oncology: Current Trends and the Future of Alpha-Particle Therapeutics. Pharmaceutics 2023; 15:pharmaceutics15041138. [PMID: 37111624 PMCID: PMC10144492 DOI: 10.3390/pharmaceutics15041138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
A paradigm shift is underway in cancer diagnosis and therapy using radioactivity-based agents called radiopharmaceuticals. In the new strategy, diagnostic imaging measures the tumor uptake of radioactive agent “X” in a patient’s specific cancer, and if uptake metrics are realized, the patient can be selected for therapy with radioactive agent “Y”. The X and Y represent different radioisotopes that are optimized for each application. X–Y pairs are known as radiotheranostics, with the currently approved route of therapy being intravenous administration. The field is now evaluating the potential of intra-arterial dosing of radiotheranostics. In this manner, a higher initial concentration can be achieved at the cancer site, which could potentially enhance tumor-to-background targeting and lead to improved imaging and therapy. Numerous clinical trials are underway to evaluate these new therapeutic approaches that can be performed via interventional radiology. Of further interest is changing the therapeutic radioisotope that provides radiation therapy by β- emission to radioisotopes that also decay by α-particle emissions. Alpha (α)-particle emissions provide high energy transfer to the tumors and have distinct advantages. This review discusses the current landscape of intra-arterially delivered radiopharmaceuticals and the future of α-particle therapy with short-lived radioisotopes.
Collapse
Affiliation(s)
- Nathan Kauffman
- Comparative Medicine and Integrative Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James Morrison
- Advanced Radiology Services, 3264 N Evergreen Dr, Grand Rapids, MI 49525, USA
| | - Kevin O’Brien
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jinda Fan
- Departments of Radiology and Chemistry, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kurt R. Zinn
- Departments of Radiology, Biomedical Engineering, Small Animal Clinical Sciences, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
22
|
Hong Y, Nam SM, Moon A. Antibody-drug conjugates and bispecific antibodies targeting cancers: applications of click chemistry. Arch Pharm Res 2023; 46:131-148. [PMID: 36877356 DOI: 10.1007/s12272-023-01433-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/30/2023] [Indexed: 03/07/2023]
Abstract
Engineering approaches using antibody drug conjugates (ADCs) and bispecific antibodies (bsAbs) are designed to overcome the limitations of conventional chemotherapies and therapeutic antibodies such as drug resistance and non-specific toxicity. Cancer immunotherapies have been shown to be clinically successful with checkpoint blockade and chimeric antigen receptor T cell therapy; however, overactive immune systems still represent a major problem. Given the complexity of a tumor environment, it would be advantageous to have a strategy targeting two or more molecules. We highlight the necessity and importance of a multi-target platform strategy against cancer. Approximately 400 ADCs and over 200 bsAbs are currently being clinically developed for several indications, with promising signs of therapeutic activity. ADCs include antibodies that recognize tumor antigens, linkers that stably connect drugs, and powerful cytotoxic drugs, also known as payloads. ADCs have direct therapeutic effects by targeting cancers with a strong payload. Another type of drug that uses antibodies are bsAbs, targeting two antigens by linking to antigen recognition sites or bridging cytotoxic immune cells to tumor cells, resulting in cancer immunotherapy. Three bsAbs and one ADC have been approved for use by the FDA and the EMA in 2022. Among these, two of the bsAbs and the one ADC are used for cancers. We introduced that bsADC, a combination of ADC and bsAbs, has yet to be approved and several candidates are in the early stages of clinical development in this review. bsADCs technology helps increase the specificity of ADCs or the internalization and killing ability of bsAbs. We also briefly discuss the application of click chemistry in the efficient development of ADCs and bsAbs as a conjugation strategy. The present review summarizes the ADCs, bsAbs, and bsADCs that have been approved for anti-cancer or currently in development. These strategies selectively deliver drugs to malignant tumor cells and can be used as therapeutic approaches for various types of cancer.
Collapse
Affiliation(s)
- Yeji Hong
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea
| | - Su-Min Nam
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea
| | - Aree Moon
- College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University, Seoul, 01369, Korea.
| |
Collapse
|
23
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Wu Q, Yang S, Liu J, Jiang D, Wei W. Antibody theranostics in precision medicine. MED 2023; 4:69-74. [PMID: 36724783 DOI: 10.1016/j.medj.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
With the increasing use of antibody therapeutics, clinicians are faced with challenges of precisely stratifying patients and promptly assessing response to treatment. Antibody theranostics combines the advantages of radionuclides and antibodies (or antibody derivatives) to systematically integrate targeted diagnostics and therapeutics and will play important roles in precision medicine.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Shaowen Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
25
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
26
|
Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv 2022; 12:32383-32400. [PMID: 36425706 PMCID: PMC9650631 DOI: 10.1039/d2ra06236d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Radiolabelling small molecules with beta-emitters has been intensively explored in the last decades and novel concepts for the introduction of radionuclides continue to be reported regularly. New catalysts that induce carbon/hydrogen activation are able to incorporate isotopes such as deuterium or tritium into small molecules. However, these established labelling approaches have limited applicability for nucleic acid-based drugs, therapeutic antibodies, or peptides, which are typical of the molecules now being investigated as novel therapeutic modalities. These target molecules are usually larger (significantly >1 kDa), mostly multiply charged, and often poorly soluble in organic solvents. However, in preclinical research they often require radiolabelling in order to track and monitor drug candidates in metabolism, biotransformation, or pharmacokinetic studies. Currently, the most established approach to introduce a tritium atom into an oligonucleotide is based on a multistep synthesis, which leads to a low specific activity with a high level of waste and high costs. The most common way of tritiating peptides is using appropriate precursors. The conjugation of a radiolabelled prosthetic compound to a functional group within a protein sequence is a commonly applied way to introduce a radionuclide or a fluorescent tag into large molecules. This review highlights the state-of-the-art in different radiolabelling approaches for oligonucleotides, peptides, and proteins, as well as a critical assessment of the impact of the label on the properties of the modified molecules. Furthermore, applications of radiolabelled antibodies in biodistribution studies of immune complexes and imaging of brain targets are reported.
Collapse
Affiliation(s)
- Martin R Edelmann
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd CH-4070 Basel Switzerland
| |
Collapse
|
27
|
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022; 63:1302-1315. [PMID: 36215514 DOI: 10.2967/jnumed.121.262186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett A Vaughn
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
28
|
Bhise A, Park H, Lee W, Sarkar S, Ha YS, Rajkumar S, Nam B, Lim JE, Huynh PT, Lee K, Son JY, Kim JY, Lee KC, Yoo J. Preclinical Evaluation of hnRNPA2B1 Antibody in Human Triple-Negative Breast Cancer MDA-MB-231 Cells via PET Imaging. Pharmaceutics 2022; 14:pharmaceutics14081677. [PMID: 36015303 PMCID: PMC9415040 DOI: 10.3390/pharmaceutics14081677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Because TNBC lacks the expression of commonly targeted receptors, it is challenging to develop a new imaging agent for this cancer subtype. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA–protein complexes that have been linked to tumor development and progression. Considering the high expression of hnRNPA2B1, an hnRNP subtype, in TNBC MDA-MB-231 cells, this study aimed to develop a novel hnRNPA2B1 antibody-based nuclear imaging agent. The hnRNPA2B1-specific antibody was radiolabeled with 64Cu and evaluated in vitro and in vivo. The trans-cyclooctene (TCO) was functionalized on the antibody to obtain hnRNP-PEG4-TCO and reactive tetrazine (Tz) on the ultrastable bifunctional chelator PCB-TE2A-alkyne to yield PCB-TE2A-Tz for the inverse electron demand Diels–Alder reaction. The 64Cu-radiolabeled antibody was administered and imaged at 1–18 h time points for conventional imaging. Alternatively, the unlabeled antibody conjugate was administered, and 48 h later radiolabeled 64Cu-PCB-TE2A-Tz was administered to the same mice for the pretargeting strategy and imaged at the same time intervals for direct comparison. The tumor was successfully visualized in both strategies, and comparatively, pretargeting showed superior results. The 64Cu-PCB-TE2A-Tz was successfully clicked at the tumor site with hnRNP-PEG4-TCO and the non-clicked were concurrently eliminated. This led to increase the tumor uptake with extremely high tumor-to-background ratio manifested by positron emission tomography (PET) imaging and biodistribution studies.
Collapse
Affiliation(s)
- Abhinav Bhise
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Woonghee Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Subramani Rajkumar
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Bora Nam
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jeong Eun Lim
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Kiwoong Lee
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ji-Yoon Son
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4947
| |
Collapse
|
29
|
Xie F, Jiang H, Jia X, Zhang J, Zhu Z, Du J, Tang Y. Bridgehead Alkene-Enabled Strain-Driven Bioorthogonal Reaction. Org Lett 2022; 24:5304-5308. [PMID: 35849354 DOI: 10.1021/acs.orglett.2c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report a novel bioorthogonal reaction that hinges on a bridgehead alkene (BHA)-enabled inverse-electron-demand Diels-Alder (IEDDA) cycloaddition. Readily accessible from natural product β-caryophyllene, the strained BHA displays high reactivity toward the IEDDA reaction while maintaining excellent biocompatibility. The developed IEDDA reaction has been applied to in vitro protein labeling and pretargeted live cell imaging.
Collapse
Affiliation(s)
- Fayang Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhu Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Huang R, Hirschbiegel CM, Zhang X, Gupta A, Fedeli S, Xu Y, Rotello VM. Engineered Polymer-Supported Biorthogonal Nanocatalysts Using Flash Nanoprecipitation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31594-31600. [PMID: 35802797 DOI: 10.1021/acsami.2c04496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition-metal catalysts (TMCs) effect bioorthogonal transformations that enable the generation of therapeutic agents in situ, minimizing off-target effects. The encapsulation of insoluble TMCs into polymeric nanoparticles to generate "polyzymes" has vastly expanded their applicability in biological environments by enhancing catalyst solubility and stability. However, commonly used precipitation approaches provide limited encapsulation efficiency in polyzyme fabrication and result in a low catalytic activity. Herein, we report the creation of polyzymes with increased catalyst loading and optimized turnover efficiency using flash nanoprecipitation (FNP). Polyzymes with controlled size and catalyst loading were fabricated by tuning the process conditions of FNP. The biological applicability of polyzymes was demonstrated by efficiently transforming a non-toxic prodrug into the active drug within cancer cells.
Collapse
Affiliation(s)
- Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237 P. R. China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
31
|
Matiz CA, Delaney S, Cook BE, Genady AR, Hoerres R, Kuchuk M, Makris G, Valliant JF, Sadeghi S, Lewis JS, Hennkens HM, Bryan JN, Zeglis BM. Pretargeted PET of Osteodestructive Lesions in Dogs. Mol Pharm 2022; 19:3153-3162. [DOI: 10.1021/acs.molpharmaceut.2c00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Charles A. Matiz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brendon E. Cook
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Afaf R. Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rebecca Hoerres
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Marina Kuchuk
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Georgios Makris
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Heather M. Hennkens
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
32
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Helbert H, Ploeg EM, Samplonius DF, Blok SN, Antunes IF, Böhmer VI, Luurtsema G, Dierckx RAJO, Feringa BL, Elsinga PH, Szymanski W, Helfrich W. A proof-of-concept study on the use of a fluorescein-based 18F-tracer for pretargeted PET. EJNMMI Radiopharm Chem 2022; 7:3. [PMID: 35239034 PMCID: PMC8894538 DOI: 10.1186/s41181-022-00155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pretargeted immuno-PET tumor imaging has emerged as a valuable diagnostic strategy that combines the high specificity of antibody-antigen interaction with the high signal and image resolution offered by short-lived PET isotopes, while reducing the irradiation dose caused by traditional 89Zr-labelled antibodies. In this work, we demonstrate proof of concept of a novel ‘two-step’ immuno-PET pretargeting approach, based on bispecific antibodies (bsAbs) engineered to feature dual high-affinity binding activity for a fluorescein-based 18F-PET tracer and tumor markers. Results A copper(I)-catalysed click reaction-based radiolabeling protocol was developed for the synthesis of fluorescein-derived molecule [18F]TPF. Binding of [18F]TPF on FITC-bearing bsAbs was confirmed. An in vitro autoradiography assay demonstrated that [18F]TPF could be used for selective imaging of EpCAM-expressing OVCAR3 cells, when pretargeted with EpCAMxFITC bsAb. The versatility of the pretargeting approach was showcased in vitro using a series of fluorescein-binding bsAbs directed at various established cancer-associated targets, including the pan-carcinoma cell surface marker EpCAM, EGFR, melanoma marker MCSP (aka CSPG4), and immune checkpoint PD-L1, offering a range of potential future applications for this pretargeting platform. Conclusion A versatile pretargeting platform for PET imaging, which combines bispecific antibodies and a fluorescein-based 18F-tracer, is presented. It is shown to selectively target EpCAM-expressing cells in vitro and its further evaluation with different bispecific antibodies demonstrates the versatility of the approach. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-022-00155-2.
Collapse
Affiliation(s)
- Hugo Helbert
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Emily M Ploeg
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Douwe F Samplonius
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Simon N Blok
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ines F Antunes
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Verena I Böhmer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Wijnand Helfrich
- Department of Surgery, Translational Surgical Oncology, University of Groningen, UMC Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
34
|
Deng M, Rao JD, Guo R, Li M, He Q. Size-Adjustable Nano-Drug Delivery Systems for Enhanced Tumor Retention and Penetration. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1736474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Over the past decades, nano-drug delivery systems have shown great potential in improving tumor treatment. And the controllability and design flexibility of nanoparticles endow them a broad development space. The particle size is one of the most important factors affecting the potency of nano-drug delivery systems. Large-size (100–200 nm) nanoparticles are more conducive to long circulation and tumor retention, but have poor tumor penetration; small-size (<50 nm) nanoparticles can deeply penetrate tumor but are easily cleared. Most of the current fixed-size nanoparticles are difficult to balance the retention and penetration, while the proposal of size-adjustable nano-drug delivery systems offers a solution to this paradox. Many endogenous and exogenous stimuli, such as acidic pH, upregulated enzymes, temperature, light, catalysts, redox conditions, and reactive oxygen species, can trigger the in situ transformation of nanoparticles based on protonation, hydrolysis, click reaction, phase transition, photoisomerization, redox reaction, etc. In this review, we summarize the principles and applications of stimuli-responsive size-adjustable strategies, including size-enlargement strategies and size-shrinkage strategies. We also propose the challenges faced by size-adjustable nano-drug delivery systems, hoping to promote the development of this strategy.
Collapse
Affiliation(s)
- Miao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Jing-Dong Rao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
35
|
Hapuarachchige S, Si G, Huang CT, Lesniak WG, Mease RC, Guo X, Gabrielson K, Artemov D. Dual-Modality PET-SPECT Image-Guided Pretargeting Delivery in HER2(+) Breast Cancer Models. Biomacromolecules 2021; 22:4606-4617. [PMID: 34704434 PMCID: PMC8578463 DOI: 10.1021/acs.biomac.1c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pretargeted drug delivery has been explored for decades as a promising approach in cancer therapy. An image-guided pretargeting strategy significantly enhances the intrinsic advantages of this approach since imaging the pretargeting step can be used for diagnostic purposes, while imaging of the drug delivery step can be utilized to evaluate drug distribution and assess therapeutic response. A trastuzumab (Tz)-based HER2 pretargeting component (Tz-TCO-[89Zr-DFO]) was developed by conjugating with trans-cyclooctene (TCO) bioorthogonal click chemistry functional groups and deferoxamine (DFO) to enable radiolabeling with a 89Zr PET tracer. The drug delivery component (HSA-DM1-Tt-[99mTc-HyNic]) was developed by conjugating human serum albumin (HSA) with mertansine (DM1), tetrazine (Tt) functional groups, and a HyNic chelator and radiolabeling with 99mTc. For ex vivo biodistribution studies, pretargeting and delivery components (without drug) were administered subsequently to mice bearing human HER2(+) breast cancer xenografts, and a high tumor uptake of Tz-TCO-[89Zr-DFO] (26.4% ID/g) and HSA-Tt-[99mTc-HyNic] (4.6% ID/g) was detected at 24 h postinjection. In vivo treatment studies were performed in the same HER2(+) breast cancer model using PET-SPECT image guidance. The increased tumor uptake of the pretargeting and drug delivery components was detected by PET-CT and SPECT-CT, respectively. The study showed a significant 92% reduction of the relative tumor volume in treated mice (RTV = 0.08 in 26 days), compared to the untreated control mice (RTV = 1.78 in 11 days) and to mice treated with only HSA-DM1-Tt-[99mTc-HyNic] (RTV = 1.88 in 16 days). Multimodality PET-SPECT image-guided and pretargeted drug delivery can be utilized to maximize efficacy, predict therapeutic response, and minimize systemic toxicity.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Ge Si
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Colin T Huang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Wojciech G Lesniak
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| |
Collapse
|
36
|
Rondon A, Rouanet J, Degoul F. Radioimmunotherapy in Oncology: Overview of the Last Decade Clinical Trials. Cancers (Basel) 2021; 13:cancers13215570. [PMID: 34771732 PMCID: PMC8583425 DOI: 10.3390/cancers13215570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Monoclonal antibody-bearing radionuclides have been under clinical investigation over the last two decades for their use in theranostic (diagnostic and therapeutic) applications in cancer. However, despite the numerous trials that have been conducted, only two radioimmunotherapies (RIT) have been approved by the FDA for the targeted therapy of hematologic tumors expressing CD20 antigens. Moreover, RIT applications for solid cancers faced major issues—such as radiotoxicity due to low antibodies penetrance requiring substantial curative dose—where new discoveries concerning antibody engineering or radionuclides are trying to overcome. Here, we performed an overview of the last 11-year clinical trials involving RIT for solid and non-solid cancers conducted either with full antibodies or antibody fragments. We discussed the low-to-moderate efficiency of RIT compared to conventional therapies and described the last advances in clinic for antibodies carriers (F(ab′)2, Fab′, ScFv). Finally, we discussed about the complexity of RIT as a therapy and depicted both the issues and the prospects of such a strategy. Abstract The specific irradiation of tumors with selective radiolabeled antibodies constitutes an attractive therapeutic approach. Consequent preclinical research has been conducted by both biologists to identify pertinent targets and to select corresponding antibodies (mAb) and by radiochemists to radiolabel mAbs. These numerous preclinical investigations have ascertained the therapeutic interest of radioimmunotherapy (RIT) protocols in mice models. Here, we summarize the clinical studies that have been performed the last decade, including clinical trials (phases I, II, and III), prospective and retrospective studies, and cases series. We thereby reported 92 clinical studies. Among them, 62 concern the treatment of hematological malignancies, and 30 concern solid tumors. For hematologic diseases, the analysis was complex due to the high discrepancy of therapeutic strategies (first-line therapy, consolidation, stem cell transplantation conditioning) as well as the high variety of malignancies that were treated. The clinical studies from the last decade failed to expand anti-CD20 RIT indications but confirmed that RIT using radiolabeled anti-CD20 remains a pertinent choice for patients with relapse follicular lymphomas. For solid tumors, the positive benefit of RIT is more mitigated, apart for few malignancies that can be treated locally. Clinical trials also demonstrated the potential of some antibody formats, such as F(ab′)2, which has already been approved by the China State FDA under the trend name Licartin®. Despite disparate results, mAb fragments are an interesting prospect for the improvement of RIT efficiency as well as for pretargeted strategies that delay the injection of radioactive treatments from the mAb ones.
Collapse
Affiliation(s)
- Aurélie Rondon
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, BE-1200 Brussels, Belgium
- Correspondence: (A.R.); (F.D.)
| | - Jacques Rouanet
- Imagerie Moléculaire et Stratégies Théranostiques, Inserm UMR1240, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France;
- Service de Dermatologie et d’Oncologie Cutanée, CHU Estaing, F-63011 Clermont-Ferrand, France
| | - Françoise Degoul
- CNRS 6293, INSERM U1103, GReD, Centre de Recherche et de Biologie Clinique, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France
- Correspondence: (A.R.); (F.D.)
| |
Collapse
|
37
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen HY, Ye D. Enzyme-Mediated In Situ Self-Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021; 60:18082-18093. [PMID: 34010512 DOI: 10.1002/anie.202103307] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Pretargeted imaging has emerged as a promising approach to advance nuclear imaging of malignant tumors. Herein, we combine the enzyme-mediated fluorogenic reaction and in situ self-assembly with the inverse electron demand Diels-Alder (IEDDA) reaction to develop an activatable pretargeted strategy for multimodality imaging. The trans-cyclooctene (TCO) bearing small-molecule probe, P-FFGd-TCO, can be activated by alkaline phosphatase and in situ self-assembles into nanoaggregates (FMNPs-TCO) retained on the membranes, permitting to (1) amplify near-infrared (NIR) fluorescence (FL) and magnetic resonance imaging (MRI) signals, and (2) enrich TCOs to promote IEDDA ligation. The Gallium-68 (68 Ga) labeled tetrazine can readily conjugate the tumor-retained FMNPs-TCO to enhance radioactivity uptake in tumors. Strong NIR FL, MRI, and positron emission tomography (PET) signals are concomitantly achieved, allowing for pretargeted multimodality imaging of ALP activity in HeLa tumor-bearing mice.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
38
|
Handula M, Chen KT, Seimbille Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021; 26:molecules26154640. [PMID: 34361793 PMCID: PMC8347371 DOI: 10.3390/molecules26154640] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.
Collapse
Affiliation(s)
- Maryana Handula
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Kuo-Ting Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan;
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Correspondence: ; Tel.: +31-10-703-8961
| |
Collapse
|
39
|
van Hest J, Zheng G, Rotello VM. Bioorthogonal Chemistry and Bioconjugation: Synergistic Tools for Biology and Biomedicine. Bioconjug Chem 2021; 32:1409-1410. [PMID: 34323066 DOI: 10.1021/acs.bioconjchem.1c00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen H, Ye D. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
41
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
42
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
43
|
A Pretargeting Strategy Enabled by Bioorthogonal Reactions Towards Advanced Nuclear Medicines: Application and Perspective. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Welling MM, Duszenko N, van Willigen DM, Hensbergen AW, Buckle T, Rietbergen DDD, Roestenberg M, van Leeuwen FWB. Interventional nuclear medicine: "click" chemistry as an in vivo targeting strategy for imaging microspheres and bacteria. Biomater Sci 2021; 9:1683-1690. [PMID: 33410436 DOI: 10.1039/d0bm01823f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Pre-targeting is a proven strategy for in vivo delivery of a diagnostic or therapeutic payload. The pre-targeting concept can be realized through various conjugation strategies, one of which is based on copper-free "click" chemistry. Copper-free click reactions have shown in vivo potential for imaging and radionuclide therapy, but this conjugation strategy has not yet been explored in combination with microspheres or unicellular organisms. This study aims to evaluate the in vivo efficacy of strain-promoted azide-alkyne cycloaddition (SPAAC) reactions to achieve imaging and targeting of azide-functionalized macro-aggregated albumin (MAA) microspheres and Staphylococcus aureus bacteria. METHODS MAA microspheres (diameter 10-90 μm) were functionalized with a biorthogonal Cy5 fluorophore, bearing an azide functionality (N3), to generate MAA-Cy5-N3. S. aureus (diameter ∼1 μm) were functionalized with 99mTc-UBI29-41-Cy5-N3, generating S. aureus-99mTc-UBI29-41-Cy5-N3. In situ and in vitro click conjugation on the -N3 moieties was studied for 20 h using a radioactivity-based assay and fluorescence microscopy. For in vivo validation, both primary entities, radiolabeled with 99mTc, were deposited into the microvasculature of the liver via intrasplenic injections. Secondary targeting was realized following the intravenous administration of indium-111-radiolabeled diethylenetriaminepentaacetic acid-dibenzocyclooctyne (111In-DTPA-DBCO). To assess click reaction efficiency in vivo, 99mTc and 111In-biodistributions were measured (SPECT and %ID g-1). Use of 111In-DTPA-DBCO in mice without MAA deposits or mice infected with non-functionalized S. aureus served as controls. Ex vivo confocal fluorescence imaging was carried out in excised tissues to confirm the presence of functionalized MAA and bacteria. RESULTS In vitro data confirmed effective click reactions on both the MAA particles and the bacterial membrane. SPECT imaging and biodistribution studies revealed significantly (p < 0.05) increased accumulation of 111In-DTPA-DBCO at the sites where MAA-Cy5-N3 (7.5 ± 1.5%ID g-1vs. 3.5 ± 0.5%ID g-1 in control mice) and S. aureus-99mTc-UBI29-41-Cy5-N3 (9.3 ± 1.3%ID g-1vs. 6.0 ± 0.5%ID g-1 in control mice) resided. Ex vivo fluorescence imaging confirmed the presence of either functionalized MAA or S. aureus in excised spleens and livers of mice. CONCLUSION Copper-free click chemistry between a DBCO moiety and Cy5-N3-functionalized microspheres or bacterial entities in the liver can be used to realize in vivo imaging and targeting.
Collapse
Affiliation(s)
- M M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - N Duszenko
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands. and Departments of Parasitology and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - D M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - A W Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - T Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - D D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands. and Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - M Roestenberg
- Departments of Parasitology and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - F W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| |
Collapse
|
45
|
White JM, Escorcia FE, Viola NT. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics 2021; 11:6293-6314. [PMID: 33995659 PMCID: PMC8120204 DOI: 10.7150/thno.57177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Chelating Agents/administration & dosage
- Chelating Agents/metabolism
- Click Chemistry
- Clinical Trials as Topic
- Dose Fractionation, Radiation
- Drug Delivery Systems
- Forecasting
- Humans
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/therapeutic use
- Lymphoma, Non-Hodgkin/radiotherapy
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/radiotherapy
- Organ Specificity
- Precision Medicine
- Radiation Tolerance
- Radioimmunotherapy/methods
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/therapeutic use
- Single-Domain Antibodies/administration & dosage
- Single-Domain Antibodies/therapeutic use
- Yttrium Radioisotopes/administration & dosage
- Yttrium Radioisotopes/therapeutic use
Collapse
Affiliation(s)
- Jordan M. White
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20814
| | - Nerissa T. Viola
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
46
|
Feiner IVJ, Pulagam KR, Uribe KB, Passannante R, Simó C, Zamacola K, Gómez-Vallejo V, Herrero-Álvarez N, Cossío U, Baz Z, Caffarel MM, Lawrie CH, Vugts DJ, Rejc L, Llop J. Pre-targeting with ultra-small nanoparticles: boron carbon dots as drug candidates for boron neutron capture therapy. J Mater Chem B 2021; 9:410-420. [PMID: 33367431 DOI: 10.1039/d0tb01880e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer treatment exploiting the neutron capture capacity and subsequent fission reaction of boron-10. The emergence of nanotechnology has encouraged the development of nanocarriers capable of accumulating boron atoms preferentially in tumour cells. However, a long circulation time, required for high tumour accumulation, is usually accompanied by accumulation of the nanosystem in organs such as the liver and the spleen, which may cause off-target side effects. This could be overcome by using small-sized boron carriers via a pre-targeting strategy. Here, we report the preparation, characterisation and in vivo evaluation of tetrazine-functionalised boron-rich carbon dots, which show very fast clearance and low tumour uptake after intravenous administration in a mouse HER2 (human epidermal growth factor receptor 2)-positive tumour model. Enhanced tumour accumulation was achieved when using a pretargeting approach, which was accomplished by a highly selective biorthogonal reaction at the tumour site with trans-cyclooctene-functionalised Trastuzumab.
Collapse
Affiliation(s)
- Irene V J Feiner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Krishna R Pulagam
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Kepa B Uribe
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Rossana Passannante
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Kepa Zamacola
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | | | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
| | - María M Caffarel
- Biodonostia Health Research Institute, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Charles H Lawrie
- Biodonostia Health Research Institute, San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain and Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Danielle J Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, The Netherlands
| | - Luka Rejc
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain. and University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain. and Centro de Investigación Biomédica en Red, Enfermedades Respiratorias - CIBERES, Madrid, Spain
| |
Collapse
|
47
|
Idiago-López J, Moreno-Antolín E, de la Fuente JM, Fratila RM. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. NANOSCALE ADVANCES 2021; 3:1261-1292. [PMID: 36132873 PMCID: PMC9419263 DOI: 10.1039/d0na00873g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 05/08/2023]
Abstract
Bioorthogonal chemistry comprises chemical reactions that can take place inside complex biological environments, providing outstanding tools for the investigation and elucidation of biological processes. Its use in combination with nanotechnology can lead to further developments in diverse areas of biomedicine, such as molecular bioimaging, targeted delivery, in situ drug activation, study of cell-nanomaterial interactions, biosensing, etc. Here, we summarise the recent efforts to bring together the unique properties of nanoparticles and the remarkable features of bioorthogonal reactions to create a toolbox of new or improved biomedical applications. We show how, by joining forces, bioorthogonal chemistry and nanotechnology can overcome some of the key current limitations in the field of nanomedicine, providing better, faster and more sensitive nanoparticle-based bioimaging and biosensing techniques, as well as therapeutic nanoplatforms with superior efficacy.
Collapse
Affiliation(s)
- Javier Idiago-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Eduardo Moreno-Antolín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| |
Collapse
|
48
|
|
49
|
Ferreira VFC, Oliveira BL, D'Onofrio A, Farinha CM, Gano L, Paulo A, Bernardes GJL, Mendes F. In Vivo Pretargeting Based on Cysteine-Selective Antibody Modification with IEDDA Bioorthogonal Handles for Click Chemistry. Bioconjug Chem 2020; 32:121-132. [PMID: 33295756 DOI: 10.1021/acs.bioconjchem.0c00551] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pretargeted imaging has emerged as an effective multistep strategy aiming to improve imaging contrast and reduce patient radiation exposure through decoupling of the radioactivity from the targeting vector. The inverse electron-demand Diels-Alder (IEDDA) reaction between a trans-cyclooctene (TCO)-conjugated antibody and a labeled tetrazine holds great promise for pretargeted imaging applications due to its bioorthogonality, rapid kinetics under mild conditions, and formation of stable products. Herein, we describe the use of functionalized carbonylacrylic reagents for site-specific incorporation of TCO onto a human epidermal growth factor receptor 2 (HER2) antibody (THIOMAB) containing an engineered unpaired cysteine residue, generating homogeneous conjugates. Precise labeling of THIOMAB-TCO with a fluorescent or radiolabeled tetrazine revealed the potential of the TCO-functionalized antibody for imaging the HER2 after pretargeting in a cellular context in a HER2 positive breast cancer cell line. Control studies with MDA-MD-231 cells, which do not express HER2, further confirmed the target specificity of the modified antibody. THIOMAB-TCO was also evaluated in vivo after pretargeting and subsequent administration of an 111In-labeled tetrazine. Biodistribution studies in breast cancer tumor-bearing mice showed a significant activity accumulation on HER2+ tumors, which was 2.6-fold higher than in HER2- tumors. Additionally, biodistribution studies with THIOMAB without the TCO handle also resulted in a decreased uptake of 111In-DOTA-Tz on HER2+ tumors. Altogether, these results clearly indicate the occurrence of the click reaction at the tumor site, i.e., pretargeting of SK-BR-3 HER2-expressing cells with THIOMAB-TCO and reaction through the TCO moiety present in the antibody. The combined advantages of site-selectivity and stability of TCO tagged-antibodies could allow application of biorthogonal chemistry strategies for pretargeting imaging with minimal side-reactions and background.
Collapse
Affiliation(s)
- Vera F C Ferreira
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Bruno L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Alice D'Onofrio
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Lurdes Gano
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.,Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.,Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
50
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|