1
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Das P, Ganguly S, Marvi PK, Sherazee M, Tang X(S, Srinivasan S, Rajabzadeh AR. Carbon Dots Infused 3D Printed Cephalopod Mimetic Bactericidal and Antioxidant Hydrogel for Uniaxial Mechano-Fluorescent Tactile Sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409819. [PMID: 39394767 PMCID: PMC11602684 DOI: 10.1002/adma.202409819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/14/2024] [Indexed: 10/14/2024]
Abstract
Cephalopods use stretchy skin and dynamic color-tuning organs for visual communication and camouflage. Inspired by these natural mechanisms, a fluorescent biomaterial for deformation-induced illumination and optical communication is proposed. This is the first report of 3D printed soft biomaterials infused with carbon dots hydrothermally derived from chitosan and benzalkonium chloride. These biomaterials exhibit a comprehensive array of properties, including significant uniaxial stretching, near-instantaneous response to tactile stimuli and pH, UV resistance, antibacterial, antioxidant, noncytotoxicity, and highlighting their potential as mechano-optical materials for biomedical applications. The hydrogel's durability is evaluated by cyclic stretching, folding, rolling, and twisting tests to ensure its integrity and good signal-to-noise ratio. The diffusion mechanism is determined by water imbibition kinetics, network parameters, and time-dependent breathing. Overcoming the common limitations of short lifespans and complex manufacturing processes in existing soft hybrids, this work demonstrates a straightforward method to produce durable, energy-independent, mechano-optical hydrogel. Combined with investigations, molecular dynamic modeling is used to understand the interactions of hydrogel components.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Sayan Ganguly
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Masoomeh Sherazee
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Xiaowu (Shirley) Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| |
Collapse
|
3
|
Ouyang C, Zhang H, Zhu Y, Zhao J, Ren H, Zhai H. Lignin-containing cellulose nanocrystals enhanced electrospun polylactic acid-based nanofibrous mats: Strengthen and toughen. Int J Biol Macromol 2024; 280:135617. [PMID: 39278433 DOI: 10.1016/j.ijbiomac.2024.135617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Biodegradable polylactic acid (PLA) nanofibrous mats prepared by electrospinning serve as suitable packaging materials. However, their practical applications are limited by their weak mechanical properties, poor thermal stability, and high cost. In this study, green and low-cost lignin-containing cellulose nanocrystals (LCNCs) with different lignin contents were developed and employed as reinforced materials to synergistically enhance the thermal, mechanical, and hydrophobic properties of PLA electrospun nanofibrous mats. The presence of moderate lignin improved the interfacial compatibility between the LCNCs and PLA, resulting in excellent mechanical properties of the nanofibrous mats. Compared to pure PLA mats, the tensile strength of the composites reached up to 21.0 MPa, representing a 6.6-fold increase. Its toughness was synchronously enhanced by 16 times, reaching a maximum of 3.6 MJ/m3. The maximum decomposition temperature of PLA/LCNCs electrospun nanofibrous mats increased from 339 °C to 365 °C. Furthermore, the increase in lignin in the LCNCs positively contributed to improving the hydrophobicity of the PLA/LCNCs electrospun nanofibrous mats. This bio-based strategy of LCNCs employed in the enhancement of fully bio-based PLA nanofibrous mats offers a viable approach for the advancement of packaging films.
Collapse
Affiliation(s)
- Chen Ouyang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON M5S 3E5, Canada
| | - Yanchen Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huamin Zhai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Sellman FA, Benselfelt T, Larsson PT, Wågberg L. Hornification of cellulose-rich materials - A kinetically trapped state. Carbohydr Polym 2023; 318:121132. [PMID: 37479442 DOI: 10.1016/j.carbpol.2023.121132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
The fundamental understanding concerning cellulose-cellulose interactions under wet and dry conditions remains unclear. This is especially true regarding the drying-induced association of cellulose, commonly described as an irreversible phenomenon called hornification. A fundamental understanding of the mechanisms behind hornification would contribute to new drying techniques for cellulose-based materials in the pulp and paper industry while at the same time enhancing material properties and facilitating the recyclability of cellulose-rich materials. In the present work, the irreversible joining of cellulose-rich surfaces has been studied by subjecting cellulose nanofibril (CNF) films to different heat treatments to establish a link between reswelling properties, structural characteristics as well as chemical and mechanical analyses. A heating time/temperature dependence was observed for the reswelling of the CNF films, which is related to the extent of hornification and is different for different chemical compositions of the fibrils. Further, the results indicate that hornification is related to a diffusion process and that the reswellability increases very slowly over long time, indicating that equilibrium is not reached. Hence, hornification is suggested to be a kinetically limited phenomenon governed by non-covalent reversible interactions and a time/temperature dependence on their forming and breaking.
Collapse
Affiliation(s)
- Farhiya Alex Sellman
- KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, 11428 Stockholm, Sweden; KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, Wallenberg Wood Science Center (WWSC), 11428 Stockholm, Sweden.
| | - Tobias Benselfelt
- KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, 11428 Stockholm, Sweden; School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore.
| | - Per Tomas Larsson
- KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, 11428 Stockholm, Sweden; KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, Wallenberg Wood Science Center (WWSC), 11428 Stockholm, Sweden; RISE Research Institutes of Sweden, 11486 Stockholm, Sweden
| | - Lars Wågberg
- KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, 11428 Stockholm, Sweden; KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, Wallenberg Wood Science Center (WWSC), 11428 Stockholm, Sweden.
| |
Collapse
|
5
|
Wang Q, Niu W, Feng S, Liu J, Liu H, Zhu Q. Accelerating Cellulose Nanocrystal Assembly into Chiral Nanostructures. ACS NANO 2023. [PMID: 37464327 DOI: 10.1021/acsnano.3c03797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cellulose nanocrystal (CNC) suspensions self-assembled into chiral nematic liquid crystals. This property has enabled the development of versatile optical materials with fascinating properties. Nevertheless, the scale-up production and commercial success of chiral nematic CNC superstructures face significant challenges. Fabrication of chiral nematic CNC nanostructures suffers from a ubiquitous pernicious trade-off between uniform chiral nematic structure and rapid self-assembly. Specifically, the chiral nematic assembly of CNCs is a time-consuming, spontaneous process that involves the organization of particles into ordered nanostructures as the solvent evaporates. This review is driven by the interest in accelerating chiral nematic CNC assembly and promoting a long-range oriented chiral nematic CNC superstructure. To start this review, the chirality origins of CNC and CNC aggregates are analyzed. This is followed by a summary of the recent advances in stimuli-accelerated chiral nematic CNC self-assembly procedures, including evaporation-induced self-assembly, continuous coating, vacuum-assisted self-assembly, and shear-induced CNC assembly under confinement. In particular, stimuli-induced unwinding, alignment, and relaxation of chiral nematic structures were highlighted, offering a significant link between the accelerated assembly approaches and uniform chiral nematic nanostructures. Ultimately, future opportunities and challenges for rapid chiral nematic CNC assembly are discussed for more innovative and exciting applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Wen Niu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Shixuan Feng
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Mitchell SM, Pajovich HT, Broas SM, Hugo MM, Banerjee IA. Molecular dynamics simulations and in vitro studies of hybrid decellularized leaf-peptide-polypyrrole composites for potential tissue engineering applications. J Biomol Struct Dyn 2023; 41:1665-1680. [PMID: 34990308 DOI: 10.1080/07391102.2021.2023643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tissue engineering (TE) aims to repair and regenerate damaged tissue by an assimilation of optimal combination of cells specific to the tissue with an appropriate biomaterial. In this work, a new biomaterial for potential cardiac TE applications was developed by utilizing a combination of in silico studies and in vitro experiments. Molecular dynamics (MD) simulations for the formation of the novel composite prepared from the decellularized leaf components cellulose and pectin along with the VEGF derived peptide (NYLTHRQ) and polypyrrole (PPy) was carried out to assess self-assembly, mechanical properties, and interactions with integrin and NPR-C receptors which are commonly found in cells of cardiac tissue. Results of molecular dynamics simulations indicated the successful formation of stable assemblies. MD simulations also revealed that the scaffold successfully interacted with integrin and NPR-C receptors. As a proof of concept, beet leaves were decellularized (DC) and cross-linked with NYLTHRQ and PPy using layer-by-layer assembly. Decellularization (DC) was confirmed by DNA and protein quantification. Incorporation of the NYLTHRQ peptide and polypyrrole was confirmed by FTIR spectroscopy and SEM imaging. The DC-NYLTHRQ-PPy scaffold was seeded with co-cultured cardiomyocytes and vascular smooth muscle cells. The scaffold promoted cell proliferation and adhesion. Actin and Troponin T immunofluorescence staining showed the presence of these critical cardiomyocyte markers. Thus, for the first time we have developed a decellularized leaf-peptide-PPy composite scaffold by a combination of in silico studies and laboratory analyses that may have potential applications in cardiac TE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Sarah M Broas
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | - Mindy M Hugo
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
7
|
Physico-chemical and structural characterization of cellulose nanocrystals obtained by two drying methods: Freeze-drying and spray-drying. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
8
|
Hudek M, Kubiak-Ossowska K, Johnston K, Ferro VA, Mulheran PA. Chitin and Chitosan Binding to the α-Chitin Crystal: A Molecular Dynamics Study. ACS OMEGA 2023; 8:3470-3477. [PMID: 36713729 PMCID: PMC9878639 DOI: 10.1021/acsomega.2c07495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Understanding the binding of chitosan oligomers to the surface of a chitin nanocrystal is important for improving the enzymatic deacetylation of chitin and for the design of chitin/chitosan composite films. Here, we study the binding of several chito-oligomers to the (100) surface of an α-chitin crystal using molecular dynamics (MD), steered MD, and umbrella sampling. The convergence of the free energy was carefully considered and yielded a binding energies of -12.5 and -2 kcal mol-1 for 6-monomer-long chitin and uncharged chitosan oligomers, respectively. We also found that the results for the umbrella sampling were consistent with the force profile from the steered MD and with classical MD simulations of the adsorption process. Our results give insight into the molecular-scale interactions, which can be helpful for the design of new chitin composite films. Furthermore, the free energy curves we present can be used to validate coarse-grained models for chitin and chitosan, which are necessary to study the self-assembly of chitin crystals due to the long time scale of the process.
Collapse
Affiliation(s)
- Magdalena Hudek
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, GlasgowG1 1XJ, Scotland
| | - Karina Kubiak-Ossowska
- ARCHIE-WeSt,
Department of Physics, University of Strathclyde, 107 Rottenrow East, GlasgowG4 0NG, Scotland
| | - Karen Johnston
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, GlasgowG1 1XJ, Scotland
| | - Valerie A. Ferro
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, GlasgowG4 0RE, Scotland
| | - Paul A. Mulheran
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, GlasgowG1 1XJ, Scotland
| |
Collapse
|
9
|
Arandia K, Karna NK, Mattsson T, Larsson A, Theliander H. Fouling characteristics of microcrystalline cellulose during cross-flow microfiltration: Insights from fluid dynamic gauging and molecular dynamics simulations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Mehandzhiyski A, Engel E, Larsson PA, Re GL, Zozoulenko IV. Microscopic Insight into the Structure-Processing-Property Relationships of Core-Shell Structured Dialcohol Cellulose Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:4793-4802. [PMID: 36194435 PMCID: PMC9580023 DOI: 10.1021/acsabm.2c00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
In the quest to develop sustainable and environmentally friendly materials, cellulose is a promising alternative to synthetic polymers. However, native cellulose, in contrast to many synthetic polymers, cannot be melt-processed with traditional techniques because, upon heating, it degrades before it melts. One way to improve the thermoplasticity of cellulose, in the form of cellulose fibers, is through chemical modification, for example, to dialcohol cellulose fibers. To better understand the importance of molecular interactions during melt processing of such modified fibers, we undertook a molecular dynamics study of dialcohol cellulose nanocrystals with different degrees of modification. We investigated the structure of the nanocrystals as well as their interactions with a neighboring nanocrystal during mechanical shearing, Our simulations showed that the stress, interfacial stiffness, hydrogen-bond network, and cellulose conformations during shearing are highly dependent on the degree of modification, water layers between the crystals, and temperature. The melt processing of dialcohol cellulose with different degrees of modification and/or water content in the samples was investigated experimentally by fiber extrusion with water used as a plasticizer. The melt processing was easier when increasing the degree of modification and/or water content in the samples, which was in agreement with the conclusions derived from the molecular modeling. The measured friction between the two crystals after the modification of native cellulose to dialcohol cellulose, in some cases, halved (compared to native cellulose) and is also reduced with increasing temperature. Our results demonstrate that molecular modeling of modified nanocellulose fibers can provide fundamental information on the structure-property relationships of these materials and thus is valuable for the development of new cellulose-based biomaterials.
Collapse
Affiliation(s)
- Aleksandar
Y. Mehandzhiyski
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Emile Engel
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
- FibRe
− Centre for Lignocellulose-Based Thermoplastics, Department
of Fiber and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Per A. Larsson
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
- FibRe
− Centre for Lignocellulose-Based Thermoplastics, Department
of Fiber and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Giada Lo Re
- Department
of Industrial and Materials Science, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
- FibRe
− Centre for Lignocellulose-Based Thermoplastics, Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
| | - Igor V. Zozoulenko
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg
Wood Science Center, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
11
|
Chen P, Wohlert J, Berglund L, Furó I. Water as an Intrinsic Structural Element in Cellulose Fibril Aggregates. J Phys Chem Lett 2022; 13:5424-5430. [PMID: 35679323 PMCID: PMC9234975 DOI: 10.1021/acs.jpclett.2c00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While strong water association with cellulose in plant cell walls and man-made materials is well-established, its molecular scale aspects are not fully understood. The thermodynamic consequences of having water molecules located at the microfibril-microfibril interfaces in cellulose fibril aggregates are therefore analyzed by molecular dynamics simulations. We find that a thin layer of water molecules at those interfaces can be in a state of thermal equilibrium with water surrounding the fibril aggregates because such an arrangement lowers the free energy of the total system. The main reason is enthalpic: water at the microfibril-microfibril interfaces enables the cellulose surface hydroxyls to experience a more favorable electrostatic environment. This enthalpic gain overcomes the entropic penalty from strong immobilization of water molecules. Hence, those particular water molecules stabilize the cellulose fibril aggregates, akin to the role of water in some proteins. Structural and functional hypotheses related to this finding are presented.
Collapse
Affiliation(s)
- Pan Chen
- Beijing
Engineering Research Centre of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing
Institute of Technology, 100081 Beijing, P.R. China
- Department of Fiber and Polymer Technology, Wallenberg Wood Science
Center, and Department of
Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Jakob Wohlert
- Department of Fiber and Polymer Technology, Wallenberg Wood Science
Center, and Department of
Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Lars Berglund
- Department of Fiber and Polymer Technology, Wallenberg Wood Science
Center, and Department of
Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - István Furó
- Department of Fiber and Polymer Technology, Wallenberg Wood Science
Center, and Department of
Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
12
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
13
|
Garg M, Zozoulenko I. Ion Diffusion through Nanocellulose Membranes: Molecular Dynamics Study. ACS APPLIED BIO MATERIALS 2021; 4:8301-8308. [PMID: 35005924 DOI: 10.1021/acsabm.1c00829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most promising applications of nanocellulose is for membranes for energy storage devices including supercapacitors, batteries, and fuel cells. Several recent studies reported the fabrication of cellulose-based membranes where ionic conductivity was confined to channels. So far, theoretical understanding of the effect of the nanoconfinement and surface charged groups on the diffusion coefficient of ions in cellulose nanochannels is missing. In the present study, we perform atomistic molecular dynamics simulations to provide this theoretical understanding and unravel mechanisms affecting the ionic diffusion in nanochannels. We demonstrate that the diffusion coefficient of ions in cellulose nanochannels is reduced in comparison to its bulk value. The change of the diffusion coefficient depends on the density of charged surface groups in nanochannels and the channel height, and it is primarily caused by the Coulomb interaction between the ions and the surface. We believe that our results reveal an important structure/property relationship in cellulose nanochannels, and they show that accounting for the dependence of the diffusion coefficient on the charge of the surface groups and channel height can be important for the Nernst-Plank-Poisson modeling of the ion conductivity in nanomembranes as well as for accurate fitting the experimental data to extract the material parameters.
Collapse
Affiliation(s)
- Mohit Garg
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden.,Wallenberg Wood Science Center, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
14
|
Santos LP, da Silva DS, Morari TH, Galembeck F. Environmentally Friendly, High-Performance Fire Retardant Made from Cellulose and Graphite. Polymers (Basel) 2021; 13:2400. [PMID: 34372003 PMCID: PMC8348208 DOI: 10.3390/polym13152400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Many materials and additives perform well as fire retardants and suppressants, but there is an ever-growing list of unfulfilled demands requiring new developments. This work explores the outstanding dispersant and adhesive performances of cellulose to create a new effective fire-retardant: exfoliated and reassembled graphite (ERG). This is a new 2D polyfunctional material formed by drying aqueous dispersions of graphite and cellulose on wood, canvas, and other lignocellulosic materials, thus producing adherent layers that reduce the damage caused by a flame to the substrates. Visual observation, thermal images and surface temperature measurements reveal fast heat transfer away from the flamed spots, suppressing flare formation. Pinewood coated with ERG underwent standard flame resistance tests in an accredited laboratory, reaching the highest possible class for combustible substrates. The fire-retardant performance of ERG derives from its thermal stability in air and from its ability to transfer heat to the environment, by conduction and radiation. This new material may thus lead a new class of flame-retardant coatings based on a hitherto unexplored mechanism for fire retardation and showing several technical advantages: the precursor dispersions are water-based, the raw materials used are commodities, and the production process can be performed on commonly used equipment with minimal waste.
Collapse
Affiliation(s)
- Leandra P. Santos
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-661, Brazil; (L.P.S.); (T.H.M.)
| | - Douglas S. da Silva
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil;
| | - Thais H. Morari
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-661, Brazil; (L.P.S.); (T.H.M.)
| | - Fernando Galembeck
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-661, Brazil; (L.P.S.); (T.H.M.)
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil;
| |
Collapse
|
15
|
Delepierre G, Vanderfleet OM, Niinivaara E, Zakani B, Cranston ED. Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8393-8409. [PMID: 34250804 DOI: 10.1021/acs.langmuir.1c00550] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The demand for industrially produced cellulose nanocrystals (CNCs) has been growing since 2012, when CelluForce Inc. opened its inaugural demonstration plant with a production capacity of 1 tonne per day. Currently, there are 10 industrial CNC producers worldwide, each producing a unique material. Thus, academic researchers and commercial users alike must consider the properties of all available CNCs and carefully select the material which will optimize the performance of their desired application. To support these efforts, this article presents a thorough characterization of four new industrially produced CNCs including sulfated CNCs from NORAM Engineering and Constructors Ltd. (in cooperation with InnoTech Alberta and Alberta-Pacific Forest Industries Inc.) and Melodea Ltd., as well as carboxylated CNCs from Anomera Inc. and Blue Goose Biorefineries Inc. These materials were benchmarked against typical lab-made, sulfated CNCs. While all CNCs were similar in size, shape, crystallinity, and suspension quality, the sulfated CNCs had a higher surface charge density than their carboxylated counterparts, leading to higher colloidal stability. Additionally, significant differences in the rheological profiles of aqueous CNC suspensions, as well as CNC thermal stability and self-assembly behavior, were observed. As such, this article highlights both the subtle and significant differences between five CNC types and acts as a guide for end-users looking to optimize the performance of CNC-based materials.
Collapse
Affiliation(s)
- Gwendoline Delepierre
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Oriana M Vanderfleet
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Elina Niinivaara
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland
| | - Behzad Zakani
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
16
|
Niinivaara E, Vanderfleet OM, Kontturi E, Cranston ED. Tuning the Physicochemical Properties of Cellulose Nanocrystals through an In Situ Oligosaccharide Surface Modification Method. Biomacromolecules 2021; 22:3284-3296. [PMID: 34260208 DOI: 10.1021/acs.biomac.1c00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The trend to replace petroleum-based products with sustainable alternatives has shifted research efforts toward plant-based materials such as cellulose nanocrystals (CNCs). CNCs show promise in numerous applications (e.g., composites and rheological modifiers); however, maximizing their performance often requires surface modifications with complex chemistries and purification steps. Presented here is a novel surface modification method with the potential to tune CNC properties through the in situ deposition of cellulose phosphate oligosaccharides during CNC production. This was achieved by leveraging the selective solubility of oligosaccharides, which are soluble at a low pH (during the CNC hydrolysis) yet become insoluble and precipitate onto CNC surfaces upon increasing pH during quenching. Oligosaccharide-coated CNCs demonstrated subtle changes including higher surface charge densities and lower water adsorption capacities and viscosities than their unmodified counterparts. CNC surface coverage was tuned by controlling the oligosaccharide degree of polymerization. Overall, this fundamental study introduces an easily scalable modification route that opens the door for expanded CNC functionality and applications.
Collapse
Affiliation(s)
- Elina Niinivaara
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland
| | - Oriana M Vanderfleet
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,Chemical Engineering Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
17
|
Ma T, Hu X, Lu S, Cui R, Zhao J, Hu X, Song Y. Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation. Int J Biol Macromol 2021; 184:405-414. [PMID: 34146558 DOI: 10.1016/j.ijbiomac.2021.06.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Cellulose nanocrystals (CNCs) were successfully produced with good nanoscales and dispersibility, using a recycled sulfuric acid (H2SO4) hydrolysis process. This method, at the cost of an overall 25% increase in the hydrolysis time, could significantly reduce the dosage of H2SO4 by approximately 40% without affecting the per-batch yield and performance of CNCs. The obtained CNCs with an average diameter of 6.0-6.5 nm and an average length of 126-134 nm, were successfully applied in the preparation of oil-in-water (O/W) Pickering emulsions via high-pressure homogenization. The emulsions exhibited good storage stability when the concentration of CNC was 1.0 wt%. Further, understanding the wetting behaviors of surface modified CNCs with solvent is critical for the functional designing of Pickering emulsion. Hence, we gained insights into the wetting of hydrophobic and hydrophilic surfaces of sulfate modified CNCs with water and organic solvent (hexadecane) droplets, using molecular dynamic simulation. The results showed that both surfaces had hydrophilic as well as lipophilic properties. Although the sulfate-grafted surface was more hydrophilic than unmodified CNC, substantial local wetting heterogeneities appeared for both solvents. It provides a deeper understanding of the interfacial interactions between modified CNCs and solvent molecules at the molecular level.
Collapse
Affiliation(s)
- Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ranran Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
18
|
Gu Z, Lu M, Feng K, Jin Z. The different composites of cellulose nanocrystals with d- or l-histidine. NANOSCALE 2021; 13:8174-8180. [PMID: 33881430 DOI: 10.1039/d1nr00946j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose nanocrystals (CNCs) are inherently right-handed nanostructures that originate from nature, showing chirality in their fibrils, bundles, and self-assembled films. However, the enantio-specific interaction between CNCs and other chiral molecules has not been explored so far. In this study, we first demonstrated a chirality-related difference in the composite films of cellulose nanocrystals and histidine with a d- or l-configuration. The distinction is not only presented in the self-assembled nanostructures of CNCs, optical properties, and the thermal decomposition of composites but also in the crystallization of the amino acid. We suppose that it might have originated from the packing of amino acids on the twisted surface of CNCs. The knowledge about the enantio-specific interaction between the chiral amino acid and polysaccharide nanostructure is of significant importance for developing a new strategy for enantiomeric separation.
Collapse
Affiliation(s)
- Zehao Gu
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | | | | | | |
Collapse
|
19
|
Abstract
Cellulose is the most common biopolymer and widely used in our daily life. Due to its unique properties and biodegradability, it has been attracting increased attention in the recent years and various new applications of cellulose and its derivatives are constantly being found. The development of new materials with improved properties, however, is not always an easy task, and theoretical models and computer simulations can often help in this process. In this review, we give an overview of different coarse-grained models of cellulose and their applications to various systems. Various coarse-grained models with different mapping schemes are presented, which can efficiently simulate systems from the single cellulose fibril/crystal to the assembly of many fibrils/crystals. We also discuss relevant applications of these models with a focus on the mechanical properties, self-assembly, chiral nematic phases, conversion between cellulose allomorphs, composite materials and interactions with other molecules.
Collapse
|
20
|
Zhang C, Keten S, Derome D, Carmeliet J. Hydrogen bonds dominated frictional stick-slip of cellulose nanocrystals. Carbohydr Polym 2021; 258:117682. [DOI: 10.1016/j.carbpol.2021.117682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
|
21
|
Peterson A, Mehandzhiyski AY, Svenningsson L, Ziolkowska A, Kádár R, Lund A, Sandblad L, Evenäs L, Lo Re G, Zozoulenko I, Müller C. A Combined Theoretical and Experimental Study of the Polymer Matrix-Mediated Stress Transfer in a Cellulose Nanocomposite. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Peterson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Leo Svenningsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Agnieszka Ziolkowska
- Umeå Center for Electron Microscopy (UCEM), Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Linda Sandblad
- Umeå Center for Electron Microscopy (UCEM), Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, 601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, 581 83 Linköping, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|