1
|
Barajaa MA, Ghosh D, Laurencin CT. Decellularized Extracellular Matrix-Derived Hydrogels: a Powerful Class of Biomaterials for Skeletal Muscle Regenerative Engineering Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2025; 11:39-63. [PMID: 40201194 PMCID: PMC11978403 DOI: 10.1007/s40883-023-00328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 04/10/2025]
Abstract
Purpose The extracellular matrix (ECM) is a complicated milieu consisting of structural and functional molecules secreted by the resident cells that provides an optimal microenvironmental niche for enhanced cell adhesion, growth, differentiation, and tissue formation and maturation. For decades, ECM bio-scaffolds prepared from decellularized tissues have been used to promote skeletal muscle regeneration; however, it was recently discovered that these decellularized ECM (dECM) materials can be further processed into hydrogels, thus expanding the potential applications of dECM materials in skeletal muscle regenerative engineerisng (SMRE). This review article highlights the recent advances in dECM-derived hydrogels toward skeletal muscle regeneration and repair. Method We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results Here, we discuss the skeletal muscle ECM's structure, function, and biochemical composition with emphasis on the role of the ECM during skeletal muscle embryogenesis, growth, development, and repair. Furthermore, we review various hydrogels used to promote skeletal muscle regeneration. We also review the current applications of dECM-derived hydrogels toward SMRE. Finally, we discuss the clinical translation potential of dECM-derived hydrogels for skeletal muscle regeneration and repair and their potential clinical considerations in the future. Conclusion Although much progress has been made in the field of dECM-derived hydrogels toward SMRE, it is still in its nascent stage. We believe improving and standardizing the methods of decellularization, lowering the immunogenicity of dECMs, and carrying out in vivo investigations in large animal models would advance their future clinical applications. Lay Summary Researchers have discovered an effective way to turn tissue materials into jelly-like substances known as extracellular matrix (ECM)-derived hydrogels. These ECM-derived hydrogels can help muscles heal better after serious injuries. They can be injected into gaps or used to guide muscle growth in the lab or body. This review article explains how these ECM-derived hydrogels are made and how they can be used to improve muscle healing. It also discusses their possible use in clinics and what needs to be considered before using them for medical treatments.
Collapse
Affiliation(s)
- Mohammed A. Barajaa
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, 34212 Dammam, Saudi Arabia
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Nouri B, Malek RMA, Montazer M, Ramezanpour S. Fabrication of cryogel polyelectrolyte complex of Tragacanth gum and chitosan with potential biological applications. Int J Biol Macromol 2024; 283:137916. [PMID: 39577546 DOI: 10.1016/j.ijbiomac.2024.137916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
To provide more insight into the potential applications of the biocompatible polyelectrolyte complexes (PECs) of Tragacanth gum (TG) and chitosan (CS) in the biological fields, the PEC cryogel of TG and CS were fabricated. Different TG:CS ratios were examined to optimize the PEC characteristics. Based on coacervation yield, water absorption, supernatant viscosity, turbidity, and rheological properties, 18:2 was chosen as the optimized ratio of TG:CS. The pH = 4 was selected as the optimized point, resulting in the highest level of interactions between anionic and cationic polysaccharides. The zeta potential of PECs was indicative of the charge neutralization between polyanions and polycations which were also studied by FTIR spectra. The cryogel exhibited a macroporous plate structure in leaf-like form and narrowed mesopores distributed around 2.4 and 4.6 nm. PECs exhibited anti-bacterial activities, reducing 95 % of E. coli within 1 h and 99.9 % after 24 h, as well as 80 % of S. aureus after 1 h and 99.9 % after 24 h. TG:CS cryogel adhered to the human fibroblast cell lines (HFFF2) without cytotoxicity effects. The scratch assay validated that the cryogel effectively induced wound closure in human fibroblast cells within 48 h.
Collapse
Affiliation(s)
- Bita Nouri
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 424, Hafez Ave., P.O. Box: 15875-4413, Tehran, Iran
| | - Reza Mohammad Ali Malek
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 424, Hafez Ave., P.O. Box: 15875-4413, Tehran, Iran.
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Functional Fibrous Structures & Environmental Enhancement (FFSEE), No. 424, Hafez Ave., P.O. Box: 15875-4413, Tehran, Iran.
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
3
|
Ceper T, Costabel D, Kowalczyk D, Peneva K, Schacher FH. Noble Metal-Free Light-Driven Hydrogen Evolution Catalysis in Polyampholytic Hydrogel Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24796-24805. [PMID: 38700504 PMCID: PMC11103662 DOI: 10.1021/acsami.4c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Future technologies to harness solar energy and to convert this into chemical energy strongly rely on straightforward approaches to prepare versatile soft matter scaffolds for the immobilization of catalysts and sensitizers in a defined environment. In addition, particularly for light-driven hydrogen evolution, a transition to noble metal-free photosensitizers and catalysts is urgently required. Herein, we report a fully organic light-harvesting soft matter network based on a polyampholyte hydrogel where both photosensitizer (a perylene monoimide derivative) and a H2 evolution catalyst ([Mo3S13]2-) are electrostatically incorporated. The resulting material exhibits sustained visible-light-driven H2 evolution in aqueous ascorbic acid solution, even at rather low loadings of photosensitizer (0.4%) and catalyst (120 ppm). In addition, we provide initial insights into the long-term stability of the hybrid hydrogel. We believe that these results pave the way for a generalized route toward the incorporation of noble metal-free light-driven catalysis in soft matter networks.
Collapse
Affiliation(s)
- Tolga Ceper
- Institute
of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Daniel Costabel
- Institute
of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Daniel Kowalczyk
- Institute
of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kalina Peneva
- Institute
of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H. Schacher
- Institute
of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
4
|
Heyns IM, Davis G, Ganugula R, Ravi Kumar MNV, Arora M. Glucose-Responsive Microgel Comprising Conventional Insulin and Curcumin-Laden Nanoparticles: a Potential Combination for Diabetes Management. AAPS J 2023; 25:72. [PMID: 37442863 DOI: 10.1208/s12248-023-00839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Successful management of type 2 diabetes mellitus (T2DM), a complex and chronic disease, requires a combination of anti-hyperglycemic and anti-inflammatory agents. Here, we have conceptualized and tested an integrated "closed-loop mimic" in the form of a glucose-responsive microgel (GRM) based on chitosan, comprising conventional insulin (INS) and curcumin-laden nanoparticles (nCUR) as a potential strategy for effective management of the disease. In addition to mimicking the normal, on-demand INS secretion, such delivery systems display an uninterrupted release of nCUR to combat the inflammation, oxidative stress, lipid metabolic abnormality, and endothelial dysfunction components of T2DM. Additives such as gum arabic (GA) led to a fivefold increased INS loading capacity compared to GRM without GA. The GRMs showed excellent in vitro on-demand INS release, while a constant nCUR release is observed irrespective of glucose concentrations. Thus, this study demonstrates a promising drug delivery technology that can simultaneously, and at physiological/pathophysiological relevance, deliver two drugs of distinct physicochemical attributes in the same formulation.
Collapse
Affiliation(s)
- Ingrid M Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Garrett Davis
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Box 870203, Tuscaloosa, Alabama, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA.
- Bioscience and Medicine Initiative, College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA.
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, USA.
- Department of Biological Sciences, The University of Alabama, SEC 1325, Box 870344, Tuscaloosa, Alabama, USA.
| |
Collapse
|
5
|
Chaala M, Sebba FZ, Fuster MG, Moulefera I, Montalbán MG, Carissimi G, Víllora G. Accelerated Simple Preparation of Curcumin-Loaded Silk Fibroin/Hyaluronic Acid Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030504. [PMID: 36771806 PMCID: PMC9919302 DOI: 10.3390/polym15030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The development of new biomaterials from natural fibres in the field of biomedicine have attracted great interest in recent years. One of the most studied fibres has been silk fibroin produced by the Bombyx mori worm, due to its excellent mechanical properties and its biodegradability and bioavailability. Among the different biomaterials that can be prepared from silk fibroin, hydrogels have attracted considerable attention due to their potential use in different fields, such as scaffolding, cell therapy and biomedical application. Hydrogels are essentially a three-dimensional network of flexible polymer chains that absorb considerable amounts of water and can be loaded with drugs and/or cells inside to be used in a wide variety of applications. Here we present a simple sonication process for the preparation of curcumin-hyaluronic acid-silk fibroin hydrogels. Different grades of hydrogels were prepared by controlling the relative amounts of their components. The hydrogels were physically and morphologically characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) and their biological activity was tested in terms of cell viability in a fibroblast cell line.
Collapse
Affiliation(s)
- Mohamed Chaala
- Laboratoire de Chimie Physique Macromoléculaire, Département de Chimie, Université Oran1 Ahmed Ben Bella, B.P 1524, El-Menaouer, Oran 31000, Algeria
| | - Fatima Zohra Sebba
- Laboratoire de Chimie Physique Macromoléculaire, Département de Chimie, Université Oran1 Ahmed Ben Bella, B.P 1524, El-Menaouer, Oran 31000, Algeria
| | - Marta G. Fuster
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| | - Imane Moulefera
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
- Correspondence: ; Tel.: +34-868-88-7394
| | - Mercedes G. Montalbán
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| | - Guzmán Carissimi
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| | - Gloria Víllora
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
| |
Collapse
|
6
|
Suturin AC, Krüger AJD, Neidig K, Klos N, Dolfen N, Bund M, Gronemann T, Sebers R, Manukanc A, Yazdani G, Kittel Y, Rommel D, Haraszti T, Köhler J, De Laporte L. Annealing High Aspect Ratio Microgels into Macroporous 3D Scaffolds Allows for Higher Porosities and Effective Cell Migration. Adv Healthc Mater 2022; 11:e2200989. [PMID: 36100464 PMCID: PMC11469137 DOI: 10.1002/adhm.202200989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
Growing millimeter-scaled functional tissue remains a major challenge in the field of tissue engineering. Therefore, microporous annealed particles (MAPs) are emerging as promising porous biomaterials that are formed by assembly of microgel building blocks. To further vary the pore size and increase overall MAP porosity of mechanically stable scaffolds, rod-shaped microgels with high aspect ratios up to 20 are chemically interlinked into highly porous scaffolds. Polyethylene glycol based microgels (width 10 µm, lengths up to 200 µm) are produced via in-mold polymerization and covalently interlinked into stable 3D scaffolds via epoxy-amine chemistry. For the first time, MAP porosities can be enhanced by increasing the microgel aspect ratio (mean pore sizes ranging from 39 to 82 µm, porosities from 65 to 90%). These porosities are significantly higher compared to constructs made from spherical or lower aspect ratio rod-shaped microgels. Rapid filling of the pores by either murine or primary human fibroblasts is ensured as cells migrate and grow extensively into these scaffolds. Overall, this study demonstrates that highly porous, stable macroporous hydrogels can be achieved with a very low partial volume of synthetic, high aspect ratio microgels, leading to large empty volumes available for cell ingrowth and cell-cell interactions.
Collapse
Affiliation(s)
- Alisa C. Suturin
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Andreas J. D. Krüger
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Kathrin Neidig
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Nina Klos
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Nina Dolfen
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Michelle Bund
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Till Gronemann
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Rebecca Sebers
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Anna Manukanc
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Ghazaleh Yazdani
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Yonca Kittel
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Dirk Rommel
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Tamás Haraszti
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Jens Köhler
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)Polymeric BiomaterialsRWTH University AachenWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| |
Collapse
|
7
|
Wang L, Yan L, Liu S, Zhang H, Xiao J, Wang Z, Xiao W, Li B, Liao X. Conformational Transition-Driven Self-Folding Hydrogel Based on Silk Fibroin and Gelatin for Tissue Engineering Applications. Macromol Biosci 2022; 22:e2200189. [PMID: 35895675 DOI: 10.1002/mabi.202200189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Indexed: 11/11/2022]
Abstract
Self-folding is a rapidly evolving method for converting flat objects into three-dimensional structures. However, because there are few materials with suitable properties, application of self-folding in tissue engineering has been hindered greatly. Herein, a novel self-folding hydrogel using a conformational transition mechanism was developed by employing a photocrosslinkable silk fibroin and gelatin. It was hypothesized that differences in the amount of β-sheet formation between the upper and lower layers would supply additional folding stress and drive the self-folding behaviour of a bilayer patch, which could improve the mechanical properties and long-term stability of the self-folded structure. In this study, the impact of various proportions of β-sheets in composite hydrogels on their swelling, mechanics, and internal microstructures were investigated. Subsequently, the folding process parameters were optimized, and diffusion through the folded tubular structure was studied with a perfusion test. Finally, it was proven that the self-folding hydrogel system is cytocompatible and can be utilized to build a 3D coculture system of "endothelial cells-smooth muscle cells". These findings suggest that the self-folding hydrogel could be a promising candidate for applications in blood vessel tissue engineering and regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lu Wang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Ling Yan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Shuang Liu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Hao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Jing Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Ziyin Wang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| |
Collapse
|
8
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|
9
|
Qu X, Yan L, Liu S, Tan Y, Xiao J, Cao Y, Chen K, Xiao W, Li B, Liao X. Preparation of silk fibroin/hyaluronic acid hydrogels with enhanced mechanical performance by a combination of physical and enzymatic crosslinking. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1635-1653. [PMID: 34004124 DOI: 10.1080/09205063.2021.1932070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silk fibroin (SF) from Bombyx mori is a natural polymer with exceptional biocompatibility, low immunogenicity, and ease of processability. SF-based hydrogels have been identified as one of the most attractive candidate scaffolds for tissue engineering and can be fabricated through various physical or chemical crosslinking approaches. However, conventional SF hydrogels may suffer from several major drawbacks, such as structural inhomogeneity, poor mechanical properties or utilization of cytotoxic reagents. Herein, a dually crosslinked SF-based composite hydrogel with enhanced strength and elasticity was fabricated by inducing the formation of uniform and small β-sheet structures by sonication in a restricted enzymatic precrosslinked network. The composite hydrogel not only demonstrated concentration-dependent stiffness variation but also exhibited time-dependent changes in toughness behavior. Moreover, subsequent experimental results revealed that the hydrogels exhibit other advantages, including high water retention capacity and long-term stability under physiological conditions. Finally, a three-dimensional (3 D) construct of the cell-laden hydrogel was fabricated, confirming that the composite hydrogel could provide a biocompatible microenvironment with dynamically changing mechanical properties. The combination of physical and enzymatic crosslinking strategies contributes to a biocompatible composite hydrogel with unique mechanical properties that holds great potential for use in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaohang Qu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Ling Yan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Shuang Liu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Yunfei Tan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Jing Xiao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Yuan Cao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Ke Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Bo Li
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, P. R. China
| |
Collapse
|
10
|
Yu X, Wang L, Xu B, Wang P, Zhou M, Yu Y, Yuan J. Conjugation of CMCS to silk fibroin for tuning mechanical and swelling behaviors of fibroin hydrogels. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Kim S, Lee SS, Son B, Kim JA, Hwang NS, Park TH. Partially Digested Osteoblast Cell Line-Derived Extracellular Matrix Induces Rapid Mineralization and Osteogenesis. ACS Biomater Sci Eng 2021; 7:1134-1146. [PMID: 33523650 DOI: 10.1021/acsbiomaterials.0c01349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An extracellular matrix (ECM) utilized as a biomaterial can be obtained from organs of living organisms. Therefore, it has some limitations in its supply because of insufficient organs. Furthermore, therapeutic efficacy of ECMs varies depending on factors such as donor's health condition and age. For this reason, ECMs obtained from a cell line could be a good alternative because they can be produced under a controlled environment with uniform quality. Thus, the purpose of this study was to investigate the potential of the MC3T3-E1 cell line-derived ECM as bone graft. The optimized decellularization process was developed to separate the ECM from MC3T3-E1, osteoblast cell line, using Trypsin-EDTA and Triton X-100. The decellularized ECM was partially digested using pepsin. Also, human bone marrow-derived mesenchymal stem cells induced faster osteogenesis on the ECM-coated surface than on the collagen-coated surface. Partially digested ECM fragments were embedded on the polyethylene glycol scaffold without additional chemical modification or crosslinking. Micro-computed tomography and histological analysis results showed that the ECM in the scaffold promoted actual bone regeneration after in vivo implantation to a mouse calvarial defect model. This study suggests that the bone-specific ECM derived from the cell line can replace the ECM from organs for application in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seunghun S Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Boram Son
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Chungbuk 28119, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.,BioMAX/N-Bio Institute, Institute of BioEngineerig, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.,BioMAX/N-Bio Institute, Institute of BioEngineerig, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Xiao W, Qu X, Tan Y, Xiao J, Le Y, Li Y, Liu X, Li B, Liao X. Synthesis of photocrosslinkable hydrogels for engineering three-dimensional vascular-like constructs by surface tension-driven assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111143. [PMID: 32806229 DOI: 10.1016/j.msec.2020.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
Surface tension-driven assembly is a simple routine used in modular tissue engineering to create three-dimensional (3D) biomimetic tissues with desired structural and biological characteristics. A major bottleneck for this technology is the lack of suitable hydrogel materials to meet the requirements of the assembly process and tissue regeneration. Identifying specific requirements and synthesizing novel hydrogels will provide a versatile platform for generating additional biomimetic functional tissues using this approach. In this paper, we present a novel composite hydrogel system based on methacrylated gelatin and γ-polyglutamic acid by UV copolymerization as the building block for fabricating vascular-like tissue via surface tension-driven assembly. The resulting composite hydrogels exhibited the improved mechanical properties and hydrophilicity, which greatly facilitate the assembly process. Subsequent cell encapsulation experiment proved that the hydrogel could provide 3D support for cellular spreading and migration. Furthermore, based on the composite microgel building blocks, cylindrical vascular-like construct with a perfusable microchannel was generated by the needle-assisted sequential assembly. In order to construct a biomimetic vascular tissue, the endothelial cells and smooth muscle cells were encapsulated in the microgels assembly with a spatial arrangement to build a heterogeneous double-layer tubular structure and the cells could readily elongate and migrate in the hollow concentric construct over 3 days. These data suggest that this composite hydrogel is an attractive candidate for surface tension-driven assembly purposes, making the hydrogel potentially applicable in the fabrication of biomimetic vascularized tissues.
Collapse
Affiliation(s)
- Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xiaohang Qu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yunfei Tan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Jing Xiao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yinpeng Le
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Yongxiang Li
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xue Liu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| |
Collapse
|
13
|
Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli M. Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. MATERIALS 2020; 13:ma13112483. [PMID: 32486040 PMCID: PMC7321144 DOI: 10.3390/ma13112483] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Recently, skeletal muscle represents a complex and challenging tissue to be generated in vitro for tissue engineering purposes. Several attempts have been pursued to develop hydrogels with different formulations resembling in vitro the characteristics of skeletal muscle tissue in vivo. This review article describes how different types of cell-laden hydrogels recapitulate the multiple interactions occurring between extracellular matrix (ECM) and muscle cells. A special attention is focused on the biochemical cues that affect myocytes morphology, adhesion, proliferation, and phenotype maintenance, underlining the importance of topographical cues exerted on the hydrogels to guide cellular orientation and facilitate myogenic differentiation and maturation. Moreover, we highlight the crucial role of 3D printing and bioreactors as useful platforms to finely control spatial deposition of cells into ECM based hydrogels and provide the skeletal muscle native-like tissue microenvironment, respectively.
Collapse
Affiliation(s)
- Daniele Boso
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
- Correspondence: (D.B.); (M.P.)
| | - Edoardo Maghin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Women and Children Health, University of Padova, 35128 Padova, Italy
| | - Eugenia Carraro
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Mattia Giagante
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Piero Pavan
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (E.M.); (E.C.); (M.G.); (P.P.)
- Correspondence: (D.B.); (M.P.)
| |
Collapse
|
14
|
|
15
|
Fabrication and In Vitro Evaluation of 3D Printed Porous Polyetherimide Scaffolds for Bone Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2076138. [PMID: 31815125 PMCID: PMC6877952 DOI: 10.1155/2019/2076138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 09/24/2019] [Indexed: 01/12/2023]
Abstract
For bone tissue engineering, the porous scaffold should provide a biocompatible environment for cell adhesion, proliferation, and differentiation and match the mechanical properties of native bone tissue. In this work, we fabricated porous polyetherimide (PEI) scaffolds using a three-dimensional (3D) printing system, and the pore size was set as 800 μm. The morphology of 3D PEI scaffolds was characterized by the scanning electron microscope. To investigate the mechanical properties of the 3D PEI scaffold, the compressive mechanical test was performed via an electronic universal testing system. For the in vitro cell experiment, bone marrow stromal cells (BMSCs) were cultured on the surface of the 3D PEI scaffold and PEI slice, and cytotoxicity, cell adhesion, and cell proliferation were detected to verify their biocompatibility. Besides, the alkaline phosphatase staining and Alizarin Red staining were performed on the BMSCs of different samples to evaluate the osteogenic differentiation. Through these studies, we found that the 3D PEI scaffold showed an interconnected porous structure, which was consistent with the design. The elastic modulus of the 3D PEI scaffold (941.33 ± 65.26 MPa) falls in the range of modulus for the native cancellous bone. Moreover, the cell proliferation and morphology on the 3D PEI scaffold were better than those on the PEI slice, which revealed that the porous scaffold has good biocompatibility and that no toxic substances were produced during the progress of high-temperature 3D printing. The osteogenic differentiation level of the 3D PEI scaffold and PEI slice was equal and ordinary. All of these results suggest the 3D printed PEI scaffold would be a potential strategy for bone tissue engineering.
Collapse
|
16
|
Phadatare M, Patil R, Blomquist N, Forsberg S, Örtegren J, Hummelgård M, Meshram J, Hernández G, Brandell D, Leifer K, Sathyanath SKM, Olin H. Silicon-Nanographite Aerogel-Based Anodes for High Performance Lithium Ion Batteries. Sci Rep 2019; 9:14621. [PMID: 31601920 PMCID: PMC6787263 DOI: 10.1038/s41598-019-51087-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g−1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g−1.
Collapse
Affiliation(s)
- Manisha Phadatare
- Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden. .,Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed University), Kolhapur, 416 006, Maharashtra, India.
| | - Rohan Patil
- Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden.
| | - Nicklas Blomquist
- Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| | - Sven Forsberg
- Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| | - Jonas Örtegren
- Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| | - Magnus Hummelgård
- Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| | - Jagruti Meshram
- Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed University), Kolhapur, 416 006, Maharashtra, India
| | - Guiomar Hernández
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Daniel Brandell
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Klaus Leifer
- Electron Microscopy and Nano-Engineering, Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 534, 75121, Uppsala, Sweden
| | - Sharath Kumar Manjeshwar Sathyanath
- Electron Microscopy and Nano-Engineering, Applied Materials Science, Department of Engineering Sciences, Uppsala University, Box 534, 75121, Uppsala, Sweden
| | - Håkan Olin
- Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| |
Collapse
|
17
|
Xiao W, Qu X, Li J, Chen L, Tan Y, Li K, Li B, Liao X. Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Preparation of chitosan-Cu2+/NH3 physical hydrogel and its properties. Int J Biol Macromol 2019; 133:67-75. [DOI: 10.1016/j.ijbiomac.2019.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 11/23/2022]
|
19
|
Kim CL, Kim DE. Durability and Self-healing Effects of Hydrogel Coatings with respect to Contact Condition. Sci Rep 2017; 7:6896. [PMID: 28761116 PMCID: PMC5537306 DOI: 10.1038/s41598-017-07106-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022] Open
Abstract
The self-healing property of a hydrogel applied to a glass substrate as a thin polymer coating was assessed. The motivation was to develop a durable hydrogel coating that may be used to protect the surface of precision components from surface damage and scratches. The intrinsic swelling behavior of hydrogel fibers when they are exposed to moisture was exploited to attain the self-healing effect. The mechanical and self-healing properties of the dehydrated hydrogel coating by the freeze-drying process and the hydrated hydrogel coating that was reconstituted by the addition of water were analyzed. After conducting sliding tests with different loads and sliding distances, the wear area was hydrated with water to successfully induce self-healing of the hydrogel coating. It was also found that both the dehydrated hydrogel coating and the hydrated hydrogel coating had improved friction characteristics. In particular, the hydrated hydrogel coating had a much higher durability than the dehydrated coating.
Collapse
Affiliation(s)
- Chang-Lae Kim
- Center for Nano-Wear, School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dae-Eun Kim
- Center for Nano-Wear, School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
20
|
Dragan ES, Cocarta AI, Gierszewska M. Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Colloids Surf B Biointerfaces 2016; 139:33-41. [DOI: 10.1016/j.colsurfb.2015.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/12/2015] [Accepted: 12/06/2015] [Indexed: 12/16/2022]
|