1
|
Jia X, Kanbaiguli M, Zhang B, Huang Y, Peydayesh M, Huang Q. Anisotropic Chitosan-nanocellulose/Zeolite imidazolate frameworks-8 aerogel for sustainable dye removal. J Colloid Interface Sci 2024; 676:298-309. [PMID: 39032416 DOI: 10.1016/j.jcis.2024.07.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Assembling microscopic metal-organic frameworks into macroscopic polymeric scaffolds to develop highly renewable materials has been a promising yet challenging area of research. Herein, chitosan (CS) blended with nano-cellulose (NC) was unidirectionally transformed into an aerogel with oriented macropores and then biomineralized with zeolite imidazolate frameworks-8 (ZIF-8) to form a hierarchical structured chitosan-nanocellulose/zeolite imidazolate frameworks-8 (CS-NC-ZIF-8) hybrid aerogel. Incorporating ZIF-8 significantly increases the versatility and mechanical strength with a Young's modulus of 14.18 MPa of the CS-NC aerogel. The incorporation of ZIF-8 into the aerogel not only enhances its adsorption capacity for methylene blue, rhodamine B, acid fuchsin, and methyl orange, but also facilitates the generation of electrons from water that can be transferred to degrade > 90 % of malachite green within 90 min in each catalytic cycle, and this capability was maintained for at least 10 consecutive cycles. Remarkably, the hybrid aerogel was highly renewable after the adsorption of cationic dyes and catalytic removal of malachite green. With its facile production process, high removal efficiency, affordable and green nature, and excellent regeneration feasibility, the CS-NC-ZIF-8 aerogel stands as a promising solution for addressing challenges associated with dye-contaminated water treatment.
Collapse
Affiliation(s)
- Xiangze Jia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Muhefuli Kanbaiguli
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Yanyan Huang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
| | - Mohammad Peydayesh
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
2
|
Mert Y, Ulusoy U. A novel hydrogel composite of chitosan-phytic acid complex with PAAm: Characterization and adsorptive properties for UO 22+and methylene blue. Int J Biol Macromol 2024; 279:135314. [PMID: 39236941 DOI: 10.1016/j.ijbiomac.2024.135314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The composite of a polyelectrolyte combination of chitosan and phytic acid (CsPa) and its entrapped form in polyacrylamide (PAAmCsPa) were synthesized. The composites were characterized by a number of methods including ATR-FTIR, SEM-EDX, XRD and XPS. The adsorptive properties of CsPa and PAAmCsPa were analyzed and modelled for UO22+ and methylene blue (MB+). The results showed that the composites exhibited physico-chemical properties that were both inherited from the components as well as unique to them. The isotherms of UO22+ and MB+ were L-type Giles isotherms. The adsorption kinetics followed the pseudo-second-order model, in contrast to the Langmuir model, which predicts first-order kinetics for both species. According to the Weber-Morris model, the nature of the adsorption process was ion exchange and/or complex formation for both composites and ions. The thermodynamics showed that the adsorption process was endothermic (ΔH > 0), with increasing entropy (ΔS > 0) and spontaneous (ΔG < 0). The reusability tests of the composites for UO22+ adsorption showed that the composites were substantially reusable for 6 cycles. The composites were selective for UO22+ over MB+ ions, and UO22+ adsorption increased significantly when MB+ adsorbed composites were used. Reproducible measurements demonstrating the storability of the composites were obtained over a period of approximately one year.
Collapse
Affiliation(s)
- Yılmaz Mert
- Sivas Cumhuriyet University, Science Faculty, Chemistry Department, Sivas 58140, Turkey
| | - Ulvi Ulusoy
- Sivas Cumhuriyet University, Science Faculty, Chemistry Department, Sivas 58140, Turkey.
| |
Collapse
|
3
|
He YX, Liu MN, Wu H, Lan Q, Liu H, Mazhar M, Xue JY, Zhou X, Chen H, Li Z. Puerarin: a hepatoprotective drug from bench to bedside. Chin Med 2024; 19:139. [PMID: 39380120 PMCID: PMC11460048 DOI: 10.1186/s13020-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Pueraria is a time-honored food and medicinal plant, which is widely used in China. Puerarin, the main component extracted from pueraria, has a variety of pharmacological characteristics. In recent years, puerarin has received increasing attention for its significant hepatoprotective effects, such as metabolic dysfunction-associated steatotic liver disease, alcohol-related liver disease, and hepatic carcinoma. This paper explores the pharmacological effects of puerarin on various liver diseases through multiple mechanisms, including inflammation factors, oxidative stress, lipid metabolism, apoptosis, and autophagy. Due to its restricted solubility, pharmacokinetic studies revealed that puerarin has a low bioavailability. However, combining puerarin with novel drug delivery systems can improve its bioavailability. Meanwhile, puerarin has very low toxicity and high safety, providing a solid foundation for its further. In addition, this paper discusses puerarin's clinical trials, highlighting its unique advantages. Given its excellent pharmacological effects, puerarin is expected to be a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Wu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Liu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Ciarleglio G, Placido M, Toto E, Santonicola MG. Dual-Responsive Alginate/PNIPAM Microspheres Fabricated by Microemulsion-Based Electrospray. Polymers (Basel) 2024; 16:2765. [PMID: 39408475 PMCID: PMC11478996 DOI: 10.3390/polym16192765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Smart materials for drug delivery are designed to offer a precise and controlled release of therapeutic agents. By responding to specific physiological stimuli, such as changes in temperature and pH, these materials improve treatment efficacy and minimize side effects, paving the way for personalized therapeutic solutions. In this study, we present the fabrication of dual-responsive alginate/poly(N-isopropylacrylamide) (PNIPAM) microspheres, having the ability to respond to both pH and temperature variations and embedding the lipophilic bioactive compound Ozoile. Ozoile® Stable Ozonides is obtained from extra virgin olive oil and acts as an inducer, interacting with major biological pathways by means of modulating the systemic redox balance. The dual-responsive microspheres are prepared by electrospray technique without the use of organic solvents. PNIPAM is synthesized by radical polymerization using the APS/TEMED redox initiators. The microspheres are further optimized with a chitosan coating to enhance their stability and modulate the degradation kinetics of the gel matrix. A comprehensive morphological analysis, Fourier transform infrared (FTIR) spectroscopy, and degradation assays are conducted to confirm the structural stability and pH-responsive behavior of the hydrogel microspheres. A study of the volume phase transition temperature (VPTT) by differential scanning calorimetry (DSC) is used to assess the microsphere thermal response. This research introduces a promising methodology for the development of targeted drug delivery systems, which are particularly useful in the context of oxidative stress modulation and inflammation management.
Collapse
Affiliation(s)
- Gianluca Ciarleglio
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
- Erbagil s.r.l., Via Luigi Settembrini 13, 82037 Telese Terme, Italy
| | - Monica Placido
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
| | - Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy; (G.C.); (M.P.); (E.T.)
| |
Collapse
|
5
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
6
|
Zhai Z, Niu J, Xu L, Xu J. Advanced Application of Polymer Nanocarriers in Delivery of Active Ingredients from Traditional Chinese Medicines. Molecules 2024; 29:3520. [PMID: 39124924 PMCID: PMC11314021 DOI: 10.3390/molecules29153520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.
Collapse
Affiliation(s)
- Zhiyuan Zhai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianda Niu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Zhang C, Kwon SH, Dong L. Piezoelectric Hydrogels: Hybrid Material Design, Properties, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310110. [PMID: 38329191 DOI: 10.1002/smll.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Hydrogels show great potential in biomedical applications due to their inherent biocompatibility, high water content, and resemblance to the extracellular matrix. However, they lack self-powering capabilities and often necessitate external stimulation to initiate cell regenerative processes. In contrast, piezoelectric materials offer self-powering potential but tend to compromise flexibility. To address this, creating a novel hybrid biomaterial of piezoelectric hydrogels (PHs), which combines the advantageous properties of both materials, offers a systematic solution to the challenges faced by these materials when employed separately. Such innovative material system is expected to broaden the horizons of biomedical applications, such as piezocatalytic medicinal and health monitoring applications, showcasing its adaptability by endowing hydrogels with piezoelectric properties. Unique functionalities, like enabling self-powered capabilities and inducing electrical stimulation that mimics endogenous bioelectricity, can be achieved while retaining hydrogel matrix advantages. Given the limited reported literature on PHs, here recent strategies concerning material design and fabrication, essential properties, and distinctive applications are systematically discussed. The review is concluded by providing perspectives on the remaining challenges and the future outlook for PHs in the biomedical field. As PHs emerge as a rising star, a comprehensive exploration of their potential offers insights into the new hybrid biomaterials.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| |
Collapse
|
8
|
Ren Y, Stobbs JA, Lee DJ, Li D, Karunakaran C, Ai Y. Utilizing Synchrotron-Based X-ray Micro-Computed Tomography to Visualize the Microscopic Structure of Starch Hydrogels In Situ. Biomacromolecules 2024; 25:3302-3311. [PMID: 38717957 DOI: 10.1021/acs.biomac.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study aimed to visualize the microstructures of starch hydrogels using synchrotron-based X-ray micro-computed tomography (μCT). Waxy maize starch (WMS, 3.3% amylose, db), pea starch (PS, 40.3% amylose), and high-amylose maize starch (HMS, 63.6% amylose) were cooked at 95 and 140 °C to prepare starch hydrogels. WMS and HMS failed to form a gel after 95 °C cooking and storage, while PS developed a firm gel. At 140 °C cooking, HMS of a high amylose nature was fully gelatinized and generated a rigid gel with the highest strength. Both scanning electron microscopy (SEM) and μCT revealed the unique structural features of various starch hydrogels/pastes prepared at different temperatures, which were greatly affected by the degree of swelling and dispersity of the starches. As a nondestructive method, μCT showed certain advantages over SEM, including minimal shrinkage of the hydrogels, relatively simple sample preparation, and allowing for three-dimensional reconstruction of the hydrogel microstructure. This study indicated that synchrotron-based μCT could be a useful technique in visualizing biopolymer-based hydrogels.
Collapse
Affiliation(s)
- Yikai Ren
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Jarvis A Stobbs
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Dong-Jin Lee
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Dongxing Li
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
9
|
Sahu KM, Biswal A, Manisha U, Swain SK. Synthesis and drug release kinetics of ciprofloxacin from polyacrylamide/dextran/carbon quantum dots (PAM/Dex/CQD) hydrogels. Int J Biol Macromol 2024; 269:132132. [PMID: 38723831 DOI: 10.1016/j.ijbiomac.2024.132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Sustainable release of drug by utilizing β-cyclodextrin (β-CD) based inclusion complex (IC) is the prime objective of the present work. Herein, polyacrylamide/dextran containing carbon quantum dots (PAM/Dex/CQD) nanocomposite hydrogels are prepared by in situ polymerization of acrylamide. The incorporation of CQD triggers the change in orientation of the PAM/Dex polymeric chains to result the formation of stacked surface morphology of the hydrogel. The average particle size of CQD is found to be 4.13 nm from HRTEM analysis. As-synthesized nanocomposite hydrogel exhibits an optimum swelling ratio of 863 % in aqueous medium. The cytotoxicity study is conducted on HeLa cells by taking up to 2 μM concentration of the prepared nanocomposite hydrogel demonstrate 78 % cell viability. In present study, ciprofloxacin (Cipro) is taken as model drug that achieves release of 64.15 % in 32 h from β-Cipro@PAM/Dex/CQD hydrogels in acidic medium. From theoretical study, release rate constants, R2, Akaike information criterion (AIC) and model selection criterion (MSC) are computed to determine the best fitted kinetics model. Peppas-Sahlin model is the best fitted kinetics model for β-Cipro@PAM/Dex/CQD and concluded that the release of Cipro follows Fickian drug diffusion mechanism in acidic medium.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Upuluri Manisha
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
10
|
Jain M, Trapani G, Trappmann B, Ravoo BJ. Stiffness Modulation and Pulsatile Release in Dual Responsive Hydrogels. Angew Chem Int Ed Engl 2024; 63:e202403760. [PMID: 38517945 DOI: 10.1002/anie.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Inspired by nature, self-regulation can be introduced in synthetic hydrogels by incorporating chemo-mechanical signals or coupled chemical reactions to maintain or adapt the material's physico-chemical properties when exposed to external triggers. In this work, we present redox and light dual stimuli responsive hydrogels capable of rapidly adapting the polymer crosslinking network while maintaining hydrogel stability. Upon irradiation with UV light, polymer hydrogels containing redox responsive disulfide crosslinks and light responsive ortho-nitrobenzyl moieties show a release of payload accompanied by adaptation of the hydrogel network towards higher stiffness due to in situ crosslinking by S-nitrosylation. Whereas the hydrogel design allows the network to either become softer in presence of reducing agent glutathione or stiffer upon UV irradiation, simultaneous application of both stimuli induces network self-regulation resulting in a pulsatile form of payload release from the hydrogel. Finally, adaptive stiffness was used to make tunable hydrogels as substrates for different cell lines.
Collapse
Affiliation(s)
- Mehak Jain
- Organic Chemistry Institute and Center for Soft Nanoscience, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Giuseppe Trapani
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Britta Trappmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
11
|
Parale VG, Kim T, Choi H, Phadtare VD, Dhavale RP, Kanamori K, Park HH. Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307772. [PMID: 37916304 DOI: 10.1002/adma.202307772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In recent decades, aerogels have attracted tremendous attention in academia and industry as a class of lightweight and porous multifunctional nanomaterial. Despite their wide application range, the low mechanical durability hinders their processing and handling, particularly in applications requiring complex physical structures. "Mechanically strengthened aerogels" have emerged as a potential solution to address this drawback. Since the first report on aerogels in 1931, various modified synthesis processes have been introduced in the last few decades to enhance the aerogel mechanical strength, further advancing their multifunctional scope. This review summarizes the state-of-the-art developments of mechanically strengthened aerogels through multicompositional and multidimensional approaches. Furthermore, new trends and future directions for as prevailed commercialization of aerogels as plastic materials are discussed.
Collapse
Affiliation(s)
- Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Varsha D Phadtare
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Rushikesh P Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
12
|
Yuan H, Zeng Z, Li D, Huang R, Li W. Multifunctional thiolated chitosan/puerarin composite hydrogels with pH/glutathione dual responsiveness for potential drug carriers. Int J Biol Macromol 2024; 265:130841. [PMID: 38553389 DOI: 10.1016/j.ijbiomac.2024.130841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/18/2024]
Abstract
Puerarin (PUE), a natural and biologically active isoflavone extracted from Chinese medicine Pueraria lobata, can self-assemble to form a hydrogel without other chemical modifications. However, although PUE hydrogel has pH responsivity, but it is difficult to adapt to the changeable pathological environment. Therefore, thiolated chitosan (TCS) is synthesized and hybridized with PUE hydrogel to prepare TCS10/PUE composite hydrogel. The results of rheological measurement showed that the resultant composite hydrogels inherited the low loss performance of TCS hydrogel, which means that they have stronger elasticity. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images displayed that TCS10/PUE composite hydrogel has a fibrous-network structure. X-Ray Diffractometer (XRD) and Fourier transform infrared spectroscopy (FT-IR) proved the existence of hydrogen bonds and disulfide bonds in the formation of composite hydrogel. Degradation experiment showed that TCS10/PUE composite hydrogels have pH and glutathione (pH/GSH) dual sensitivity. Furthermore, TCS10/PUE composite hydrogels exhibited multi-functionality including thixotropy, cytocompatibility, antibacterial and anti-inflammatory properties. Berberine chloride hydrate (BCH) was further used as a model drug for in vitro release study. BCH and PUE could be released cooperatively under pH/GSH dual responsivity. These results indicated that the resultant composite hydrogel has eminent pH/GSH dual responsivity and could act as a potential new intelligent drug carrier.
Collapse
Affiliation(s)
- Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongru Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Rongzeng Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Hubei Provincial Key Laboratory for Chinese Medicine Resources and Chinese Medicine Chemistry, Wuhan, China.
| | - Wan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Hubei Provincial Key Laboratory for Chinese Medicine Resources and Chinese Medicine Chemistry, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China.
| |
Collapse
|
13
|
Barra A, Wychowaniec JK, Winning D, Cruz MM, Ferreira LP, Rodriguez BJ, Oliveira H, Ruiz‐Hitzky E, Nunes C, Brougham DF, Ferreira P. Magnetic Chitosan Bionanocomposite Films as a Versatile Platform for Biomedical Hyperthermia. Adv Healthc Mater 2024; 13:e2303861. [PMID: 38041539 PMCID: PMC11468069 DOI: 10.1002/adhm.202303861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Responsive magnetic nanomaterials offer significant advantages for innovative therapies, for instance, in cancer treatments that exploit on-demand delivery on alternating magnetic field (AMF) stimulus. In this work, biocompatible magnetic bionanocomposite films are fabricated from chitosan by film casting with incorporation of magnetite nanoparticles (MNPs) produced by facile one pot synthesis. The influence of synthesis conditions and MNP concentration on the films' heating efficiency and heat dissipation are evaluated through spatio-temporal mapping of the surface temperature changes by video-thermography. The cast films have a thickness below 100 µm, and upon exposure to AMF (663 kHz, 12.8 kA m-1), induce exceptionally strong heating, reaching a maximum temperature increase of 82 °C within 270 s irradiation. Further, it is demonstrated that the films can serve as substrates that supply heat for multiple hyperthermia scenarios, including: i) non-contact automated heating of cell culture medium, ii) heating of gelatine-based hydrogels of different shapes, and iii) killing of cancerous melanoma cells. The films are versatile components for non-contact stimulus with translational potential in multiple biomedical applications.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic EngineeringCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810—193Portugal
- Materials Science Institute of MadridCSICc/Sor Juana Inés de la Cruz 3Madrid28049Spain
| | - Jacek K. Wychowaniec
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
- AO Research Institute DavosClavadelerstrasse 8Davos7270Switzerland
| | - Danielle Winning
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Maria Margarida Cruz
- Biosystems and Integrative Sciences Institute (BioISI)Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
| | - Liliana P. Ferreira
- Biosystems and Integrative Sciences Institute (BioISI)Faculdade de CiênciasUniversidade de LisboaLisboa1749‐016Portugal
- Physics DepartmentUniversity of CoimbraCoimbra3004—516Portugal
| | - Brian J. Rodriguez
- School of Physics and Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Helena Oliveira
- Department of Biology and CESAMUniversity of AveiroAveiro3810‐193Portugal
| | - Eduardo Ruiz‐Hitzky
- Materials Science Institute of MadridCSICc/Sor Juana Inés de la Cruz 3Madrid28049Spain
| | - Cláudia Nunes
- Department of Materials and Ceramic EngineeringCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810—193Portugal
| | - Dermot F. Brougham
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Paula Ferreira
- Department of Materials and Ceramic EngineeringCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810—193Portugal
| |
Collapse
|
14
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
15
|
Qiao L, Zhao Y, Zhang M, Tao Y, Xiao Y, Zhang N, Zhang Y, Zhu Y. Preparation Strategies, Functional Regulation, and Applications of Multifunctional Nanomaterials-Based DNA Hydrogels. SMALL METHODS 2024; 8:e2301261. [PMID: 38010956 DOI: 10.1002/smtd.202301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
With the extensive attention of DNA hydrogels in biomedicine, biomaterial, and other research fields, more and more functional DNA hydrogels have emerged to match the various needs. Incorporating nanomaterials into the hydrogel network is an emerging strategy for functional DNA hydrogel construction. Surprisingly, nanomaterials-based DNA hydrogels can be engineered to possess favorable properties, such as dynamic mechanical properties, excellent optical properties, particular electrical properties, perfect encapsulation properties, improved magnetic properties, and enhanced antibacterial properties. Herein, the preparation strategies of nanomaterials-based DNA hydrogels are first highlighted and then different nanomaterial designs are used to demonstrate the functional regulation of DNA hydrogels to achieve specific properties. Subsequently, representative applications in biosensing, drug delivery, cell culture, and environmental protection are introduced with some selected examples. Finally, the current challenges and prospects are elaborated. The study envisions that this review will provide an insightful perspective for the further development of functional DNA hydrogels.
Collapse
Affiliation(s)
- Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingjuan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Ni Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
16
|
Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, Mohammadinejad R, Ozdemir F, Sahin O, Adiguzel S, Khan H, Zarrabi A, Sharifi E, Kumar A, Mostafavi E, Kouchehbaghi NH, Mattoli V, Zhang F, Jucaud V, Najafabadi AH, Khademhosseini A. Biomedical applications of engineered heparin-based materials. Bioact Mater 2024; 31:87-118. [PMID: 37609108 PMCID: PMC10440395 DOI: 10.1016/j.bioactmat.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Heparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical applications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.
Collapse
Affiliation(s)
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatma Ozdemir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Onur Sahin
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, 34956, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D'Oltremare pad. 20, 80125, Naples, Italy
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, United States
| |
Collapse
|
17
|
Wan H, Wu B, Hou L, Wu P. Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307290. [PMID: 37683287 DOI: 10.1002/adma.202307290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Herein, the fabrication of amphibious polymer materials with outstanding mechanical performances, both underwater and in the air is reported. A polyvinyl alcohol/poly(2-methoxyethylacrylate) (PVA/PMEA) composite with multiscale nanostructures is prepared by combining solvent exchange and thermal annealing strategies, which contributes to nanophase separation with rigid PVA-rich and soft PMEA-rich phases and high-density crystalline domains of PVA chains, respectively. Benefiting from the multiscale nanostructure, the PVA/PMEA hydrogel demonstrates excellent stability in harsh (such as acidic, alkaline, and saline) aqueous solutions, as well as superior mechanical behavior with a breaking strength of up to 34.8 MPa and toughness of up to 214.2 MJ m-3 . Dehydrating the PVA/PMEA hydrogel results in an extremely robust plastic with a breaking strength of 65.4 MPa and toughness of 430.9 MJ m-3 . This study provides a promising phase-structure engineering route for constructing high-performance polymer materials for complex load-bearing environments.
Collapse
Affiliation(s)
- Hongbo Wan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
18
|
Sun X, Zhang P, Ye Z, Li L, Li Q, Zhang H, Liu B, Gui L. A Soft Capsule for Magnetically Driven Drug Delivery Based on a Hard-Magnetic Elastomer Foam. ACS Biomater Sci Eng 2023; 9:6915-6925. [PMID: 37527429 DOI: 10.1021/acsbiomaterials.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Drug delivery systems based on porous soft biomaterials have been widely reported because of stimuli-responsive drug release and their inherent reservoirs for drug storage. Especially, magnetic-responsive porous soft biomaterials achieve rapid and real-time control of drug release due to the magnetic field-triggered large deformation. However, the drug release profiles of these materials are difficult to predict and repeat, which restrict them from releasing drugs in the required dosage. Here, we report a soft capsule based on a flexible hard-magnetic elastomer foam (HEF) for magnetically controlled on-demand drug delivery. The HEF capsule contains an inner HEF and an outer elastomer shell. The HEF exhibits low elastic modulus (10 kPa) and highly interconnected pores (81% interconnected pores). Benefitting from the novel precompressed magnetization, the compressive deformation of HEF reaches 66%. Thus, an adjustable drug release rate ranging from 0.02 to 1.7 mL/min in the HEF capsule is achieved. The deformation-triggered drug release profiles of the HEF capsule under the magnetic field are accurately predicted, allowing 85% accuracy in drug dosage regulation and more than 90% maximum cumulative drug release. Especially, the HEF capsule is proven capable of acting as a soft robot to perform magnetically driven drug delivery in a human stomach model. HEF can potentially serve as a soft robot for biomedical applications in the human body.
Collapse
Affiliation(s)
- Xiao Sun
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Pan Zhang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zi Ye
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Li
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Qian Li
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huimin Zhang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bingxin Liu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin Gui
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
19
|
Yao Y, Shi X, Zhao Z, Zhang A, Li W. Dendronization of chitosan to afford unprecedent thermoresponsiveness and tunable microconfinement. J Mater Chem B 2023; 11:11024-11034. [PMID: 37975703 DOI: 10.1039/d3tb01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Convenient chemical modification of biomacromolecules to create novel biocompatible functional materials satisfies the current requirements of sustainable chemistry. Dendronization of chitosan with dendritic oligoethylene glycols (OEGs) paves a strategy for the preparation of functional dendronized chitosans (DCSs) with unprecedent thermoresponsive behavior, which inherit biological features from polysaccharides and the topological features from dendritic OEGs. In addition, densely packed dendritic OEG chains around the backbone provide efficient cooperative interactions and form an intriguing confined microenvironment based on the degradable biopolymers. In this perspective, we describe the principle for the preparation of the thermoresponsive DCSs, and focus on the molecular envelop effect from the hydrophobic microconfinement to the encapsulated guest molecules or moieties. Particular attention is put on their capacity to regulate behavior and the functions of the encapsulated guests through thermally-mediated dehydration and collapse of the densely packed dendritic OEGs. We believe that the methodology described here may provide prospects for the fabrication of functional materials from biomacromolecules, especially when used as environmentally friendly nanomaterials or in accurate diagnosis and therapy.
Collapse
Affiliation(s)
- Yi Yao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Xiaoxin Shi
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Zihong Zhao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| |
Collapse
|
20
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
21
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Blyakhman F, Safronov A, Starodumov I, Kuznetsova D, Kurlyandskaya G. Remote Positioning of Spherical Alginate Ferrogels in a Fluid Flow by a Magnetic Field: Experimental and Computer Simulation. Gels 2023; 9:711. [PMID: 37754392 PMCID: PMC10530833 DOI: 10.3390/gels9090711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
This work belongs to the development of mechanical force-responsive drug delivery systems based on remote stimulation by an external magnetic field at the first stage, assisting the positioning of a ferrogel-based targeted delivery platform in a fluid flow. Magnetically active biopolymer beads were considered a prototype implant for the needs of replacement therapy and regenerative medicine. Spherical calcium alginate ferrogels (FGs)~2.4 mm in diameter, filled with a 12.6% weight fraction of magnetite particles of 200-300 nm in diameter, were synthesized. A detailed characterization of the physicochemical and magnetic properties of FGs was carried out, as were direct measurements of the field dependence of the attractive force for FG-beads. The hydrodynamic effects of the positioning of FG-beads in a fluid flow by a magnetic field were studied experimentally in a model vessel with a fluid stream. Experimental results were compared with the results of mathematical and computer modeling, showing reasonable agreement. The contributions of the hydrodynamic and magnetic forces acting on the FG-bead in a fluid flow were discussed. Obtained forces for a single ferrogel implant were as high as 0 to 10-4 N for the external field range of 0 to 35 kA/m, perfectly in the range of mechanical force stimuli in biological systems.
Collapse
Affiliation(s)
- Felix Blyakhman
- Department of Biomedical Physics and Engineering, Ural State Medical University, Ekaterinburg 620028, Russia; (I.S.); ash-- (D.K.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia; (A.S.); (G.K.)
| | - Alexander Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia; (A.S.); (G.K.)
- Institute of Electrophysics UB RAS, Ekaterinburg 620016, Russia
| | - Ilya Starodumov
- Department of Biomedical Physics and Engineering, Ural State Medical University, Ekaterinburg 620028, Russia; (I.S.); ash-- (D.K.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia; (A.S.); (G.K.)
| | - Darya Kuznetsova
- Department of Biomedical Physics and Engineering, Ural State Medical University, Ekaterinburg 620028, Russia; (I.S.); ash-- (D.K.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia; (A.S.); (G.K.)
| | - Galina Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620002, Russia; (A.S.); (G.K.)
| |
Collapse
|
23
|
Veloso SRS, Marta ES, Rodrigues PV, Moura C, Amorim CO, Amaral VS, Correa-Duarte MA, Castanheira EMS. Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin. Pharmaceutics 2023; 15:2194. [PMID: 37765164 PMCID: PMC10538132 DOI: 10.3390/pharmaceutics15092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, multicore-like iron oxide (Fe3O4) and manganese ferrite (MnFe2O4) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (Fe3O4) and 11 ± 2 nm (MnFe2O4). The Fe3O4 nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFe2O4 nanoparticles. Functionalization with citrate and bovine serum albumin was found to improve the stability and modified surface properties. The nanoparticles were encapsulated in nanogels, and provided high drug encapsulation efficiencies (~70%) using doxorubicin as a model drug. The nanogels exhibited sustained drug release, with enhanced release under near-infrared (NIR) laser irradiation and acidic pH. The nanogels containing BSA-functionalized nanoparticles displayed improved sustained drug release at physiological pH, and the release kinetics followed a diffusion-controlled mechanism. These results demonstrate the potential of synthesized nanoparticles and nanogels for controlled drug delivery, offering opportunities for targeted and on-demand release in biomedical applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Eva S. Marta
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, 4804-533 Guimarães, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Vítor S. Amaral
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Miguel A. Correa-Duarte
- Centro de Investigación en Nanomateriais e Biomedicina (CINBIO), Universidad de Vigo, 36310 Vigo, Spain
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
24
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
25
|
Abdelhamid HN. An introductory review on advanced multifunctional materials. Heliyon 2023; 9:e18060. [PMID: 37496901 PMCID: PMC10366438 DOI: 10.1016/j.heliyon.2023.e18060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
This review summarizes the applications of some of the advanced materials. It included the synthesis of several nanoparticles such as metal oxide nanoparticles (e.g., Fe3O4, ZnO, ZrOSO4, MoO3-x, CuO, AgFeO2, Co3O4, CeO2, SiO2, and CuFeO2); metal hydroxide nanosheets (e.g., Zn5(OH)8(NO3)2·2H2O, Zn(OH)(NO3)·H2O, and Zn5(OH)8(NO3)2); metallic nanoparticles (Ag, Au, Pd, and Pt); carbon-based nanomaterials (graphene, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and carbon dots (CDs)); biopolymers (cellulose, nanocellulose, TEMPO-oxidized cellulose nanofibers (TOCNFs), and chitosan); organic polymers (e.g. covalent-organic frameworks (COFs)); and hybrid materials (e.g. metal-organic frameworks (MOFs)). Most of these materials were applied in several fields such as environmental-based technologies (e.g., water remediation, air purification, gas storage), energy (production of hydrogen, dimethyl ether, solar cells, and supercapacitors), and biomedical sectors (sensing, biosensing, cancer therapy, and drug delivery). They can be used as efficient adsorbents and catalysts to remove emerging contaminants e.g., inorganic (i.e., heavy metals) and organic (e.g., dyes, antibiotics, pesticides, and oils in water via adsorption. They can be also used as catalysts for catalytic degradation reactions such as redox reactions of pollutants. They can be used as filters for air purification by capturing carbon dioxide (CO2) and volatile organic compounds (VOCs). They can be used for hydrogen production via water splitting, alcohol oxidation, and hydrolysis of NaBH4. Nanomedicine for some of these materials was also included being an effective agent as an antibacterial, nanocarrier for drug delivery, and probe for biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Chemistry Department-Faculty of Science, Assiut University, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
26
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Montazersaheb P, Pishgahzadeh E, Jahani VB, Farahzadi R, Montazersaheb S. Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy. Life Sci 2023; 323:121714. [PMID: 37088411 DOI: 10.1016/j.lfs.2023.121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Tumor heterogeneity is a major problem in cancer treatment. Cancer stem cells (CSCs) are a subpopulation of tumor masses that produce proliferating and quiescent cells. Under stress-related conditions, quiescent cells are capable of repopulating tumor masses. Consequently, many attempts have been made to identify, isolate, and eradicate CSCs from various tumors. Research has found that quiescent CSCs are less susceptible to conventional therapy than bulk cancer cells. This could be due to reduced cell cycling and increased DNA repair capacity of these cells. Indeed, disease progression is temporarily suppressed by eliminating fast-proliferating tumor cells and sparing quiescent CSCs lead to cancer relapse. Among all the available therapeutic modalities for cancer treatment, hyperthermia uses moderate heat to kill tumor cells. Nanoparticle-based platforms have the potential to deposit heat locally and selectively with the simultaneous activation of nanoparticles as heat transducers. Over the past few decades, magnetic nanoparticles (MNPs) have been widely investigated in the biomedical field. Magnetic hyperthermia therapy (MHT) is a promising therapeutic approach in which MNPs are delivered directly through targeting (systemic) or by direct injection into a tumor under exposure to an alternating magnetic field (AMF). Heat is generated by the MNPs subjected to AMF at a frequency of 100 kHz. Despite the widespread use of MHT alone or in combination therapies, its effectiveness in targeting CSCs remains unclear. This review discusses various types of MHT and their related mechanisms in cancer therapy, particularly concerning the eradication of CSCs.
Collapse
Affiliation(s)
- Parsa Montazersaheb
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Bayrami Jahani
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Cai G, Yang Z, Chen YC, Huang Y, Liang L, Feng S, Zhao J. Magnetic Bead Manipulation in Microfluidic Chips for Biological Application. CYBORG AND BIONIC SYSTEMS 2023; 4:0023. [PMID: 37287460 PMCID: PMC10243203 DOI: 10.34133/cbsystems.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/20/2023] [Indexed: 10/21/2023] Open
Abstract
Magnetic beads manipulation in microfluidic chips is a promising research field for biological application, especially in the detection of biological targets. In this review, we intend to present a thorough and in-depth overview of recent magnetic beads manipulation in microfluidic chips and its biological application. First, we introduce the mechanism of magnetic manipulation in microfluidic chip, including force analysis, particle properties, and surface modification. Then, we compare some existing methods of magnetic manipulation in microfluidic chip and list their biological application. Besides, the suggestions and outlook for future developments in the magnetic manipulation system are also discussed and summarized.
Collapse
Affiliation(s)
- Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai 200050, China
| | - Zixin Yang
- School of Communication and Information Engineering,
Shanghai University, Shanghai 200444, China
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering,
Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
| | - Yaru Huang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai 200050, China
- School of Life Sciences,
Shanghai Normal University, Shanghai, 200235, China
| | - Lijuan Liang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai 200050, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology,
Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
29
|
Inphonlek S, Jarukumjorn K, Chumsamrong P, Ruksakulpiwat C, Ruksakulpiwat Y. Preparation of Crosslinked Poly(acrylic acid-co-acrylamide)-Grafted Deproteinized Natural Rubber/Silica Composites as Coating Materials for Controlled Release of Fertilizer. Polymers (Basel) 2023; 15:polym15071770. [PMID: 37050385 PMCID: PMC10097200 DOI: 10.3390/polym15071770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The crosslinked poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber/silica ((PAA-co-PAM)-DPNR/silica) composites were prepared and applied as coating materials for fertilizer in this work. The crosslinked (PAA-co-PAM)-DPNR was prepared via emulsion graft copolymerization in the presence of MBA as a crosslinking agent. The modified DPNR was mixed with various contents of silica (10 to 30 phr) to form the composites. The existence of crosslinked (PAA-co-PAM) after modification provided a water adsorption ability to DPNR. The swelling degree values of composites were found in the range of 2217.3 ± 182.0 to 8132.3 ± 483.8%. The addition of silica in the composites resulted in an improvement in mechanical properties. The crosslinked (PAA-co-PAM)-DPNR with 20 phr of silica increased its compressive strength and compressive modulus by 1.61 and 1.55 times compared to the unloaded silica sample, respectively. There was no breakage of samples after 80% compression strain. Potassium nitrate, a model fertilizer, was loaded into chitosan beads with a loading percentage of 40.55 ± 1.03% and then coated with the modified natural rubber/silica composites. The crosslinked (PAA-co-PAM)-DPNR/silica composites as the outer layers had the ability of holding water in their structure and retarded the release of fertilizer. These composites could be promising materials for controlled release and water retention that would have potential for agricultural application.
Collapse
Affiliation(s)
- Supharat Inphonlek
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kasama Jarukumjorn
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pranee Chumsamrong
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
30
|
Ma H, Yu G, Cheng J, Song L, Zhou Z, Zhao Y, Zhao Q, Liu L, Wei X, Yang M. Design of an Injectable Magnetic Hydrogel Based on the Tumor Microenvironment for Multimodal Synergistic Cancer Therapy. Biomacromolecules 2023; 24:868-885. [PMID: 36692905 DOI: 10.1021/acs.biomac.2c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conventional tumor chemotherapy is limited by its low therapeutic efficacy and side effects, which severely hold back its further application. Drug delivery systems (DDSs) based on nanomaterials have attracted wide interest in cancer treatment; especially, the system can realize efficient synergistic therapies. Here, we designed a smart hydrogel drug delivery system with multiple responses to enhance the tumor treatment effect. By cross-linking oxidized hydroxypropyl cellulose with carboxymethyl chitosan, an injectable hydrogel was obtained, into which artesunate (ART), ferroferric oxide (Fe3O4) nanoparticles, and black phosphorus nanosheets (BPs) were preloaded. This DDS has multiple functions including magnetic targeting, pH sensitivity, chemodynamic therapy, and photothermal response. This nanoparticle-composited hydrogel not only preserved excellent rheological properties but also allowed for an accurate stable drug release at tumor sites and synergistic effects of multiple therapies. The in vitro and in vivo experiments revealed that this DDS could efficiently eliminate the HepG2 tumor with good biocompatibility. Taken together, this study clarifies the possible antitumor mechanism of this ART-loaded nanoparticle-composited hydrogel and provides a new strategy for synergistic photothermal-chemo-chemodynamic therapy.
Collapse
Affiliation(s)
- Hai Ma
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Guanghao Yu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Jinlai Cheng
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Lixia Song
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Ziyu Zhou
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Yu Zhao
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Qinghe Zhao
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Li Liu
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Xiaolu Wei
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| | - Miyi Yang
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Dongzhimen Nei Ave., Nanxiaojie 16#, Dongcheng District, Beijing100700, China
| |
Collapse
|
31
|
IgG Fc Affinity Ligands and Their Applications in Antibody-Involved Drug Delivery: A Brief Review. Pharmaceutics 2023; 15:pharmaceutics15010187. [PMID: 36678816 PMCID: PMC9862274 DOI: 10.3390/pharmaceutics15010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Antibodies are not only an important class of biotherapeutic drugs, but also are targeting moieties for achieving active targeting drug delivery. Meanwhile, the rapidly increasing application of antibodies and Fc-fusion proteins has inspired the emerging development of downstream processing technologies. Thus, IgG Fc affinity ligands have come into being and have been widely exploited in antibody purification strategies. Given the high binding affinity and specificity to IgGs, binding stability in physiological medium conditions, and favorable toxicity and immunogenicity profiles, Fc affinity ligands are gradually applied to antibody delivery, non-covalent antibody-drug conjugates or antibody-mediated active-targeted drug delivery systems. In this review, we will briefly introduce IgG affinity ligands that are widely used at present and summarize their diverse applications in the field of antibody-involved drug delivery. The challenges and outlook of these systems are also discussed.
Collapse
|
32
|
Zarei M, Lee G, Lee SG, Cho K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203193. [PMID: 35737931 DOI: 10.1002/adma.202203193] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the electronics industry and proliferation of electronic materials and telecommunications technologies has led to the release of a massive amount of untreated electronic waste (e-waste) into the environment. Consequently, catastrophic environmental damage at the microbiome level and serious human health diseases threaten the natural fate of the planet. Currently, the demand for wearable electronics for applications in personalized medicine, electronic skins (e-skins), and health monitoring is substantial and growing. Therefore, "green" characteristics such as biodegradability, self-healing, and biocompatibility ensure the future application of wearable electronics and e-skins in biomedical engineering and bioanalytical sciences. Leveraging the biodegradability, sustainability, and biocompatibility of natural materials will dramatically influence the fabrication of environmentally friendly e-skins and wearable electronics. Here, the molecular and structural characteristics of biological skins and artificial e-skins are discussed. The focus then turns to the biodegradable materials, including natural and synthetic-polymer-based materials, and their recent applications in the development of biodegradable e-skin in wearable sensors, robotics, and human-machine interfaces (HMIs). Finally, the main challenges and outlook regarding the preparation and application of biodegradable e-skins are critically discussed in a near-future scenario, which is expected to lead to the next generation of biodegradable e-skins.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Giwon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
33
|
Mahdi Eshaghi M, Pourmadadi M, Rahdar A, Díez-Pascual AM. Novel Carboxymethyl Cellulose-Based Hydrogel with Core-Shell Fe 3O 4@SiO 2 Nanoparticles for Quercetin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248711. [PMID: 36556516 PMCID: PMC9784486 DOI: 10.3390/ma15248711] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 05/23/2023]
Abstract
A nanocomposite composed of carboxymethyl cellulose (CMC) and core-shell nanoparticles of Fe3O4@SiO2 was prepared as a pH-responsive nanocarrier for quercetin (QC) delivery. The nanoparticles were further entrapped in a water-in-oil-in-water emulsion system for a sustained release profile. The CMC/Fe3O4@SiO2/QC nanoparticles were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a vibrating sample magnetometer (VSM) to obtain insights into their size, stability, functional groups/chemical bonds, crystalline structure, morphology, and magnetic properties, respectively. The entrapment and loading efficiency were slightly improved after the incorporation of Fe3O4@SiO2 NPs within the hydrogel network. The dialysis method was applied for drug release studies. It was found that the amount of QC released increased with the decrease in pH from 7.4 to 5.4, while the sustained-release pattern was preserved. The A549 cell line was chosen to assess the anticancer activity of the CMC/Fe3O4@SiO2/QC nanoemulsion and its components for lung cancer treatment via an MTT assay. The L929 cell line was used in the MTT assay to determine the possible side effects of the nanoemulsion. Moreover, a flow cytometry test was performed to measure the level of apoptosis and necrosis. Based on the obtained results, CMC/Fe3O4@SiO2 can be regarded as a novel promising system for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahdi Eshaghi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
34
|
Tang Y, Wang H, Liu S, Pu L, Hu X, Ding J, Xu G, Xu W, Xiang S, Yuan Z. A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
36
|
Vanoli V, Delleani S, Casalegno M, Pizzetti F, Makvandi P, Haugen H, Mele A, Rossi F, Castiglione F. Hyaluronic acid-based hydrogels: Drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohydr Polym 2022; 301:120309. [DOI: 10.1016/j.carbpol.2022.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
37
|
Meriem B, Yahoum MM, Lefnaoui S, Ribiero M, Bañobre-López M, Moulai-Mostefa N. Magnetic ferrogels based on crosslinked xanthan and iron oxide nanoparticles: preparation and physico-chemical characterization. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2130270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Boudoukhani Meriem
- Materials and Environmental Laboratory (LME), University of Medea, Medea, Algeria
| | - Madiha Melha Yahoum
- Materials and Environmental Laboratory (LME), University of Medea, Medea, Algeria
| | - Sonia Lefnaoui
- Experimental Biology and Pharmacology Laboratory (LBPE), University of Medea, Medea, Algeria
| | - Marta Ribiero
- INL, International Iberian Nanotechnology Laboratory, Advanced (Magnetic) Theranostic Nanostructures Laboratory, Braga, Portugal
| | - Manuel Bañobre-López
- INL, International Iberian Nanotechnology Laboratory, Advanced (Magnetic) Theranostic Nanostructures Laboratory, Braga, Portugal
| | - Nadji Moulai-Mostefa
- Materials and Environmental Laboratory (LME), University of Medea, Medea, Algeria
| |
Collapse
|
38
|
Yadav A, de Souza FM, Dawsey T, Gupta RK. Recent Advancements in Flame-Retardant Polyurethane Foams: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Anilkumar Yadav
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Felipe M. de Souza
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tim Dawsey
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Ram K. Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
39
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
40
|
Single and dual polymeric sponges for emerging pollutants removal. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Makshakova ON, Bogdanova LR, Makarova AO, Kusova AM, Ermakova EA, Kazantseva MA, Zuev YF. κ-Carrageenan Hydrogel as a Matrix for Therapeutic Enzyme Immobilization. Polymers (Basel) 2022; 14:polym14194071. [PMID: 36236018 PMCID: PMC9573024 DOI: 10.3390/polym14194071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
During the last few decades, polysaccharide hydrogels attract more and more attention as therapeutic protein delivery systems due to their biocompatibility and the simplicity of the biodegradation of natural polymers. The protein retention by and release from the polysaccharide gel network is regulated by geometry and physical interactions of protein with the matrix. In the present work, we studied the molecular details of interactions between κ-carrageenan and three lipases, namely the lipases from Candida rugosa, Mucor javanicus, and Rhizomucor miehei—which differ in their size and net charge—upon protein immobilization in microparticles of polysaccharide gel. The kinetics of protein release revealed the different capability of κ-carrageenan to retain lipases, which are generally negatively charged; that was shown to be in line with the energy of interactions between polysaccharides and positively charged epitopes on the protein surface. These data create a platform for the novel design of nanocarriers for biomedical probes of enzymatic origin.
Collapse
Affiliation(s)
- Olga N. Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Anastasiya O. Makarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Aleksandra M. Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Elena A. Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Mariia A. Kazantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
- HSE Tikhonov Moscow Institute of Electronics and Mathematics, Tallinskaya St., 34, 123458 Moscow, Russia
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
- Correspondence:
| |
Collapse
|
42
|
Fragal EH, Fragal VH, Silva EP, Paulino AT, da Silva Filho EC, Mauricio MR, Silva R, Rubira AF, Muniz EC. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications. Carbohydr Polym 2022; 292:119665. [PMID: 35725166 DOI: 10.1016/j.carbpol.2022.119665] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
This review reports recent advances in polysaccharide-based magnetic hydrogels as smart platforms for different biomedical applications. These hydrogels have proved to be excellent, viable, eco-friendly alternative materials for the biomedical field due to their biocompatibility, biodegradability, and possibility of controlling delivery processes via modulation of the remote magnetic field. We first present their main synthesis methods and compare their advantages and disadvantages. Next, the synergic properties of hydrogels prepared with polysaccharides and magnetic nanoparticles (MNPs) are discussed. Finally, we describe the main contributions of polysaccharide-based magnetic hydrogels in the targeted drug delivery, tissue regeneration, and hyperthermia therapy fields. Overall, this review aims to motivate the synthesis of novel composite biomaterials, based on the combination of magnetic nanoparticles and natural polysaccharides, to overcome challenges that still exist in the treatment of several diseases.
Collapse
Affiliation(s)
- Elizângela H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Vanessa H Fragal
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil.
| | - Elisangela P Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Alexandre T Paulino
- Santa Catarina State University, Department of Chemistry, Rua Paulo Malschitzki, 200, Zona Industrial Norte, 89.219-710 Joinville, SC, Brazil
| | - Edson C da Silva Filho
- Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil
| | - Marcos R Mauricio
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Rafael Silva
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Adley F Rubira
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Edvani C Muniz
- State University of Maringá, Department of Chemistry, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil; Federal University of Piauí, Department of Chemistry, Campus Petrônio Portella, Bairro Ininga, 64049-550 Teresina, PI, Brazil; Federal Technological University of Paraná, Estrada dos Pioneiros, 3131, Jardim Morumbi, 86036-370 Londrina, PR, Brazil.
| |
Collapse
|
43
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
44
|
Yin H, Song P, Chen X, Huang Q, Huang H. A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material. Int J Biol Macromol 2022; 221:1606-1617. [PMID: 36096253 DOI: 10.1016/j.ijbiomac.2022.09.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023]
Abstract
As the food processing by-products, hericium erinaceus residues (HER) and pineapple peel (PP) are good sources of cellulose and chitosan that can be prepared into hydrogels for structuring a drug delivery system. Hydrogel is one new type biomaterial for drug delivery with excellent absorbent ability applied in wound dressing. In this research, one composite self-healing hydrogel with pH sensitivity for drug delivery system based on the Schiff-base reaction was fabricated. Therein aldehyde group of oxidized microcrystalline cellulose (OMCC) from PP were crosslinked with amino group of carboxymethyl chitosan (CMCS) from HER via Schiff-base reaction for structuring hydrogels. The structures of the prepared hydrogels were characterized. Meanwhile, its blood clotting activity and physical properties were investigated. The hydrogels show some favorable performances with suitable gel time (54 s of minimum), distinguish swelling rate (about 31.18 g/g), good mechanical, self-healing characteristic and well coagulation effect. The cumulative release of the rutin-loaded hydrogel OMCM-54 reached about 80 % within 6 h, suggesting the well-controlled release of rutin by crosslinking degree between the modified OMCC and CMCS based on Schiff-base reaction. The novel biomaterial based on hericium erinaceus residues and pineapple peel shows its potential use as wound dressing.
Collapse
Affiliation(s)
- Huishuang Yin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Peiqin Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Xingyu Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Qiuyan Huang
- College of Food Science, South China Agricultural University, Guangzhou 510641, P.R. China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, P.R. China.
| |
Collapse
|
45
|
Zhang C, Lu H, Wang X. Transient Polymer Hydrogels Based on Dynamic Covalent Borate Ester Bonds. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunxiao Zhang
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Haoyue Lu
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Xu Wang
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| |
Collapse
|
46
|
Durmus S, Ozay O. Synthesis and characterization of methacrylic acid based amphoteric hydrogels: use as a dual drug delivery system. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Secil Durmus
- School of Graduate Studies, Department of Bioengineering and Materials Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ozgur Ozay
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
47
|
Lu H, Li X, Yang H, Wu J, Zhang Y, Huang H. Preparation and properties of riboflavin-loaded sanxan microcapsules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Mechanical Force Acting on Ferrogel in a Non-Uniform Magnetic Field: Measurements and Modeling. MICROMACHINES 2022; 13:mi13081165. [PMID: 35893163 PMCID: PMC9394417 DOI: 10.3390/mi13081165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
The development of magnetoactive microsystems for targeted drug delivery, magnetic biodetection, and replacement therapy is an important task of present day biomedical research. In this work, we experimentally studied the mechanical force acting in cylindrical ferrogel samples due to the application of a non-uniform magnetic field. A commercial microsystem is not available for this type of experimental study. Therefore, the original experimental setup for measuring the mechanical force on ferrogel in a non-uniform magnetic field was designed, calibrated, and tested. An external magnetic field was provided by an electromagnet. The maximum intensity at the surface of the electromagnet was 39.8 kA/m and it linearly decreased within 10 mm distance from the magnet. The Ferrogel samples were based on a double networking polymeric structure which included a chemical network of polyacrylamide and a physical network of natural polysaccharide guar. Magnetite particles, 0.25 micron in diameter, were embedded in the hydrogel structure, up to 24% by weight. The forces of attraction between an electromagnet and cylindrical ferrogel samples, 9 mm in height and 13 mm in diameter, increased with field intensity and the concentration of magnetic particles, and varied within 0.1–30 mN. The model provided a fair evaluation of the mechanical forces that emerged in ferrogel samples placed in a non-uniform magnetic field and proved to be useful for predicting the deformation of ferrogels in practical bioengineering applications.
Collapse
|
49
|
Bogdanova LR, Zelenikhin PV, Makarova AO, Zueva OS, Salnikov VV, Zuev YF, Ilinskaya ON. Alginate-Based Hydrogel as Delivery System for Therapeutic Bacterial RNase. Polymers (Basel) 2022; 14:2461. [PMID: 35746037 PMCID: PMC9230862 DOI: 10.3390/polym14122461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/30/2022] Open
Abstract
To deliver therapeutic proteins into a living body, it is important to maintain their target activity in the gastrointestinal tract after oral administration. Secreted ribonuclease from Bacillus pumilus (binase) has antitumor and antiviral activity, which makes it a promising therapeutic agent. This globular protein of small molecular weight (12.2 kDa) is considered as a potential agent that induces apoptosis of tumor cells expressing certain oncogenes, including colorectal and duodenum cancer. The most important problem of its usage is the preservation of its structure and target activity, which could be lost during oral administration. Here, we developed alginate microspheres reinforced with divalent cations and analyzed the enzyme release from them. Using methods of scanning electron microscopy, measurements of fluorescence, enzyme catalytic activity, and determination of viability of the duodenum adenocarcinoma tumor cell line, we characterized obtained microspheres and chose calcium as a biogenic ion-strengthening microsphere structure. Among such modified additivities as beta-casein, gelatin, and carbon nanotubes introduced into microspheres, only gelatin showed a pronounced increase in their stability and provided data on the prolonged action of enzyme release from microspheres into tumor cell culture medium during 48 h in an amount of about 70% of the loaded quantity.
Collapse
Affiliation(s)
- Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia; (L.R.B.); (A.O.M.); (V.V.S.)
| | - Pavel V. Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia;
| | - Anastasiya O. Makarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia; (L.R.B.); (A.O.M.); (V.V.S.)
| | - Olga S. Zueva
- Department of Physics, Kazan State Power Engineering University, Kazan 420066, Russia;
| | - Vadim V. Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia; (L.R.B.); (A.O.M.); (V.V.S.)
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia; (L.R.B.); (A.O.M.); (V.V.S.)
| | - Olga N. Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia;
| |
Collapse
|
50
|
Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6300-6316. [PMID: 35578738 DOI: 10.1021/acs.jafc.2c01080] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels obtained from natural polymers have received widespread attention for their excellent biocompatible property, nontoxicity, easy gelation, and functionalization. Polysaccharides can regulate the gut microbiota and improve the intestinal microenvironment, thus exerting the healthy effect of intestinal immunity. In an active substance delivery system, the extent and speed of the substance reaching its target are highly dependent on the carrier. Thus, the smart active substance delivery systems are gradually increasing. The smart polysaccharide-hydrogels possess the ability in response to external stimuli through changing their volume phase and structure, which are applied in various fields. Natural polysaccharide-based hydrogels possess excellent characteristics of environmental friendliness, good biocompatibility, and abundant sources. According to the response type, natural polysaccharide-based hydrogels are usually divided into stimulus-responsive hydrogels, including internal response (pH, temperature, enzyme, redox) and external response (light, electricity, magnetism) hydrogels. The delivery system based on polysaccharides can exert their effects in the gastrointestinal tract. At the same time, polysaccharides may also take part in regulating the brain signals through the microbiota-gut-brain axis. Therefore, natural polysaccharide-hydrogels are considered as promising biomaterials, which can be designed as delivery systems for regulating the gut-brain axis. This article reviews the research advance of stimulus-responsive hydrogels, which focus on the types, response characteristics, and applications for polysaccharide-based smart hydrogels as delivery systems.
Collapse
Affiliation(s)
- Yunzhen Zhang
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lezhen Dong
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lingyi Liu
- University of Nebraska Lincoln, Department of Food Science & Technology, Lincoln, Nebraska 68588, United States
| | - Zufang Wu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Daodong Pan
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lianliang Liu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| |
Collapse
|