1
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
2
|
Xu H, Che Y, Zhou R, Wang L, Huang J, Kong W, Liu C, Guo L, Tang Y, Wang X, Yang X, Wang E, Xu C. Research progress of natural polysaccharide-based and natural protein-based hydrogels for bacteria-infected wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 496:153803. [DOI: 10.1016/j.cej.2024.153803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Pandurangan S, Easwaramoorthi S, Ayyadurai N. Engineering proteins with catechol chemistry for biotechnological applications. Crit Rev Biotechnol 2024:1-19. [PMID: 39198031 DOI: 10.1080/07388551.2024.2387165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2024]
Abstract
Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions via a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Department of Inorganic and Physical Chemistry, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
4
|
Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Adv Colloid Interface Sci 2024; 327:103155. [PMID: 38631096 DOI: 10.1016/j.cis.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Wound healing is a complex physiological process involving hemostasis, inflammation, proliferation, and tissue remodeling. Therefore, there is an urgent need for suitable wound dressings for effective and systematical wound management. Polypeptide-based hydrogel bio-adhesives offer unique advantages and are ideal candidates. However, comprehensive reviews on polypeptide-based hydrogel bio-adhesives for wound healing are still lacking. In this review, the physiological mechanisms and evaluation parameters of wound healing were first described in detail. Then, the working principles of hydrogel bio-adhesives were summarized. Recent advances made in multifunctional polypeptide-based hydrogel bio-adhesives involving gelatin, silk fibroin, fibrin, keratin, poly-γ-glutamic acid, ɛ-poly-lysine, serum albumin, and elastin with pro-healing activities in wound healing and tissue repair were reviewed. Finally, the current status, challenges, developments, and future trends of polypeptide-based hydrogel bio-adhesives were discussed, hoping that further developments would be stimulated to meet the growing needs of their clinical applications.
Collapse
Affiliation(s)
- Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China
| | - Xiaoben Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, P. R. China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China.
| |
Collapse
|
5
|
Yan S, Wang Q, Li Y, Qi B. Gallic acid-functionalized soy protein-based multiple cross-linked hydrogel: Mechanism analysis, physicochemical properties, and digestive characteristics. Food Chem 2024; 433:137290. [PMID: 37657164 DOI: 10.1016/j.foodchem.2023.137290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Herein, carbodiimide hydrochloride/N-hydroxysuccinimide was used to mediate the grafting of gallic acid (GA) (0.005, 0.0015, and 0.025 wt%) with soybean protein isolate (SPI) in the preparation of SPI-GA conjugates and hydrogels. The modified materials were primarily joined via the CN bonds and exhibited excellent antioxidant properties. In addition, spectral analysis revealed that the grafting of GA increased the flexibility of the SPI structure. The SPI-GA hydrogel is fabricated through covalent/non-covalent cross-linking mechanisms, including Schiff base, Michael addition, and hydrogen bonding. Furthermore, the microstructure, rheological properties, thermal stability, and textural properties of the hydrogel were affected by the amount of GA grafted. The SPI-GA hydrogel exhibited the best performance when the amount of GA graft was 0.015 wt%. Furthermore, the tightly cross-linked structure of SPI-GA prevented premature degradation of the protein by pepsin. In conclusion, these capabilities provide numerous possibilities for the development of multifunctional and active substance delivery carriers.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit Rev Food Sci Nutr 2023; 63:12341-12359. [PMID: 35852177 DOI: 10.1080/10408398.2022.2101092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron is an important trace element in the body, and it will seriously affect the body's normal operation if it is taken too much or too little. A large number of patients around the world are suffering from iron disorders. However, there are many problems using drugs to treat iron overload and causing prolonged and unbearable suffering for patients. Controlling iron absorption and utilization through diet is becoming the acceptable, safe and healthy method. At present, many literatures have reported that polyphenols can interact with iron ions and can be expected to chelate iron ions, depending on their types and structures. Besides, polyphenols often interact with other macromolecules in the diet, which may complicate this phenols-Fe behavior and give rise to the necessity of building phenolic based biopolymer materials. The biopolymer materials, constructed by self-assembly (non-covalent) or chemical modification (covalent), show excellent properties such as good permeability, targeting, biocompatibility, and high chelation ability. It is believed that this review can greatly facilitate the development of polyphenols-based biopolymer materials construction for regulating iron and improving the well-being of patients.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anguo Teng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
7
|
Malkin AY, Derkach SR, Kulichikhin VG. Rheology of Gels and Yielding Liquids. Gels 2023; 9:715. [PMID: 37754396 PMCID: PMC10529254 DOI: 10.3390/gels9090715] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
In this review, today's state of the art in the rheology of gels and transition through the yield stress of yielding liquids is discussed. Gels are understood as soft viscoelastic multicomponent solids that are in the incomplete phase separation state, which, under the action of external mechanical forces, do not transit into a fluid state but rupture like any solid material. Gels can "melt" (again, like any solids) due to a change in temperature or variation in the environment. In contrast to this type of rheology, yielding liquids (sometimes not rigorously referred to as "gels", especially in relation to colloids) can exist in a solid-like (gel-like) state and become fluid above some defined stress and time conditions (yield stress). At low stresses, their behavior is quite similar to that of permanent solid gels, including the frequency-independent storage modulus. The gel-to-sol transition considered in colloid chemistry is treated as a case of yielding. However, in many cases, the yield stress cannot be assumed to be a physical parameter since the solid-to-liquid transition happens in time and is associated with thixotropic effects. In this review, special attention is paid to various time effects. It is also stressed that plasticity is not equivalent to flow since (irreversible) plastic deformations are determined by stress but do not continue over time. We also discuss some typical errors, difficulties, and wrong interpretations of experimental data in studies of yielding liquids.
Collapse
Affiliation(s)
- Alexander Ya. Malkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii Prosp. 29, 119991 Moscow, Russia;
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia;
| | - Valery G. Kulichikhin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii Prosp. 29, 119991 Moscow, Russia;
| |
Collapse
|
8
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Guyot C, Malaret T, Touani Kameni F, Cerruti M, Lerouge S. How to Design Catechol-Containing Hydrogels for Cell Encapsulation Despite Catechol Toxicity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37339251 DOI: 10.1021/acsabm.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Catechol (cat) is a highly adhesive diphenol that can be chemically grafted to polymers such as chitosan (CH) to make them adhesive as well. However, catechol-containing materials experimentally show a large variability of toxicity, especially in vitro. While it is unclear how this toxicity emerges, most concerns are directed toward the oxidation of catechol into quinone that releases reactive oxygen species (ROS) which can, in turn, cause cell apoptosis through oxidative stress. To better understand the mechanisms at play, we examined the leaching profiles, hydrogen peroxide (H2O2) production, and in vitro cytotoxicity of several cat-chitosan (cat-CH) hydrogels that were prepared with different oxidation levels and cross-linking methods. To create cat-CH with different propensities toward oxidation, we grafted either hydrocaffeic acid (HCA, more prone to oxidation) or dihydrobenzoic acid (DHBA, less prone to oxidation) to the backbone of CH. Hydrogels were cross-linked either covalently, using sodium periodate (NaIO4) to trigger oxidative cross-linking, or physically, using sodium bicarbonate (SHC). While using NaIO4 as a cross-linker increased the oxidation levels of the hydrogels, it also significantly reduced in vitro cytotoxicity, H2O2 production, and catechol and quinone leaching in the media. For all gels tested, cytotoxicity could be directly related to the release of quinones rather than H2O2 production or catechol release, showing that oxidative stress may not be the main reason for catechol cytotoxicity, as other pathways of quinone toxicity come into play. Results also suggest that the indirect cytotoxicity of cat-CH hydrogels fabricated through carbodiimide chemistry can be reduced if (i) catechol groups are chemically bound to the polymer backbone to prevent leaching or (ii) the chosen cat-bearing molecule has a high resistance to oxidation. Coupled with the use of other cross-linking chemistries or more efficient purification methods, these strategies can be adopted to synthesize various types of cytocompatible cat-containing scaffolds.
Collapse
Affiliation(s)
- Capucine Guyot
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Tommy Malaret
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Francesco Touani Kameni
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| | - Marta Cerruti
- Biointerface Lab, Department of Materials Engineering, McGill University, Montreal H3A 2B2, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, Ecole de Technologie Superieure, Montreal H3C 1K3, Canada
- Laboratory of Endovascular Biomaterials, Centre de Recherche du CHUM, Montreal H2X 0A9, Canada
| |
Collapse
|
10
|
Powers J, Jang Y. Temperature-responsive membrane permeability of recombinant fusion protein vesicles. SOFT MATTER 2023; 19:3273-3280. [PMID: 37089115 DOI: 10.1039/d3sm00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, we investigate the changes in the permeability of the recombinant fusion protein vesicles with different membrane structures as a function of solution temperature. The protein vesicles are self-assembled from recombinant fusion protein complexes composed of an mCherry fused with a glutamic acid-rich leucine zipper and a counter arginine-rich leucine zipper fused with an elastin-like polypeptide (ELP). We have found that the molecular weight cut-off (MWCO) of the protein vesicle membranes varies inversely with solution temperature by monitoring the transport of fluorescent-tagged dextran dyes with different molecular weights. The temperature-responsiveness of the protein vesicle membranes is obtained from the lower critical solution temperature behavior of ELP in the protein building blocks. Consequently, the unique vesicle membrane structures with different single-layered and double-layered ELP organizations impact the sensitivity of the permeability responses of the protein vesicles. Single-layered protein vesicles with the ELP domains facing the interior show more drastic permeability changes as a function of temperature than double-layered protein vesicles in which ELP blocks are buried inside the membranes. This work about the temperature-responsive membrane permeability of unique protein vesicles will provide design guidelines for new biomaterials and their applications, such as drug delivery and synthetic protocell development.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida 1006 Center Drive, FL 32669, USA.
| |
Collapse
|
11
|
Sarisoy A, Acosta S, Rodríguez-Cabello JC, Czichowski P, Kopp A, Jockenhoevel S, Fernández-Colino A. Bioglues Based on an Elastin-Like Recombinamer: Effect of Tannic Acid as an Additive on Tissue Adhesion and Cytocompatibility. Int J Mol Sci 2023; 24:ijms24076776. [PMID: 37047749 PMCID: PMC10095112 DOI: 10.3390/ijms24076776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
More than 260 million surgical procedures are performed worldwide each year. Although sutures and staples are widely used to reconnect tissues, they can cause further damage and increase the risk of infection. Bioadhesives have been proposed as an alternative to reconnect tissues. However, clinical adhesives that combine strong adhesion with cytocompatibility have yet to be developed. In this study, we explored the production of adhesives based on protein-engineered polymers bioinspired by the sequence of elastin (i.e., elastin-like recombinamers, ELRs). We hypothesized that the combination of polyphenols (i.e., tannic acid, TA) and ELRs would produce an adhesive coacervate (ELR+TA), as reported for other protein polymers such as silk fibroin (SF). Notably, the adhesion of ELR alone surpassed that of ELR+TA. Indeed, ELR alone achieved adhesive strengths of 88.8 ± 33.2 kPa and 17.0 ± 2.0 kPa on porcine bone and skin tissues, respectively. This surprising result led us to explore a multicomponent bioadhesive to encompass the complementary roles of elastin (mimicked here by ELR) and silk fibroin (SF), and subsequently mirror more closely the multicomponent nature of the extracellular matrix. Tensile testing showed that ELR+SF achieved an adhesive strength of 123.3 ± 60.2 kPa on porcine bone and excellent cytocompatibility. To express this in a more visual and intuitive way, a small surface of only 2.5 cm2 was able to lift at least 2 kg of weight. This opens the door for further studies focusing on the ability of protein-engineered polymers to adhere to biological tissues without further chemical modification for applications in tissue engineering.
Collapse
Affiliation(s)
- Alp Sarisoy
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sergio Acosta
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab, Group for Advanced Materials and Nanobiotechnology, Biomedical Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, 47011 Valladolid, Spain
| | | | | | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
- AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Faculty of Science and Engineering, Brightlands Chemelot Campus, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
12
|
Peng L, Liang Y, Yue J, Li H, Deng A, Xie S, Tang XZ, Wang J, Mao Z. Dramatic improvement in the mechanical properties of polydopamine/polyacrylamide hydrogel mediated human amniotic membrane. RSC Adv 2023; 13:3635-3642. [PMID: 36756590 PMCID: PMC9875367 DOI: 10.1039/d2ra07622e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Human amniotic membrane (hAM) is a promising material for tissue engineering due to several benefits, including desirable biocompatibility, stem cell source, antibacterial activity, etc. However, because of its low elasticity, the clinical application of hAM is severely restricted. To solve this issue, we employed polydopamine/polyacrylamide (PDA/PAM) hydrogels to toughen hAM. The test results indicated that the PDA/PAM hydrogel can enhance the toughness of hAM dramatically due to the formation of abundant chemical bonds and the strong mechanical properties of the hydrogel itself. Compared to pure hAM, the break elongation and tensile strength of PDA/PAM-toughened hAM rose by 154.15 and 492.31%, respectively. And most importantly, the fracture toughness was almost 15 times higher than untreated hAM. In addition, the cytotoxicity of the PDA/PAM-coated hAM was not detected due to the superior biocompatibility of the chemicals used in the study. Treating hAM with adhesive hydrogels to increase its mechanical characteristics will further promote the application of hAM as a tissue engineering material.
Collapse
Affiliation(s)
- Lin Peng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Yufei Liang
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Jianling Yue
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Hanmei Li
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Aimin Deng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Shun Xie
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Xiu-Zhi Tang
- Research Institute of Aerospace Technology, Central South UniversityChangsha410083China
| | - Jing Wang
- Department of Pathology, Xiangya Hospital, Central South University Changsha 410083 China
| | - Zenghui Mao
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| |
Collapse
|
13
|
Lim B, Kim J, Desai MS, Wu W, Chae I, Lee SW. Elastic Fluorescent Protein-Based Down-Converting Optical Films for Flexible Display. Biomacromolecules 2023; 24:118-131. [PMID: 36507771 DOI: 10.1021/acs.biomac.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based material design provides great advantages to developing smart biomaterials with tunable structures and desired functions. They have been widely used in many biomedical applications including tissue engineering and drug delivery. However, protein-based materials are not yet widely used in optoelectronic materials despite their excellent optical and tunable mechanical properties. Here, we synthesized engineered fluorescent proteins (FPs) fused with elastic protein for the development of optoelectrical down-converting optical filters for flexible display materials. We synthesized sequence-specific FPs to tune blue, green, yellow, and red colors and fused them with elastic protein to tune mechanical properties. We fabricated flexible self-supporting film materials and characterized mechanical properties and down-converting optical properties. We also fabricated a hybrid light-emitting diode (LED) to down convert blue to desired green, red, and white colors. Furthermore, we constructed a flexible white LED using organic LED as a flexible substrate. Our modular synthesis approach of tunable bio-optoelectrical material approaches will be useful to design future biocompatible and flexible display materials and technologies.
Collapse
Affiliation(s)
- Butaek Lim
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Jinyeong Kim
- Samsung Display Co Ltd, 1 Samsung-ro, Giheung-gu, Yongin-si17113, Republic of Korea
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Weiyu Wu
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States
| | - Inseok Chae
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
14
|
Grignon E, An SY, Battaglia AM, Seferos DS. Catechol Homopolymers and Networks through Postpolymerization Modification. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eloi Grignon
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - So Young An
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alicia M. Battaglia
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
15
|
Huang B, Hu D, Dong A, Tian J, Zhang W. Highly Antibacterial and Adhesive Hyaluronic Acid Hydrogel for Wound Repair. Biomacromolecules 2022; 23:4766-4777. [DOI: 10.1021/acs.biomac.2c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dan Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
16
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
17
|
Lee JS, Kang MJ, Lee JH, Lim DW. Injectable Hydrogels of Stimuli-Responsive Elastin and Calmodulin-Based Triblock Copolypeptides for Controlled Drug Release. Biomacromolecules 2022; 23:2051-2063. [PMID: 35411765 DOI: 10.1021/acs.biomac.2c00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of block copolypeptides with stimuli responsiveness have been of growing interest for dynamic self-assembly. Here, multistimuli-responsive triblock copolypeptides composed of thermosensitive elastin-based polypeptides (EBP) and ligand-responsive calmodulin (CalM) were genetically engineered, over-expressed, and nonchromatographically purified by inverse transition cycling. Diluted EBP-CalM-EBP (ECE) triblock copolypeptides under physiological conditions self-assembled into vesicles at the nanoscale by temperature-triggered aggregation of the EBP block with lower critical solution temperature behaviors. Furthermore, concentrated ECE triblock copolypeptides under identical conditions exhibited thermally induced gelation, resulting in physically crosslinked hydrogels. They showed controlled rheological and mechanical properties depending on the conformational change of the CalM middle block induced by binding either Ca2+ or Ca2+ and trifluoperazines (TFPs) as ligands. In addition, both Ca2+-free and Ca2+-bound ECE triblock copolypeptide hydrogels exhibited biocompatibility, while those bound to both Ca2+ and TFPs showed severe cytotoxicity because of controlled TFP release of the CalM blocks. The ECE triblock hydrogels with stimuli responsiveness would be useful as injectable drug delivery depots for biomedical applications.
Collapse
Affiliation(s)
- Jae Sang Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Jeong Kang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
18
|
Han H, Lee K. Systematic Approach to Mimic Phenolic Natural Polymers for Biofabrication. Polymers (Basel) 2022; 14:1282. [PMID: 35406154 PMCID: PMC9003098 DOI: 10.3390/polym14071282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022] Open
Abstract
In nature, phenolic biopolymers are utilized as functional tools and molecular crosslinkers to control the mechanical properties of biomaterials. Of particular interest are phenolic proteins/polysaccharides from living organisms, which are rich in catechol and/or gallol groups. Their strong underwater adhesion is attributed to the representative phenolic molecule, catechol, which stimulates intermolecular and intramolecular crosslinking induced by oxidative polymerization. Significant efforts have been made to understand the underlying chemistries, and researchers have developed functional biomaterials by mimicking the systems. Owing to their unique biocompatibility and ability to transform their mechanical properties, phenolic polymers have revolutionized biotechnologies. In this review, we highlight the bottom-up approaches for mimicking polyphenolic materials in nature and recent advances in related biomedical applications. We expect that this review will contribute to the rational design and synthesis of polyphenolic functional biomaterials and facilitate the production of related applications.
Collapse
Affiliation(s)
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| |
Collapse
|
19
|
Zhang M, Yang Q, Hu T, Tang L, Ni Y, Chen L, Wu H, Huang L, Ding C. Adhesive, Antibacterial, Conductive, Anti-UV, Self-Healing, and Tough Collagen-Based Hydrogels from a Pyrogallol-Ag Self-Catalysis System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8728-8742. [PMID: 35143167 DOI: 10.1021/acsami.1c21200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, versatile hydrogels with multifunctionality have been widely developed with emerging applications as wearable and implantable devices. In this work, we reported novel versatile hydrogels by self-catalyzing the gelation of an interpenetrating polymer network consisting of acrylic acid (AA) monomers and GA-modified collagen (GCOL) in situ decorated silver nanoparticles (AgNPs). The resultant hydrogel, namely AgNP@GCOL/PAA, has many desirable features, including good mechanical properties (such as 123 kPa, 916%, and 1961 J m-2 for the fracture stress, strain and tearing energy) that match with those of animal skin, excellent self-healing performance, favorable conductivity and strain sensitivity as a flexible biosensor, and excellent antibacterial and anti-UV properties, as well as the strong adhesiveness on skin. Moreover, AgNP@GCOL/PAA showed excellent biocompatibility via in vitro cell culture. Remarkably, AgNP@GCOL/PAA displayed superior hemostatic properties with sharply decreasing blood loss for a mouse liver incision, closely related to its strong self-adhesion which produced anchoring strength to the bleeding site and thus formed a network barrier with liver tissue. This study provides new opportunities for the facile preparation of widely used multifunctional collagen-based hydrogels based on a simple pyrogallol-Ag system.
Collapse
Affiliation(s)
- Min Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, PR China
| | - Qili Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tianshuo Hu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lele Tang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yonghao Ni
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- Department of Chemical Engineering and Limerick Pulp & Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hui Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liulian Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| |
Collapse
|
20
|
Cheng J, Liu J, Li M, Liu Z, Wang X, Zhang L, Wang Z. Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Front Bioeng Biotechnol 2021; 9:780187. [PMID: 34881238 PMCID: PMC8645981 DOI: 10.3389/fbioe.2021.780187] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Rapid and effective hemostasis is of great importance to improve the quality of treatment and save lives in emergency, surgical practice, civilian, and military settings. Traditional hemostatic materials such as tourniquets, gauze, bandages, and sponges have shown limited efficacy in the management of uncontrollable bleeding, resulting in widespread interest in the development of novel hemostatic materials and techniques. Benefiting from biocompatibility, degradability, injectability, tunable mechanical properties, and potential abilities to promote coagulation, wound healing, and anti-infection, hydrogel-based biomaterials, especially those on the basis of natural polysaccharides and proteins, have been increasingly explored in preclinical studies over the past few years. Despite the exciting research progress and initial commercial development of several hemostatic hydrogels, there is still a significant distance from the desired hemostatic effect applicable to clinical treatment. In this review, after elucidating the process of biological hemostasis, the latest progress of hydrogel biomaterials engineered from natural polysaccharides and proteins for hemostasis is discussed on the basis of comprehensive literature review. We have focused on the preparation strategies, physicochemical properties, hemostatic and wound-healing abilities of these novel biomaterials, and highlighted the challenges that needed to be addressed to achieve the transformation of laboratory research into clinical practice, and finally presented future research directions in this area.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zhongyang Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Licheng Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zheng Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Balcioglu S, Gurses C, Ozcan I, Yildiz A, Koytepe S, Parlakpinar H, Vardi N, Ates B. Photocrosslinkable gelatin/collagen based bioinspired polyurethane-acrylate bone adhesives with biocompatibility and biodegradability. Int J Biol Macromol 2021; 192:1344-1356. [PMID: 34536477 DOI: 10.1016/j.ijbiomac.2021.09.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 01/11/2023]
Abstract
Hard or soft tissue adhesives have been presented as a promising candidate to replace traditional wound closure methods. However, there are mechanical strength problems in biological adhesives and biocompatibility problems in synthetic-based adhesives. At this point, we aimed to remove all these disadvantages and produce a single adhesive that contains all the necessary features and acrylate functionalized UV-curable polyurethane formulations were produced with high crosslink density, high adhesion strength, biocompatibility and injectable property for easy application as potential biomedical adhesives. Aliphatic isophorone diisocyanate (IPDI) was used as the isocyanate source and β-cyclodextrin was used for host-guest relationship with gentamicin by crosslinking. Proteins (gelatin (GEL), collagen (COL)) and PEGs of various molecular weight ranges (P200, P400, P600) were selected as the polyol backbone for polyurethane synthesis due to their multiple biological activities such as biocompatibility, biodegradability, biomimetic property. Several techniques have been used to characterize the structural, thermal, morphological, and various other physicochemical properties of the adhesive formulations. Besides, the possibility of its use as a hard tissue adhesive was investigated by evaluating the tissue adhesion strength in vitro and ex vivo via a universal testing analyzer in tensile mode. Corresponding adhesive formulations were evaluated by in vitro and in vivo techniques for biocompatibility. The best adhesion strength results were obtained as 3821.0 ± 214.9, and 3722.2 ± 486.8 kPa, for IPDI-COL-P200 and IPDI-GEL-P200, respectively. Good antibacterial activity capability toward Escherichia coli Pseudomonas aeruginosa, and Staphylococcus aureus were confirmed using disc diffusion method. Moreover, cell viability assay demonstrated that the formulations have no significant cytotoxicity on the L929 fibroblast cells. Most importantly, we finally performed the in vivo biodegradability and in vivo biocompatibility evaluations of the adhesive formulations on rat model. Considering their excellent cell/tissue viability, fast curable, strong adhesion, high antibacterial character, and injectability, these adhesive formulations have significant potential for tissue engineering applications.
Collapse
Affiliation(s)
- Sevgi Balcioglu
- Sakarya University of Applied Sciences, Department of Medicinal Laboratory, Sakarya, Turkey.
| | - Canbolat Gurses
- İnönü University, Science Faculty, Department of Molecular Biology and Genetics, Malatya, Turkey
| | - Imren Ozcan
- İnönü University, Science Faculty, Department of Chemistry, Malatya, Turkey
| | - Azibe Yildiz
- İnönü University, Medical Faculty, Department of Histology and Embryology, Malatya, Turkey
| | - Suleyman Koytepe
- İnönü University, Science Faculty, Department of Chemistry, Malatya, Turkey
| | - Hakan Parlakpinar
- İnönü University, Medical Faculty, Department of Medicinal Pharmacology, Malatya, Turkey
| | - Nigar Vardi
- İnönü University, Medical Faculty, Department of Histology and Embryology, Malatya, Turkey
| | - Burhan Ates
- İnönü University, Science Faculty, Department of Chemistry, Malatya, Turkey.
| |
Collapse
|
22
|
Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered Protein-based Adhesives for Biomedical Applications. Chemistry 2021; 28:e202102902. [PMID: 34622998 DOI: 10.1002/chem.202102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Protein-based adhesives with their robust adhesion performance and excellent biocompatibility have been extensively explored over years. In particular, the unique adhesion behaviours of mussel and sandcastle worm inspired the development of synthetic adhesives. However, the chemical synthesized adhesives often demonstrate weak underwater adhesion performance and poor biocompatibility/biodegradability, limiting their further biomedical applications. In sharp contrast, genetically engineering endows the protein-based adhesives the ability to maintain underwater adhesion property as well as biocompatibility/biodegradability. Herein, we outline recent advances in the design and development of protein-based adhesives by genetic engineering. We summarize the fabrication and adhesion performance of elastin-like polypeptide-based adhesives, followed by mussel foot protein (mfp) based adhesives and other sources protein-based adhesives, such as, spider silk spidroin and suckerin. In addition, the biomedical applications of these bioengineered protein-based adhesives are presented. Finally, we give a brief summary and perspective on the future development of bioengineered protein-based adhesives.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jiaying Han
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
23
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
24
|
Costa PM, Learmonth DA, Gomes DB, Cautela MP, Oliveira ACN, Andrade R, Espregueira-Mendes J, Veloso TR, Cunha CB, Sousa RA. Mussel-Inspired Catechol Functionalisation as a Strategy to Enhance Biomaterial Adhesion: A Systematic Review. Polymers (Basel) 2021; 13:polym13193317. [PMID: 34641133 PMCID: PMC8513061 DOI: 10.3390/polym13193317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials have long been explored in regenerative medicine strategies for the repair or replacement of damaged organs and tissues, due to their biocompatibility, versatile physicochemical properties and tuneable mechanical cues capable of matching those of native tissues. However, poor adhesion under wet conditions (such as those found in tissues) has thus far limited their wider application. Indeed, despite its favourable physicochemical properties, facile gelation and biocompatibility, gellan gum (GG)-based hydrogels lack the tissue adhesiveness required for effective clinical use. Aiming at assessing whether substitution of GG by dopamine (DA) could be a suitable approach to overcome this problem, database searches were conducted on PubMed® and Embase® up to 2 March 2021, for studies using biomaterials covalently modified with a catechol-containing substituent conferring improved adhesion properties. In this regard, a total of 47 reports (out of 700 manuscripts, ~6.7%) were found to comply with the search/selection criteria, the majority of which (34/47, ~72%) were describing the modification of natural polymers, such as chitosan (11/47, ~23%) and hyaluronic acid (6/47, ~13%); conjugation of dopamine (as catechol “donor”) via carbodiimide coupling chemistry was also predominant. Importantly, modification with DA did not impact the biocompatibility and mechanical properties of the biomaterials and resulting hydrogels. Overall, there is ample evidence in the literature that the bioinspired substitution of polymers of natural and synthetic origin by DA or other catechol moieties greatly improves adhesion to biological tissues (and other inorganic surfaces).
Collapse
Affiliation(s)
- Pedro M. Costa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
- Correspondence: ; Tel.: +351–253–165–230
| | - David A. Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - David B. Gomes
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Mafalda P. Cautela
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Ana C. N. Oliveira
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Tiago R. Veloso
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Cristiana B. Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Rui A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| |
Collapse
|
25
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
26
|
Li Z, Li B, Li X, Lin Z, Chen L, Chen H, Jin Y, Zhang T, Xia H, Lu Y, Zhang Y. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr Polym 2021; 267:118155. [PMID: 34119129 DOI: 10.1016/j.carbpol.2021.118155] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
A series of halloysite nanotube (HNT)-doped chitosan (CS)/oxidized dextran (ODEX) adhesive hydrogels were developed through a Schiff base reaction. The resultant CS/ODEX/HNT hydrogels could not only form in situ on wounds within only 1 s when injected, but could also adapt to wounds of different shapes and depths after injection. We established four rat and rabbit hemorrhage models and demonstrated that the hydrogels are better than the clinically used gelatin sponge for reducing hemostatic time and blood loss, particularly in arterial and deep noncompressible bleeding wounds. Moreover, the natural antibacterial features of CS and ODEX provided the hydrogels with strong bacteria-killing effects. Consequently, they significantly promoted methicillin-resistant Staphylococcus aureus -infected-wound repair compared to commercial gelatin sponge and silver-alginate antibacterial wound dressing. Hence, our multifunctional hydrogels with facile preparation process and utilization procedure could potentially be used as first-aid biomaterials for rapid hemostasis and infected-wound repair in emergency injury events.
Collapse
Affiliation(s)
- Zhan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Xinrong Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yan Jin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hong Xia
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China; Department of Joint and Orthopedics, Orthopedic Center, Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
27
|
Zeng Z, Liu D, Li D, Mo X. An injectable double cross-linked hydrogel adhesive inspired by synergistic effects of mussel foot proteins for biomedical application. Colloids Surf B Biointerfaces 2021; 204:111782. [PMID: 33930731 DOI: 10.1016/j.colsurfb.2021.111782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Hydrogel adhesives with high tissue adhesion, biodegradability and biocompatibility are benefit for promoting surgical procedures and minimizing the pain and post-surgical complications of patients. In this paper, an injectable mussel inspired double cross-linked hydrogel adhesive composed of thiolated mussel inspired chitosan (CSDS) and tetra-succinimidyl carbonate polyethylene glycol (PEG-4S) was designed and developed. CSDS was synthesized with thiol and catechol groups inspired by the synergistic effect of mussel foot proteins (mfps). The double cross-linked hydrogel was first formed by the addition of sodium periodate (or Fe3+) and then double cross-linked with PEG-4S. The results showed that the mechanical and adhesion properties of the double cross-linked hydrogels were significantly improved by the synergistic effects of the functional groups. And the prepared hydrogels showed good cytocompatibility which evaluated by determining the viability of L929 cells and human umbilical vein endothelial cells (HUVECs). Additionally, the biodegradability and biocompatibility in vivo were further confirmed by subcutaneous implantation in mice model, and the histological analysis results identified that the prepared hydrogels were in vivo biocompatible. This work presents an injectable mussel inspired double cross-linked hydrogels that can use as a potential hydrogel adhesive for biomedical application.
Collapse
Affiliation(s)
- Zhiwen Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Medicine and Health, Guangdong Academy of Sciences, Guangdong, 510500, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China.
| | - Dinghua Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China; Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China; Shandong International Biotechnology Park Development Co. Ltd, 39, Keji Avenue, Yantai High-Tech Zone, 264670, Shandong Province, China.
| |
Collapse
|
28
|
Sharma A, Sharma P, Roy S. Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering. SOFT MATTER 2021; 17:3266-3290. [PMID: 33730140 DOI: 10.1039/d0sm02202k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phenomenal advancement in regenerative medicines has led to the development of bioinspired materials to fabricate a biomimetic artificial extracellular matrix (ECM) to support cellular survival, proliferation, and differentiation. Researchers have diligently developed protein polymers consisting of functional sequences of amino acids evolved in nature. Nowadays, certain repetitive bioinspired polymers are treated as an alternative to synthetic polymers due to their unique properties like biodegradability, easy scale-up, biocompatibility, and non-covalent molecular associations which imparts tunable supramolecular architecture to these materials. In this direction, elastin has been identified as a potential scaffold that renders extensibility and elasticity to the tissues. Elastin-like polypeptides (ELPs) are artificial repetitive polymers that exhibit lower critical solution temperature (LCST) behavior in a particular environment than synthetic polymers and hence have gained extensive interest in the fabrication of stimuli-responsive biomaterials. This review discusses in detail the unique structural aspects of the elastin and its soluble precursor, tropoelastin. Furthermore, the versatility of elastin-like peptides is discussed through numerous examples that bolster the significance of elastin in the field of regenerative medicines such as wound care, cardiac tissue engineering, ocular disorders, bone tissue regeneration, etc. Finally, the review highlights the importance of exploring short elastin-mimetic peptides to recapitulate the structural and functional aspects of elastin for advanced healthcare applications.
Collapse
Affiliation(s)
- Archita Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306, Punjab, India.
| | | | | |
Collapse
|
29
|
Wang Y, Dong J, Jin J, Jia Y. Polyrotaxane Crosslinked Self‐Healing Hydrogels for Switchable Bioadhesion. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yushi Wang
- School of Biomedical Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Jiyu Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Jiahong Jin
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Yong‐Guang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| |
Collapse
|
30
|
Higaki Y, Kamitani K, Ohigashi T, Hayakawa T, Takahara A. Exploring the Mesoscopic Morphology in Mussel Adhesive Proteins by Soft X-ray Spectromicroscopy. Biomacromolecules 2021; 22:1256-1260. [PMID: 33600143 DOI: 10.1021/acs.biomac.0c01746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marine mussels efficiently adhere under wet conditions by precisely controlling the hierarchical structure of the adhesive plaque through sequential mussel foot protein secretion in the foot-tip cavity. Chemical analysis of the non-uniform mussel plaque morphology has been performed using spectromicroscopy; however, the mesoscopic morphology has not been elucidated yet because of the limited spatial resolution of conventional chemical imaging techniques. We investigated the chemical speciation in the non-uniform mussel plaque morphology employing scanning transmission soft X-ray spectromicroscopy (STXM). The high-spatial-resolution STXM chemical imaging with C 1s near-edge X-ray absorption fine structure yields the distribution of the hydroxy-substituted aromatic residues in the sub-micron scale non-uniform mussel plaque morphology. The matrix consists of a high-protein-density cured product containing a large number of hydroxy-substituted aromatic carbons, including tyrosine and 3,4-dihydroxyphenylalanine (Dopa), whereas the microdomains are poor-protein-density regions with a low aromatic residue relative content. The adhesive interface was covered with the matrix phase to ensure adhesion. The cuticle layer involves a moderate Dopa content, which appears to be optimized for the mechanical performance of the skin.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Kazutaka Kamitani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuji Ohigashi
- UVSOR Synchrotron Facility, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|