1
|
Zhang G, Zhou J, Lv Q, Yang R, Zhang Y, Chu J, Zhang H, Han Y, Sun K, Yuan C, Tao K. Rapid virus inactivation by nanoparticles-embedded photodynamic surfaces. J Colloid Interface Sci 2025; 679:609-618. [PMID: 39471589 DOI: 10.1016/j.jcis.2024.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
The persistent threat of viral epidemics poses significant risks to human health, highlighting the urgent need for antiviral surfaces to mitigate viral transmission through bioaerosols and surface contamination. However, there is still a scarcity of readily accessible antiviral coatings to address this critical concern. In this study, we demonstrate that photodynamic nanoparticle-embedded surfaces can swiftly inactivate both enveloped and non-enveloped viruses. We prepared core-shell structured methylene blue (MB)-loaded SiO2 nanoparticles with a high reactive oxygen species (ROS) yield (0.47 ± 0.02). The superior ROS production was maintained after modifying these nanoparticles onto air filter fibers, likely due to the prevention of aggregation-caused quenching effects. Three viruses, including both enveloped and non-enveloped types, were rapidly inactivated within just 12 min (>6 log units) under medium light intensity (660 nm, 30 mW/cm2). Mechanistic studies revealed that envelope glycoproteins are the primary targets for this rapid inactivation. Thus, photodynamic nanoparticle-embedded surfaces offer a straightforward and adaptable strategy in the fight against viral epidemics.
Collapse
Affiliation(s)
- Gengxin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiewen Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuhan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Chu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Chen L, Jiang C, Scholle F, Meo AE, Ohata J, Gorman CB, Ghiladi RA. InP-Based Quantum Dots as Photosensitizers in Photodynamic Antimicrobial Materials. ACS APPLIED BIO MATERIALS 2025. [PMID: 39818708 DOI: 10.1021/acsabm.4c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.2 nm), with light absorption across the entire visible spectrum (λmax ∼550 nm). Under light excitation at 550 nm, the generation of singlet oxygen (1O2) was evidenced by its characteristic phosphorescence signal at 1278 nm, indicating successful energy transfer from the QDs to surface-anchored ACA ligands, in accordance with a type II mechanism for a photodynamically generated singlet oxygen. The InP/ZnSe/ZnS core/shell QDs were applied to cellulose via dip coating, and the resultant QDs-loaded material was assessed for antimicrobial photodynamic inactivation (aPDI) of both Gram-positive [methicillin-resistant Staphylococcus aureus (MRSA; ATCC-44), vancomycin-resistant Enterococcus faecium (VRE; ATCC-2320)] and Gram-negative [multidrug-resistant Acinetobacter baumannii (MDRAB; ATCC-1605), NDM-1 positive Klebsiella pneumoniae (KP; ATCC-2146)] bacteria under illumination (400-700 nm; 85 mW/cm2; 90 min). The highest inactivation was observed for MRSA, achieving at least 99.999% inactivation (5 log units). Antiviral photodynamic inactivation on human coronavirus 229E (HCoV-229E) and feline calicivirus (FCV) demonstrated complete viral inactivation (to the detection limit). Cytotoxicity studies showed that the QDs are nontoxic to mammalian cells in the dark. Together, these results confirm the promising potential of ligand-functionalized InP-based QDs to be employed as nontoxic photosensitizers as materials in self-sterilizing surfaces.
Collapse
Affiliation(s)
- Lihan Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chenyu Jiang
- School of Optical and Electronic Information, Suzhou City University, Suzhou, Jiangsu Province 215104, China
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alissa E Meo
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Christopher B Gorman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Lazić V, Nedeljković JM, Kokol V. Antimicrobial Activity of Amino-Modified Cellulose Nanofibrils Decorated with Silver Nanoparticles. J Funct Biomater 2024; 15:304. [PMID: 39452602 PMCID: PMC11508708 DOI: 10.3390/jfb15100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Silver nanoparticles (Ag NPs) conjugated with amino-functionalized cellulose nanofibrils (NH2-CNFs) were in situ-prepared by reducing silver ions with free amino groups from NH2-CNFs. The spectroscopy and transmission electron microscopy measurements confirmed the presence of non-agglomerated nanometer-in-size Ag NPs within micrometer-large NH2-CNFs of high (20 wt.-%) content. Although the consumption of amino groups during the formation of Ag NPs lowers the ζ-potential and surface charge of prepared inorganic-organic hybrids (from +31.3 to +19.9 mV and from 2.4 to 1.0 mmol/g at pH 7, respectively), their values are sufficiently positive to ensure electrostatic interaction with negatively charged cell walls of pathogens in acidic and slightly (up to pH ~8.5) alkaline solutions. The antimicrobial activity of hybrid microparticles against various pathogens (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans) is comparable with pristine NH2-CNFs. However, a long-timescale use of hybrids ensures the slow and controlled release of Ag+ ions to surrounding media (less than 1.0 wt.-% for one month).
Collapse
Affiliation(s)
- Vesna Lazić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Centre of Excellence for Photoconversion, 11000 Belgrade, Serbia;
| | - Jovan M. Nedeljković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Centre of Excellence for Photoconversion, 11000 Belgrade, Serbia;
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
4
|
Hu L, Han H, Xu Z, Hou X, Wang F, Song K. Multimodal integrated and broadband light-driven antibacterial cellulose fabric based on π-π coupling enhanced intermolecular FRET. Int J Biol Macromol 2024; 277:134466. [PMID: 39209594 DOI: 10.1016/j.ijbiomac.2024.134466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Fabrication of antimicrobial photodynamic therapy (aPDT) materials based on organic photosensitizers has garnered considerable attention within functional textiles. However, the UV- or narrow-band absorption range of the photosensitizers results in poor photon utilization of the fabrics, limiting the photodynamic efficiency and wasting solar energy. In this study, a broadband light-driven antibacterial cellulose fabric (CF-ZnPc/NAD) was developed by loading carboxyl-modified zinc(II) phthalocyanine photosensitizer (CAZnPc) and cationic 1,8-naphthalimide fluorescent molecule (NAD) on the fabric via covalent binding and electrostatic adsorption assembly, facilitating the intermolecular π-π coupling and fluorescence resonance energy transfer (FRET) process. There is a 2.54-fold increase in photo-induced ROS generation capacity of CF-ZnPc/NAD via the FRET process compared to that of CF-ZnPc, and it also exhibited a strong photothermal effect (PTT), wherein the temperature of the fabric increased from 24.5 to 53.5 °C within 80 s of illumination (λ > 400 nm, 75 mW/cm2). CF-ZnPc/NAD exhibited strong light-harvesting capacity and a combination of aPDT and PTT, achieving excellent antibacterial performance against Staphylococcus aureus (Gram-positive, S. aureus) and Escherichia coli (Gram-negative, E.coli) with 99.99 % bacterial reduction under 90 min of illumination (λ > 400 nm, 10 ± 1 mW/cm2). This study demonstrates a novel and facile strategy for successfully fabricating high-performance antibacterial cellulose fabrics with potential biomedical prospects.
Collapse
Affiliation(s)
- Liu Hu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Huayu Han
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zihan Xu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xuebin Hou
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fu Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Kaili Song
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
5
|
Campbell Z, Ghareeb CR, Baro S, Mauthe J, McColgan G, Amassian A, Scholle F, Ghiladi R, Abolhasani M, Dickey EC. Facile Synthesis of Cu-Doped TiO 2 Particles for Accelerated Visible Light-Driven Antiviral and Antibacterial Inactivation. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1411-1423. [PMID: 38808269 PMCID: PMC11129180 DOI: 10.1021/acsaenm.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
In this work, we present a facile and scalable hydrolysis-based route for the synthesis of copper-doped TiO2 particles for highly effective light-activated antiviral and antibacterial applications. The performance of the synthesized Cu-doped TiO2 particles is then evaluated using solution-phase antimicrobial photodynamic inactivation assays. We demonstrate that the Cu-doped TiO2 particles can successfully inactivate a wide range of pathogens with exposure to light for 90 min, including bacteria ranging from methicillin-resistant Staphylococcus aureus (99.9999%, ∼6 log units) to Klebsiella pneumoniae (99.93%, ∼3.3 log units), and viruses including feline calicivirus (99.94%, ∼3.4 log units) and HCoV-229E (99.996%, ∼4.6 log units), with the particles demonstrating excellent robustness toward photobleaching. Furthermore, a spray-coated polymer film, loaded with the synthesized Cu-doped TiO2 particles achieves inactivation of methicillin-resistant S. aureus up to 99.998% (∼4.8 log units). The presented results provide a clear advance forward in the use of metal-doped TiO2 for aPDI applications, including the scalable synthesis (kg/day) of well-characterized and robust particles, their facile incorporation into a nontoxic, photostable coating that may be easily and cheaply applied to a multitude of surfaces, and a broad efficacy against drug-resistant Gram-positive and Gram-negative bacteria, as well as against enveloped and nonenveloped viruses.
Collapse
Affiliation(s)
- Zachary
S. Campbell
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - C. Roland Ghareeb
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Steven Baro
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Jacob Mauthe
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Gail McColgan
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Aram Amassian
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Frank Scholle
- Department
of Biological Sciences, North Carolina State
University, 3510 Thomas
Hall, Campus Box 7614, Raleigh, North Carolina 27695, United States
| | - Reza Ghiladi
- Department
of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Milad Abolhasani
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
| | - Elizabeth C. Dickey
- Department
of Materials Science and Engineering, North
Carolina State University, 911 Partners Way, Raleigh, North Carolina 27603, United States
- Department
of Materials Science and Engineering, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Le Guern F, Ouk TS, Arnoux P, Frochot C, Sol V. Easy and versatile cellulosic support inhibiting broad spectrum strains: synergy between photodynamic antimicrobial therapy and polymyxin B. Photochem Photobiol Sci 2024; 23:395-407. [PMID: 38300464 DOI: 10.1007/s43630-023-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Despite advances achieved in the health field over the last decade, infections caused by resistant bacterial strains are an increasingly important societal issue that needs to be addressed. New approaches have already been developed to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide a promising alternative method to eradicate microbes. This approach has already inspired the development of innovative surfaces. Interesting results were achieved against Gram-positive bacteria, but it also appeared that Gram-negative strains, especially Pseudomonas aeruginosa, were less sensitive to PACT. However, materials coated with cationic porphyrins have already proven their wide-spectrum activity, but these materials were not suitable for industrial-scale production. The main aim of this work was the design of a large-scale evolutionary material based on PACT and antibiotic prophylaxis. Transparent regenerated cellulose has been simply impregnated with a usual cationic porphyrin (N-methylpyridyl) and an antimicrobial peptide (polymyxin B). In addition to its photophysical properties, this film exhibited a wide-spectrum bactericidal activity over 4 days despite daily application of fresh bacterial inoculums. The efficiency of PACT and polymyxin B combination could help to reduce the emergence of bacterial multi-resistant strains and we believe that this kind of material would provide an excellent opportunity to prevent bacterial contamination of bandages or packaging.
Collapse
Affiliation(s)
- Florent Le Guern
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | | | - Phillipe Arnoux
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Vincent Sol
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France.
| |
Collapse
|
7
|
Savelyeva IO, Zhdanova KA, Gradova MA, Gradov OV, Bragina NA. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Curr Issues Mol Biol 2023; 45:9793-9822. [PMID: 38132458 PMCID: PMC10741785 DOI: 10.3390/cimb45120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity.
Collapse
Affiliation(s)
- Inga O. Savelyeva
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Kseniya A. Zhdanova
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| | - Margarita A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, Moscow 119991, Russia;
| | - Natal’ya A. Bragina
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, Vernadsky Prospect 86, Moscow 119571, Russia; (I.O.S.); (K.A.Z.); (N.A.B.)
| |
Collapse
|
8
|
Bustamante V, Palavecino CE. Effect of photodynamic therapy on multidrug-resistant Acinetobacter baumannii: A scoping review. Photodiagnosis Photodyn Ther 2023; 43:103709. [PMID: 37459942 DOI: 10.1016/j.pdpdt.2023.103709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Acinetobacter baumannii is a Gram-negative, non-fermenting coccobacillus of the Moraxellaceae family. It is an opportunistic pathogen responsible for several hospital-acquired infections (HAIs) associated with skin and tissue infections at surgical sites, catheter-associated urinary tract infections, and central line catheters. Multidrug-resistant (MDR) A. baumannii has caused hospital outbreaks that are difficult to eradicate and represent one of the leading producers of HAIs. MDR-A. baumannii presents a broad range of resistance to different antimicrobials, including carbapenems. Due to the low sensitivity to conventional antibiotic therapies, it is necessary to identify other therapeutic options. Antimicrobial photodynamic therapy (aPDT) is a promising alternative and complementary approach to address the shortage of antimicrobials in MDR-A. baumannii. APDT combines a photosensitizer agent, light, and oxygen to achieve a bactericidal/bacteriostatic effect. The effect is given by producing reactive oxygen species (ROS) that produce photooxidative stress over bacterial structures, such as the envelope and the DNA. METHODS This study aims to systematically collect bibliographic information from databases such as PubMed, Scopus, and google scholar to analyze the relevant articles critically. RESULTS An increasing body of evidence demonstrates the efficacy of photodynamic inactivation in eliminating A. baumannii strains, both in vitro and in vivo. CONCLUSIONS The evidence supports that photodynamic inactivation is an alternative capable of eliminating strains of Acinetobacter baumannii and may considerably improve the treatment of MDR strains. Although they do exist, aPDT studies on MDR strains of A. baumannii are scarce and should increase since it is on these strains that photodynamic therapy becomes attractive.
Collapse
Affiliation(s)
- Vanessa Bustamante
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546 Santiago. Chile
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546 Santiago. Chile.
| |
Collapse
|
9
|
Mukherjee S, Manna S, Som N, Dhara S. Organic-Inorganic Hybrid Nanocomposites for Nanotheranostics: Special Focus on Preventing Emerging Variants of SARS-COV-2. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-15. [PMID: 37363138 PMCID: PMC10187951 DOI: 10.1007/s44174-023-00077-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 06/28/2023]
Abstract
The worldwide emerging cases of various respiratory viral diseases and the current escalation of novel coronavirus disease (COVID-19) make people considerably attentive to controlling these viruses through innovative methods. Most re-emerging respiratory diseases envelop RNA viruses that employ attachment between the virus and host cell to get an entry form using the host cell machinery. Emerging variants of COVD-19 also bring about a constant threat to public health as it has wide infectivity and can quickly spread to infect humans. This review focuses on insights into the current investigations to prevent the progression of incipient variants of Severe Acute Respiratory Syndrome Coronavirus (SARS-COV-2) along with similar enveloped RNA viruses that cause respiratory illness in humans and animals. Nanotheranostics is a trailblazing arena of nanomedicine that simultaneously helps prevent or treat diseases and diagnoses. Nanoparticle coating and nanofibers were extensively explored, preventing viral contaminations. Several studies have proven the virucidal activities of metal nanoparticles like copper, silver, and titanium against respiratory viral pathogens. Worldwide many researchers have shown surfaces coated with ionic nanoparticles like zinc or titanium act as potent antiviral agents against RNA viruses. Carbon nanotubes, quantum dots, silica nanoparticles (NPs), polymeric and metallic nanoparticles have also been explored in the field of nanotheranostics in viral detection. In this review, we have comprehensively discussed different types of metallic, ionic, organic nanoparticles and their hybrids showing substantial antiviral properties to stop the progression of the novel coronavirus disease focused on three key classes: prevention, diagnostics, and treatment.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Souvik Manna
- Clinical Microbiology & Antibiotic Research Laboratory, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Nivedita Som
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
10
|
Color-variable dual-dyed photodynamic antimicrobial polyethylene terephthalate (PET)/cotton blended fabrics. Photochem Photobiol Sci 2023:10.1007/s43630-023-00398-1. [PMID: 36894800 PMCID: PMC9998264 DOI: 10.1007/s43630-023-00398-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
The urgent demand for scalable, potent, color variable, and comfortable antimicrobial textiles as personal protection equipment (PPE) to help reduce infection transmission in hospitals and healthcare facilities has significantly increased since the start of the COVID-19 pandemic. Here, we explored photodynamic antimicrobial polyethylene terephthalate/cotton (TC) blended fabrics comprised of photosensitizer-conjugated cotton fibers and polyethylene terephthalate (PET) fibers dyed with disperse dyes. A small library of TC blended fabrics was constructed wherein the PET fibers were embedded with traditional disperse dyes dominating the fabric color, thereby enabling variable color expression, while the cotton fibers were covalently coupled with the photosensitizer thionine acetate as the microbicidal agent. Physical (SEM, CLSM, TGA, XPS and mechanical strength) and colorimetric (K/S and CIELab values) characterization methods were employed to investigate the resultant fabrics, and photooxidation studies with DPBF demonstrated the ability of these materials to generate reactive oxygen species (i.e., singlet oxygen) upon visible light illumination. The best results demonstrated a photodynamic inactivation of 99.985% (~ 3.82 log unit reduction, P = 0.0021) against Gram-positive S. aureus, and detection limit inactivation (99.99%, 4 log unit reduction, P ≤ 0.0001) against Gram-negative E. coli upon illumination with visible light (60 min; ~ 300 mW/cm2; λ ≥ 420 nm). Enveloped human coronavirus 229E showed a photodynamic susceptibility of ~ 99.99% inactivation after 60 min illumination (400-700 nm, 65 ± 5 mW/cm2). The presence of the disperse dyes on the fabrics showed no significant effects on the aPDI results, and furthermore, appeared to provide the photosensitizer with some measure of protection from photobleaching, thus improving the photostability of the dual-dyed fabrics. Taken together, these results suggest the feasibility of low cost, scalable and color variable thionine-conjugated TC blended fabrics as potent self-disinfecting textiles.
Collapse
|
11
|
Monteiro CJP, Neves MGPMS, Nativi C, Almeida A, Faustino MAF. Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review. Int J Mol Sci 2023; 24:3475. [PMID: 36834886 PMCID: PMC9967812 DOI: 10.3390/ijms24043475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cellulose is the most abundant natural biopolymer and owing to its compatibility with biological tissues, it is considered a versatile starting material for developing new and sustainable materials from renewable resources. With the advent of drug-resistance among pathogenic microorganisms, recent strategies have focused on the development of novel treatment options and alternative antimicrobial therapies, such as antimicrobial photodynamic therapy (aPDT). This approach encompasses the combination of photoactive dyes and harmless visible light, in the presence of dioxygen, to produce reactive oxygen species that can selectively kill microorganisms. Photosensitizers for aPDT can be adsorbed, entrapped, or linked to cellulose-like supports, providing an increase in the surface area, with improved mechanical strength, barrier, and antimicrobial properties, paving the way to new applications, such as wound disinfection, sterilization of medical materials and surfaces in different contexts (industrial, household and hospital), or prevention of microbial contamination in packaged food. This review will report the development of porphyrinic photosensitizers supported on cellulose/cellulose derivative materials to achieve effective photoinactivation. A brief overview of the efficiency of cellulose based photoactive dyes for cancer, using photodynamic therapy (PDT), will be also discussed. Particular attention will be devoted to the synthetic routes behind the preparation of the photosensitizer-cellulose functional materials.
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | | | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
12
|
Sun J, Bai Y, Yu EY, Ding G, Zhang H, Duan M, Huang P, Zhang M, Jin H, Kwok RT, Li Y, Shan GG, Tang BZ, Wang H. Self-cleaning wearable masks for respiratory infectious pathogen inactivation by type I and type II AIE photosensitizer. Biomaterials 2022; 291:121898. [PMID: 36379162 PMCID: PMC9647237 DOI: 10.1016/j.biomaterials.2022.121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Although face masks as personal protective equipment (PPE) are recommended to control respiratory diseases with the on-going COVID-19 pandemic, improper handling and disinfection increase the risk of cross-contamination and compromise the effectiveness of PPE. Here, we prepared a self-cleaning mask based on a highly efficient aggregation-induced emission photosensitizer (TTCP-PF6) that can destroy pathogens by generating Type I and Type II reactive oxygen species (ROS). The respiratory pathogens, including influenza A virus H1N1 strain and Streptococcus pneumoniae (S. pneumoniae) can be inactivated within 10 min of ultra-low power (20 W/m2) white light or simulated sunlight irradiation. This TTCP-PF6-based self-cleaning strategy can also be used against other airborne pathogens, providing a strategy for dealing with different microbes.
Collapse
Affiliation(s)
- Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Eric Y Yu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Guanyu Ding
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ming Duan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ryan Tk Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
13
|
He G, Tian L, Fatona A, Wu X, Zhang H, Liu J, Fefer M, Hosseinidoust Z, Pelton RH. Water-soluble anionic polychloramide biocides based on maleic anhydride copolymers. Colloids Surf B Biointerfaces 2022; 215:112487. [PMID: 35430484 DOI: 10.1016/j.colsurfb.2022.112487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 10/24/2022]
Abstract
Our goal was to develop film-forming polymers to extend the antimicrobial lifetimes of cleaned and disinfected surfaces. Antimicrobial polymers were prepared by first reacting poly(ethylene-alt-maleic anhydride) with isopropylamine, partially consuming the anhydride groups, followed by hydrolysis to give water-soluble, highly anionic polyamide PC3. Chlorination with NaOCl gave PC3Cl with oxidative chlorine contents up to 9 wt%. Dried, 5 µm thick, PC3Cl films, gave log 4 reductions in the concentration of Escherichia coli or Staphylococcus aureus exposed to films. A unique feature of the maleic anhydride copolymer platform was the ability to form covalent grafts to surfaces via anhydride reactions. PC3 solution was impregnated into cellulosic filter paper, heated to form ester linkages with cellulose, followed by chlorination with sodium dichloroisocyanurate dihydrate giving grafted PC3Cl. The treated paper (0.3 wt% PC3Cl) gave a log 4 reduction of E. coli concentration in 30 min.
Collapse
Affiliation(s)
- Gaoyin He
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7 Canada
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7 Canada
| | - Ayodele Fatona
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7 Canada
| | - Xiao Wu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7 Canada
| | - Hongfeng Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7 Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga ON, L5K 1A8 Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga ON, L5K 1A8 Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7 Canada
| | - Robert H Pelton
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7 Canada.
| |
Collapse
|
14
|
Galstyan A, Majiya H, Dobrindt U. Regulation of photo triggered cytotoxicity in electrospun nanomaterials: role of photosensitizer binding mode and polymer identity. NANOSCALE ADVANCES 2021; 4:200-210. [PMID: 36132947 PMCID: PMC9418932 DOI: 10.1039/d1na00717c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 06/16/2023]
Abstract
Although electrospun nanomaterials containing photoactive dyes currently compete with the present state of art antimicrobial materials, relatively few structure-activity relationships have been established to identify the role of carrier polymer and photosensitizer binding mode on the performance of the materials. In this study scaffolds composed of poly(vinyl alcohol), polyacrylonitrile, poly(caprolactone), and tailor-made phthalocyanine-based photosensitizers are developed utilizing electrospinning as a simple, time and cost-effective method. The photoinduced activity of nanofibrous materials was characterized in vitro against E. coli and B. subtilis as models for Gram-negative and Gram-positive bacteria respectively, as well as against bacteriophages phi6 and MS2 as models for enveloped and non-enveloped viruses respectively. For the first time, we show how polymer-specific properties affect antifouling and antimicrobial activity of the nanofibrous material, indicating that the most promising way to increase efficiency is likely via methods that focus on increasing the number of short, but strong and reversible bacteria-surface interactions.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Busso-Peus-Strasse 10 48149 Münster Germany
| | - Hussaini Majiya
- Department of Microbiology, Ibrahim Badamasi Babangida University KM3 Lapai-Minna Road, P.M.B 11 Lapai Nigeria
| | - Urlich Dobrindt
- Institut of Hygiene, Westfälische Wilhelms-Universität Münster Mendelstrasse 7 48149 Münster Germany
| |
Collapse
|
15
|
Versace DL, Breloy L, Palierse E, Coradin T. Contributions of photochemistry to bio-based antibacterial polymer materials. J Mater Chem B 2021; 9:9624-9641. [PMID: 34807217 DOI: 10.1039/d1tb01801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.
Collapse
Affiliation(s)
- Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France. .,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), UMR 7197, 4 place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
16
|
Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Gu M, Huang L, Wang Z, Guo W, Cheng L, Yuan Y, Zhou Z, Hu L, Chen S, Shen C, Tang BZ, Ye R. Molecular Engineering of Laser-Induced Graphene for Potential-Driven Broad-Spectrum Antimicrobial and Antiviral Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102841. [PMID: 34672086 DOI: 10.1002/smll.202102841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/04/2021] [Indexed: 05/08/2023]
Abstract
Worldwide, countless deaths have been caused by the coronavirus disease 2019. In addition to the virus variants, an increasing number of fatal fungal infections have been reported, which further exacerbates the scenario. Therefore, the development of porous surfaces with both antiviral and antimicrobial capacities is of urgent need. Here, a cost-effective, nontoxic, and metal-free strategy is reported for the surface engineering of laser-induced graphene (LIG). The authors covalently engineer the surface potential of the LIG from -14 to ≈+35 mV (LIG+ ), enabling both high-efficiency antimicrobial and antiviral performance under mild conditions. Specifically, several candidate microorganisms of different types, including Escherichia coli, Streptomyces tenebrarius, and Candida albicans, are almost completely inactivated after 10-min solar irradiation. LIG+ also exhibits a strong antiviral effect against human coronaviruses: 99% HCoV-OC43 and 100% HCoV-229E inactivation are achieved after 20-min treatment. Such enhancement may also be observed against other types of pathogens that are heat-sensitive and oppositely charged. Besides, the covalent modification strategy alleviates the leaching problem, and the low cytotoxicity of LIG+ makes it advantageous. This study highlights the synergy of surface potential and photothermal effect in the inactivation of pathogens and it provides a direction for designing porous materials for airborne disease removal and water disinfection.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Libei Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Weihua Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Le Cheng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhou Zhou
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Liu Hu
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sijie Chen
- Ming Wai Lau Center for Reparative Medicine, Karolinska Institute, Sha Tin, Hong Kong, 999077, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, Guangdong, 518172, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, Guangdong, 510640, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
18
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 716] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Ghareeb CR, Peddinti BST, Kisthardt SC, Scholle F, Spontak RJ, Ghiladi RA. Toward Universal Photodynamic Coatings for Infection Control. Front Med (Lausanne) 2021; 8:657837. [PMID: 34395464 PMCID: PMC8355428 DOI: 10.3389/fmed.2021.657837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
The dual threats posed by the COVID-19 pandemic and hospital-acquired infections (HAIs) have emphasized the urgent need for self-disinfecting materials for infection control. Despite their highly potent antimicrobial activity, the adoption of photoactive materials to reduce infection transmission in hospitals and related healthcare facilities has been severely hampered by the lack of scalable and cost-effective manufacturing, in which case high-volume production methods for fabricating aPDI-based materials are needed. To address this issue here, we examined the antimicrobial efficacy of a simple bicomponent spray coating composed of the commercially-available UV-photocrosslinkable polymer N-methyl-4(4'-formyl-styryl)pyridinium methosulfate acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs): zinc-tetra(4-N-methylpyridyl)porphine (ZnTMPyP4+), methylene blue (MB), and Rose Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS, to a variety of commercially available materials. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the successful application of the coatings, while inductively coupled plasma-optical emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus strain HCoV-229E. Upon illumination with visible light (60 min, 400-700 nm, 65 ± 5 mW/cm2), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E by 92-99.999%, depending on the material and PS employed. Photobleaching studies employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after exposure for 4 weeks to indoor ambient room lighting. Taken together, these results demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally applied to a wide range of materials for effectively reducing pathogen transmission.
Collapse
Affiliation(s)
- C Roland Ghareeb
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Bharadwaja S T Peddinti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Samantha C Kisthardt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States
| | - Richard J Spontak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States.,Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.,Center for Advanced Virus Experimentation, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
20
|
Harada N, Masuda K, Nakamura JI, Uyama H. Fabrication and evaluation of durable, optically clear, and self-disinfecting films. Polym J 2021. [DOI: 10.1038/s41428-021-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
López-Fernández AM, Muñoz Resta I, de Llanos R, Galindo F. Photodynamic Inactivation of Pseudomonas aeruginosa by PHEMA Films Loaded with Rose Bengal: Potentiation Effect of Potassium Iodide. Polymers (Basel) 2021; 13:2227. [PMID: 34300985 PMCID: PMC8309320 DOI: 10.3390/polym13142227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022] Open
Abstract
Four formulations have been used to produce different poly(2-hydroxyethyl methacrylate) (PHEMA) thin films, containing singlet oxygen photosensitizer Rose Bengal (RB). The polymers have been characterized employing Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and UV-vis Absorption Spectroscopy. When irradiated with white light (400-700 nm) films generated singlet oxygen (1O2), as demonstrated by the reactivity with 1O2 trap 9,10-dimethylanthracene (DMA). Material with the highest RB loading (polymer A4, 835 nmol RB/g polymer) was able to perform up to ten cycles of DMA oxygenation reactions at high conversion rates (ca. 90%). Polymer A4 was also able to produce the complete eradication of a Pseudomonas aeruginosa planktonic suspension of 8 log10 CFU/mL, when irradiated with white light (total dose 72 J/cm2). The antimicrobial photodynamic effect was remarkably enhanced by adding potassium iodide (100 mM). In such conditions the complete bacterial reduction occurred with a total light dose of 24 J/cm2. Triiodide anion (I3-) generation was confirmed by UV-vis absorption spectroscopy. This species was detected inside the PHEMA films after irradiation and at concentrations ca. 1 M. The generation of this species and its retention in the matrix imparts long-lasting bactericidal effects to the RB@PHEMA polymeric hydrogels. The polymers here described could find potential applications in the medical context, when optimized for their use in everyday objects, helping to prevent bacterial contagion by contact with surfaces.
Collapse
Affiliation(s)
- Ana M. López-Fernández
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain; (A.M.L.-F.); (I.M.R.)
| | - Ignacio Muñoz Resta
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain; (A.M.L.-F.); (I.M.R.)
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain; (A.M.L.-F.); (I.M.R.)
| |
Collapse
|
22
|
Li M, Wen H, Li H, Yan ZC, Li Y, Wang L, Wang D, Tang BZ. AIEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection. Biomaterials 2021; 276:121007. [PMID: 34237505 PMCID: PMC8253668 DOI: 10.1016/j.biomaterials.2021.121007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
The outbreak of infectious diseases such as COVID-19 causes an urgent need for abundant personal protective equipment (PPE) which leads to a huge shortage of raw materials. Additionally, the inappropriate disposal and sterilization of PPE may result in a high risk of cross-contamination. Therefore, the exploration of antimicrobial materials possessing both microbe interception and self-decontamination effects to develop reusable and easy-to-sterilize PPE is of great importance. Herein, an aggregation-induced emission (AIE)-active luminogen-loaded nanofibrous membrane (TTVB@NM) sharing sunlight-triggered photodynamic/photothermal anti-pathogen functions are prepared using the electrospinning technique. Thanks to its porous nanostructure, TTVB@NM shows excellent interception effects toward ultrafine particles and pathogenic aerosols. Benefiting from the superior photophysical properties of the AIE-active dopants, TTVB@NM exhibits integrated properties of wide absorption in visible light range, efficient ROS generation, and moderate photothermal conversion performance. A series of antimicrobial evaluations reveal that TTVB@NM could effectively inactivate pathogenic aerosols containing bacteria (inhibition rate: >99%), fungi (~88%), and viruses (>99%) within only 10 min sunlight irradiation. This study represents a new strategy to construct reusable and easy-to-sterilize hybrid materials for potential bioprotective applications.
Collapse
Affiliation(s)
- Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haifei Wen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haoxuan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhi-Chao Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
23
|
Huang L, Gu M, Wang Z, Tang TW, Zhu Z, Yuan Y, Wang D, Shen C, Tang BZ, Ye R. Highly Efficient and Rapid Inactivation of Coronavirus on Non-Metal Hydrophobic Laser-Induced Graphene in Mild Conditions. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101195. [PMID: 34149339 PMCID: PMC8206748 DOI: 10.1002/adfm.202101195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Indexed: 05/18/2023]
Abstract
The prevalence of COVID-19 has caused global dysfunction in terms of public health, sustainability, and socio-economy. While vaccination shows potential in containing the spread, the development of surfaces that effectively reduces virus transmission and infectivity is also imperative, especially amid the early stage of the pandemic. However, most virucidal surfaces are operated under harsh conditions, making them impractical or potentially unsafe for long-term use. Here, it is reported that laser-induced graphene (LIG) without any metal additives shows marvelous antiviral capacities for coronavirus. Under low solar irradiation, the virucidal efficacy of the hydrophobic LIG (HLIG) against HCoV-OC43 and HCoV-229E can achieve 97.5% and 95%, respectively. The photothermal effect and the hydrophobicity of the HLIG synergistically contribute to the superior inactivation capacity. The stable antiviral performance of HLIG enables its multiple uses, showing advantages in energy saving and environmental protection. This work discloses a potential method for antiviral applications and has implications for the future development of antiviral materials.
Collapse
Affiliation(s)
- Libei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationSchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationSchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Zhaoyu Wang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced StudyThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Tsz Wing Tang
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Zonglong Zhu
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Yuncong Yuan
- College of Life SciencesWuhan UniversityWuhan430071China
| | - Dong Wang
- College of Life SciencesWuhan UniversityWuhan430071China
| | - Chao Shen
- College of Life SciencesWuhan UniversityWuhan430071China
- China Center for Type Culture CollectionWuhan UniversityWuhan430071China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced StudyThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- HKUST‐Shenzhen Research InstituteNo. 9 Yuexing 1st Rd, South Area, Hi‐tech Park, NanshanShenzhen518057China
- Center for Aggregation‐Induced EmissionState Key Laboratory of Luminescent Materials and DevicesSCUT‐HKUST Joint Research InstituteSouth China University of TechnologyTianhe QuGuangzhou510640China
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhenGuangdong518057China
| |
Collapse
|
24
|
Peddinti BST, Morales-Gagnon N, Pourdeyhimi B, Scholle F, Spontak RJ, Ghiladi RA. Photodynamic Coatings on Polymer Microfibers for Pathogen Inactivation: Effects of Application Method and Composition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:155-163. [PMID: 33356100 DOI: 10.1021/acsami.0c16953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.
Collapse
|
25
|
Wang T, Ke H, Chen S, Wang J, Yang W, Cao X, Liu J, Wei Q, Ghiladi RA, Wang Q. Porous protoporphyrin IX-embedded cellulose diacetate electrospun microfibers in antimicrobial photodynamic inactivation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111502. [DOI: 10.1016/j.msec.2020.111502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
|
26
|
Sunday MO, Sakugawa H. A simple, inexpensive method for gas-phase singlet oxygen generation from sensitizer-impregnated filters: Potential application to bacteria/virus inactivation and pollutant degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141186. [PMID: 32745862 PMCID: PMC7377787 DOI: 10.1016/j.scitotenv.2020.141186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Airborne infectious diseases such as the new Coronavirus 2019 (COVID-19) pose serious threat to human health. Indoor air pollution is a problem of global environmental concern as well. Singlet oxygen (1O2) is a reactive oxygen species that plays important role in bacteria/virus inactivation and pollutant degradation. In this study, we found that commercially available filters typically deployed in air purifier and air conditioning units, when impregnated with Rose Bengal (RB) as a 1O2 sensitizer, can be used for heterogeneous gas-phase generation of 1O2. It was confirmed that irradiation of the RB filter under oxygen gas stream produced 1O2, which was measured using furfuryl alcohol trapping method followed by HPLC analysis. It was also observed that the amount of 1O2 generated increases as the light intensity increased. Similarly, the sensitizer loading also positively influenced the 1O2 generation. The heterogeneous gas-phase generation of 1O2 can find potential applications in air purifier and air conditioning units for the purpose of bacteria/virus inactivation and/or pollutant degradation thereby improving indoor air quality.
Collapse
Affiliation(s)
- Michael Oluwatoyin Sunday
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521, Japan; Department of Chemistry, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Hiroshi Sakugawa
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| |
Collapse
|
27
|
Lazić V, Vivod V, Peršin Z, Stoiljković M, Ratnayake IS, Ahrenkiel PS, Nedeljković JM, Kokol V. Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L, Didar TF. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS NANO 2020; 14:12341-12369. [PMID: 33034443 PMCID: PMC7553040 DOI: 10.1021/acsnano.0c05937] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
The global COVID-19 pandemic has attracted considerable attention toward innovative methods and technologies for suppressing the spread of viruses. Transmission via contaminated surfaces has been recognized as an important route for spreading SARS-CoV-2. Although significant efforts have been made to develop antibacterial surface coatings, the literature remains scarce for a systematic study on broad-range antiviral coatings. Here, we aim to provide a comprehensive overview of the antiviral materials and coatings that could be implemented for suppressing the spread of SARS-CoV-2 via contaminated surfaces. We discuss the mechanism of operation and effectivity of several types of inorganic and organic materials, in the bulk and nanomaterial form, and assess the possibility of implementing these as antiviral coatings. Toxicity and environmental concerns are also discussed for the presented approaches. Finally, we present future perspectives with regards to emerging antimicrobial technologies such as omniphobic surfaces and assess their potential in suppressing surface-mediated virus transfer. Although some of these emerging technologies have not yet been tested directly as antiviral coatings, they hold great potential for designing the next generation of antiviral surfaces.
Collapse
Affiliation(s)
- Sara M. Imani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Liane Ladouceur
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Terrel Marshall
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Roderick Maclachlan
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Mechanical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Michael G. DeGroote Institute of
Infectious Disease Research, McMaster
University, Hamilton, ON L8N 3Z5,
Canada
| |
Collapse
|
29
|
Khorsandi K, Fekrazad S, Vahdatinia F, Farmany A, Fekrazad R. Nano Antiviral Photodynamic Therapy: a Probable Biophysicochemical Management Modality in SARS-CoV-2. Expert Opin Drug Deliv 2020; 18:265-272. [PMID: 33019838 DOI: 10.1080/17425247.2021.1829591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION COVID-19 disease has shocked the world by its spread and contagiousness. At this time, there is no valid vaccine and no proven drug treatment for COVID-19 patients. Current treatments are focused on Oxygenation, Cytokine Storm management, anti-inflammatory effects, and antiviral therapy. Antiviral photodynamic therapy (aPDT) is based on the reaction between a photo-sensitive agent and a light source in the presence of oxygen which can produce oxidative and free radical agents to damage the virus' structures. Recent studies show that nanotechnology can improve aPDT's outcome. The aim of this study was to find out the potential therapeutic effects of Nano antiviral photodynamic therapy on COVID-19. AREAS COVERED This review evaluates Nano Antiviral Photodynamic Therapy: A Probable Biophysicochemical Management Modality in SARS-CoV-2. Data were extracted from published different studies published on PUBMED, SCOPUS, and Web of Science. EXPERT OPINION Studies indicating that aPDT and Nano-based aPDT can be useful in viral pulmonary complications like Influenza, SARS-CoV, and MERS, but there was no direct study on SARS-Cov-2. Recent studies showed that Nano-based aPDT could relate to control of the stages of viral infections. Altogether, further investigations for the application of nanomedicine in antimicrobial photodynamic inactivation are needed for COVID-19 Management.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Sepehr Fekrazad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Vahdatinia
- Dental Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research, Tehran, Iran
| |
Collapse
|
30
|
Hakovirta M, Hakovirta J. Transmittance and Survival of SARS-CoV-2 in Global Trade: The Role of Supply Chain and Packaging. ACTA ACUST UNITED AC 2020; 4:261-265. [PMID: 33015545 PMCID: PMC7523487 DOI: 10.1007/s41783-020-00101-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 01/17/2023]
Abstract
We are living in uncertain times and facing a paradigm shift in human health and sustainability. The number of SARS-CoV-2 victims is rising daily and all nations are going through dramatic effects and exploring various solutions to this imminent calamity facing the humanity. The world is confronting a public health issue that has forced it to come to a halt and evaluate the future of our modern society and our way of living. It can be stated that the sustainability of our societies inextricably depends on the performance of our global trade and supply chains. This review article is the first published assessment on the global trade and especially packaging’s role in the transmittance of SARS-CoV-2 virus. Surprisingly, based on our findings, the lack of knowledge on transmittance and survival of SARS-CoV-2 in supply chain and packaging is substantial. Although there are several existing and available technologies that can be used for the risk mitigation, our assessment shows a major and timely need for broad conceptual advancements and necessary understanding of the supply chain risks associated with the viral surface transmittances. The specificity to the current and possibly future pandemics demands an increasing amount of multidisciplinary research and involvement of public and private sectors. This proposed erudition is imminent and may be highly critical in safeguarding and the sustainability of the critical supply chains in our society now and in the future.
Collapse
Affiliation(s)
- Marko Hakovirta
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC USA
| | - Janetta Hakovirta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
31
|
Wang T, Chen W, Dong T, Lv Z, Zheng S, Cao X, Wei Q, Ghiladi RA, Wang Q. Color-Variable Photodynamic Antimicrobial Wool/Acrylic Blended Fabrics. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4141. [PMID: 32957677 PMCID: PMC7560281 DOI: 10.3390/ma13184141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023]
Abstract
Towards the goal of developing scalable, economical and effective antimicrobial textiles to reduce infection transmission, here we prepared color-variable photodynamic materials comprised of photosensitizer (PS)-loaded wool/acrylic (W/A) blends. Wool fibers in the W/A blended fabrics were loaded with the photosensitizer rose bengal (RB), and the acrylic fibers were dyed with a variety of traditional cationic dyes (cationic yellow, cationic blue and cationic red) to broaden their color range. Investigations on the colorimetric and photodynamic properties of a series of these materials were implemented through CIELab evaluation, as well as photooxidation and antibacterial studies. Generally, the photodynamic efficacy of these dual-dyed fabrics was impacted by both the choice, and how much of the traditional cationic dye was employed in the dyeing of the W/A fabrics. When compared with the PS-only singly-dyed material, RB-W/A, that showed a 99.97% (3.5 log units; p = 0.02) reduction of Staphylococcus aureus under visible light illumination (λ ≥ 420 nm, 60 min), the addition of cationic dyes led to a slight decrease in the photoinactivation ability of the dual-dyed fabrics, but was still able to achieve a 99.3% inactivation of S. aureus. Overall, our findings demonstrate the feasibility and potential applications of low cost and color variable RB-loaded W/A blended fabrics as effective self-disinfecting textiles against pathogen transmission.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
| | - Wangbingfei Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
| | - Tingting Dong
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
| | - Zihao Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
| | - Siming Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
| | - Xiuming Cao
- Jiangsu Sunshine Group Co., Ltd., Jiangyin 214122, China;
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
| | - Reza A. Ghiladi
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (T.W.); (W.C.); (T.D.); (Z.L.); (S.Z.); (Q.W.)
- Jiangsu Sunshine Group Co., Ltd., Jiangyin 214122, China;
| |
Collapse
|
32
|
Liu N, Zhu M, Niu N, Ren J, Yang N, Yu C. Aza-BODIPY Probe-Decorated Mesoporous Black TiO 2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41071-41078. [PMID: 32806896 DOI: 10.1021/acsami.0c10531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As an important noninvasive tumor treatment method, phototherapy has drawn extensive research interest. However, the requirements of separate excitation wavelengths, high degree of electron-hole recombination, and low reactive oxygen species (ROS) production capability are still the major barriers. This work reports the construction of a novel nanoplatform: design and synthesis of an aza-BODIPY (AB) probe-decorated mesoporous black titanium dioxide (TiO2) (MT) nanoparticles (NPs) for enhanced photodynamic therapy and photothermal therapy under single-wavelength near-infrared (NIR) laser irradiation for the first time. AB probe-decorated MT NPs (abbreviated as MTAB) were synthesized through the Al reduction of mesoporous anatase TiO2 NPs and subsequent adsorption of the AB probe. The mesoporous structure of MT ensured AB loading capacity and avoided the complicated modification and synthesis processes. Heterogeneous MTAB, which possessed staggered energy levels, were assessed for their capability for effective separation of photogenerated electrons and holes for the first time. Upon NIR laser light irradiation, MTAB exhibited sufficient ROS generation, resulting in distinct tumor cell killing and tumor tissue elimination. This unique heterogeneous nanoplatform with staggered energy levels provides a new strategy to enhance ROS generation and improve the therapeutic efficacy.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
| | - Ming Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
| | - Niu Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 China
- University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Yun T, Cheng P, Qian F, Cheng Y, Lu J, Lv Y, Wang H. Balancing the decomposable behavior and wet tensile mechanical property of cellulose-based wet wipe substrates by the aqueous adhesive. Int J Biol Macromol 2020; 164:1898-1907. [PMID: 32800954 PMCID: PMC7422816 DOI: 10.1016/j.ijbiomac.2020.08.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
With the current global outbreak of novel coronaviruses, the fabrication of decomposable wet wipe with sufficient wet strength to meet daily use is promising but still challenging, especially when renewable cellulose was employed. In this work, a decomposable cellulose-based wet wipe substrate is demonstrated by introducing a synthetic N-vinyl pyrrolidone-glycidyl methacrylate (NVP-GMA) adhesive on the cellulose surface. Experimental results reveal that the NVP-GMA adhesive not only significantly facilitates the chemical bonding between cellulose fibers in the wet state, but also increase the surface wettability and water retention. The as-fabricated cellulose-based wet wipe substrate displays a superb water retention capacity of 1.9 times, an excellent water absorption capacity (completely wetted with 0° water contact angle), and a perfect wet tensile index of 3.32 N.m.g−1. It is far better than state-of-the-art wet toilet wipe on the market (non-woven). The prepared renewable and degradable cellulose-based substrate with excellent mechanical strength has potential application prospects in diverse commercially available products such as sanitary and medical wet wipes. A decomposable wet wipe substrate was prepared from the bio-based materials. Synthetic adhesive enhanced the wet strength of the cellulose sheet. Enhancement of cellulose-based material was achieved under aqueous conditions. As-prepared cellulose substrate balanced the dispersibility and wet strength.
Collapse
Affiliation(s)
- Tongtong Yun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Peng Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China
| | - Yanna Lv
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, PR China.
| |
Collapse
|
34
|
Del Valle CA, Pérez-Laguna V, Resta IM, Gavara R, Felip-León C, Miravet JF, Rezusta A, Galindo F. A cost-effective combination of Rose Bengal and off-the-shelf cationic polystyrene for the photodynamic inactivation of Pseudomonas aeruginosa. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111302. [PMID: 32919663 DOI: 10.1016/j.msec.2020.111302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
Abstract
Two new photoactive materials have been prepared, characterized and tested against Pseudomonas aeruginosa bacteria (planktonic suspension). The synthesis of the polymeric photosensitizers can be made at a multigram scale, in few minutes, starting from inexpensive and readily available materials, such as Rose Bengal (photosensitizer) and ion exchange resins Amberlite® IRA 900 (macroporous) or IRA 400 (gel-type) as cationic polystyrene supports. The most notable feature of these systems is their notable bactericidal activity in the dark (4-5 log10 CFU/mL reduction of the population of P. aeruginosa) which becomes enhanced upon irradiation with visible light (to reach a total reduction of 8 log10 CFU/mL for the macroporous polymer at a fluence of 120 J/cm2 using green light of 515 nm).
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Vanesa Pérez-Laguna
- Departamento de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Ignacio Muñoz Resta
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Raquel Gavara
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Carles Felip-León
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F Miravet
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Antonio Rezusta
- Departamento de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain.
| | - Francisco Galindo
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
35
|
Nie X, Jiang C, Wu S, Chen W, Lv P, Wang Q, Liu J, Narh C, Cao X, Ghiladi RA, Wei Q. Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111864. [PMID: 32247250 DOI: 10.1016/j.jphotobiol.2020.111864] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/07/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
Carbon nanomaterials have increasingly gained the attention of the nano-, photo- and biomedical communities owing to their unique photophysical properties. Here, we facilely synthesized carbon quantum dots (CQDs) in a one-pot solvothermal reaction, and demonstrated their utility as photosensitizers for in vitro antibacterial photodynamic inactivation (aPDI). The bottom-up synthesis employed inexpensive and sustainable starting materials (citric acid), used ethanol as an environmentally-friendly solvent, was relatively energy efficient, produced minimal waste, and purification was accomplished simply by filtration. The CQDs were characterized by both physical (TEM, X-ray diffraction) and spectroscopic (UV-visible, fluorescence, and ATR-FTIR) methods, which together confirmed their nanoscale dimensions and photophysical properties. aPDI studies demonstrated detection limit inactivation (99.9999 + %) of Gram-negative Escherichia coli 8099 and Gram-positive Staphylococcus aureus ATCC-6538 upon visible light illumination (λ ≥ 420 nm, 65 ± 5 mW/cm2; 60 min). Post-illumination SEM images of the bacteria incubated with the CQDs showed perforated and fragmented cell membranes consistent with damage from reactive oxygen species (ROS), and mechanistic studies revealed that the bacteria were inactivated by singlet oxygen, with no discernable roles for other ROS (e.g., superoxide or hydroxyl radicals). These findings demonstrated that CQDs can be facilely prepared, operate via a Type II mechanism, and are effective photosensitizers for in vitro aPDI.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wangbingfei Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingyan Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Christopher Narh
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiuming Cao
- Jiangsu Sunshine Group Co., Ltd., Jiangyin 214122, China
| | - Reza A Ghiladi
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
36
|
Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020; 19:445-461. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.
Collapse
|
37
|
Sun Y, Zhao C, Niu J, Ren J, Qu X. Colorimetric Band-aids for Point-of-Care Sensing and Treating Bacterial Infection. ACS CENTRAL SCIENCE 2020; 6:207-212. [PMID: 32123738 PMCID: PMC7047266 DOI: 10.1021/acscentsci.9b01104] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 05/16/2023]
Abstract
Sensing bacterial infections and monitoring drug resistance are very important for the selection of treatment options. However, the common methods of sensing resistance are limited by time-consuming, the requirement for professional personnel, and expensive instruments. Moreover, the abuse of antibiotics causes the accelerated process of bacterial resistance. Herein, we construct a portable paper-based band-aid (PBA) which implements a selective antibacterial strategy after sensing of drug resistance. The colors of PBA indicate bacterial infection (yellow) and drug resistance (red), just like a bacterial resistance colorimetric card. On the basis of color, antibiotic-based chemotherapy and Zr-MOF PCN-224-based photodynamic therapy (PDT) are used on site to treat sensitive and resistant strains, respectively. Eventually, it takes 4 h to sense, and the limit of detection is 104 CFU/mL for drug-resistant E. coli. Compared with traditional PDT-based antibacterial strategies, our design can alleviate off-target side effects, maximize therapeutic efficacy, and track the drug resistance in real time with the naked eye. This work develops a new way for the rational use of antibiotics. Given the low cost and easy operation of this point-of-care device, it can be developed for practical applications.
Collapse
Affiliation(s)
- Yuhuan Sun
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanqi Zhao
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- E-mail:
| | - Jingsheng Niu
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- E-mail:
| |
Collapse
|
38
|
Feese E, Gracz HS, Boyle PD, Ghiladi RA. Towards microbe-targeted photosensitizers: Synthesis, characterization and in vitro photodynamic inactivation of the tuberculosis model pathogen M. smegmatis by porphyrin-peptide conjugates. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrin-peptide conjugates have a breadth of potential applications, including use in photodynamic therapy, boron neutron capture therapy, as fluorescence imaging tags for tracking subcellular localization, as magnetic resonance imaging (MRI) positive-contrast reagents and as biomimetic catalysts. Here, we have explored three general routes to porphyrin-peptide conjugates using the Cu(I)-catalyzed Huisgen-Medal-Sharpless 1,3-dipolar cycloaddition of peptide-containing azides with a terminal alkyne-containing porphyrin, thereby generating porphyrin-peptide conjugates (PPCs) comprised of a cationic porphyrin coupled to short antimicrobial peptides. In addition to characterizing the PPCs using a variety of spectroscopic (UV-vis, [Formula: see text]H- and [Formula: see text]C-NMR) and mass spectrometric methods, we evaluated their efficacy as photosensitizers for the in vitro photodynamic inactivation of Mycobacterium smegmatis as a model for the pathogen Mycobacterium tuberculosis. Difficulties that needed to be overcome for the efficient synthesis of PPCs were the limited solubility of the quaternized pyridyl porphyrin in common solvents, undesired (de)metallation and transmetallation, and chromatographic purification. Photodynamic inactivation studies of a small library of PPCs against Mycobacterium smegmatis confirmed our hypothesis that the porphyrin-based photosensitizer maintains its ability to efficiently inactivate bacteria when conjugated to a small peptide by upwards of 5–6 log units (99.999[Formula: see text]%) using white light illumination (400–700 nm, 60 mW/cm[Formula: see text], 30 min). Further, hemolysis assays revealed the lack of toxicity of the PPCs against sheep blood at concentrations employed for in vitro photodynamic inactivation. Taken together, the results demonstrated the ability of PPCs to maintain their antimicrobial photodynamic inactivation efficacy when possessing a short cationic peptides for enabling the potential targeting of pathogens in vivo.
Collapse
Affiliation(s)
- Elke Feese
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Hanna S. Gracz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul D. Boyle
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| |
Collapse
|
39
|
Koschella A, Chien C, Iwata T, Thonhofer MS, Wrodnigg TM, Heinze T. All Sugar Based Cellulose Derivatives Synthesized by Azide–Alkyne Click Chemistry. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andreas Koschella
- Center of Excellence for Polysaccharide Research Institute for Organic Chemistry and Macromolecular Chemistry Friedrich‐Schiller University of Jena Humboldtstraße 10 07743 Jena Germany
| | - Chih‐Ying Chien
- Center of Excellence for Polysaccharide Research Institute for Organic Chemistry and Macromolecular Chemistry Friedrich‐Schiller University of Jena Humboldtstraße 10 07743 Jena Germany
- Science of Polymeric Materials Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences The University of Tokyo 1‐1‐1 Yayoi, Bunkyo‐ku Tokyo 113‐8657 Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences The University of Tokyo 1‐1‐1 Yayoi, Bunkyo‐ku Tokyo 113‐8657 Japan
| | - Martin S. Thonhofer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Tanja M. Wrodnigg
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research Institute for Organic Chemistry and Macromolecular Chemistry Friedrich‐Schiller University of Jena Humboldtstraße 10 07743 Jena Germany
| |
Collapse
|
40
|
Chen W, Chen J, Li L, Wang X, Wei Q, Ghiladi RA, Wang Q. Wool/Acrylic Blended Fabrics as Next-Generation Photodynamic Antimicrobial Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29557-29568. [PMID: 31356046 DOI: 10.1021/acsami.9b09625] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The adoption of self-sterilizing materials to reduce infection transmission in hospitals and related healthcare facilities has been hampered by the availability of scalable, cost-effective, and potent antimicrobial textiles. Here, we investigated whether photodynamic materials comprising photosensitizer-embedded wool/acrylic blends were able to mediate the photodynamic inactivation of Gram-positive and Gram-negative bacteria. A small library of wool/acrylic (W/A) blended fabrics was constructed wherein the wool fibers were embedded with rose Bengal (RB) as a photosensitizer and the acrylic fibers were dyed with a traditional cationic yellow X-8GL dye, thereby enabling a broader color palette than was achievable with a single photosensitizer. The resultant photodynamic materials were characterized by physical (SEM, DSC, TGA, tensile strength), spectroscopic (fluorescence), colorimetric (K/S and CIELab values), and color fastness (against rubbing, washing) studies, and their photooxidation of the model substrate potassium iodide demonstrated the ability of these materials to generate microbicidal reactive oxygen species (i.e., singlet oxygen) upon illumination. Our best results yielded the photodynamic inactivation of Gram-positive S. aureus (99.98%) and B. subtilis (99.993%) by ∼4 log units upon illumination with visible light (60 min; 65 ± 5 mW/cm2; λ ≥ 420 nm), although more modest activity was observed against Gram-negative P. aeruginosa and E. coli (1-2 log units pathogen reduction). While there were no statistically significant differences for dual-dyed materials that were produced through either sequential or simultaneous dyeing steps, it was noted that high loadings of the cationic yellow X-8GL dye did inhibit the antimicrobial activity of the RB photosensitizer, with the dual-dyed materials able to mediate a 2.9 log unit reduction against S. aureus at a 1% o.w.f X-8GL loading. These findings indicate that the antimicrobial photodynamic inactivation of dual-dyed materials is independent of the dyeing process itself, yet exhibits limitations on the loading of the traditional dye with regards to the activity of the photosensitizer. Taken together, the results suggest the feasibility of photosensitizer-embedded blended fabrics produced through a one-step dyeing process as a low-cost and scalable method for creating effective self-disinfecting textiles for infection prevention, and whose inclusion of a second traditional dye for color variation will further benefit their adoption from a commercial standpoint.
Collapse
Affiliation(s)
- Wangbingfei Chen
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Jiang Chen
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Ling Li
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Xinyi Wang
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Reza A Ghiladi
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
41
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
42
|
Ning LG, Liu P, Wang B, Li CM, Kang ET, Lu ZS, Hu XF, Xu LQ. Hydrothermal derived protoporphyrin IX nanoparticles for inactivation and imaging of bacteria strains. J Colloid Interface Sci 2019; 549:72-79. [DOI: 10.1016/j.jcis.2019.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
|
43
|
Stoll KR, Scholle F, Zhu J, Zhang X, Ghiladi RA. BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochem Photobiol Sci 2019; 18:1923-1932. [PMID: 31147667 DOI: 10.1039/c9pp00103d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug-resistant pathogens, particularly those that result in hospital acquired infections (HAIs), have emerged as a critical priority for the World Health Organization. To address the need for self-disinfecting materials to counter the threat posed by the transmission of these pathogens from surfaces to new hosts, here we investigated if a cationic BODIPY photosensitizer, embedded via electrospinning into nylon and polyacrylonitrile (PAN) nanofibers, was capable of inactivating both bacteria and viruses via antimicrobial photodynamic inactivation (aPDI). Materials characterization, including fiber morphology and the degree of photosensitizer loading, was assessed by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and demonstrated that the materials were comprised of nanofibers (125-215 nm avg. diameter) that were thermostable to >300 °C. The antimicrobial potencies of the resultant Nylon-BODIPY(+) and PAN-BODIPY(+) nanofiber materials were evaluated against four strains of bacteria recognized by the World Health Organization as either critical or high priority pathogens: Gram-positive strains methicillin-resistant S. aureus (MRSA; ATCC BAA-44) and vancomycin-resistant E. faecium (VRE; ATCC BAA-2320), and Gram-negative strains multidrug-resistant A. baumannii (MDRAB; ATCC BAA-1605) and NDM-1 positive K. pneumoniae (KP; ATCC BAA-2146). Our results demonstrated the detection limit (99.9999%; 6 log units reduction in CFU mL-1) photodynamic inactivation of three strains upon illumination (30-60 min; 40-65 ± 5 mW cm-2; 400-700 nm): MRSA, VRE, and MDRAB, but only minimal inactivation (47-75%) of KP. Antiviral studies employing PAN-BODIPY(+) against vesicular stomatitis virus (VSV), a model enveloped virus, revealed complete inactivation. Taken together, the results demonstrate the potential for electrospun BODIPY(+)-embedded nanofiber materials as the basis for pathogen-specific anti-infective materials, even at low photosensitizer loadings.
Collapse
Affiliation(s)
- Kevin R Stoll
- Department of Chemistry, United States Air Force Academy, CO 80840, USA
| | | | | | | | | |
Collapse
|
44
|
Song L, Sun L, Zhao J, Wang X, Yin J, Luan S, Ming W. Synergistic Superhydrophobic and Photodynamic Cotton Textiles with Remarkable Antibacterial Activities. ACS APPLIED BIO MATERIALS 2019; 2:2756-2765. [DOI: 10.1021/acsabm.9b00149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Liwei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, Georgia 30460, United States
| |
Collapse
|
45
|
Abstract
The emergence of antimicrobial drug resistance requires development of alternative therapeutic options. Multidrug-resistant strains of Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp. are still the most commonly identified antimicrobial-resistant pathogens. These microorganisms are part of the so-called 'ESKAPE' pathogens to emphasize that they currently cause the majority of hospital acquired infections and effectively 'escape' the effects of antibacterial drugs. Thus, alternative, safer and more efficient antimicrobial strategies are urgently needed, especially against 'ESKAPE' superbugs. Antimicrobial photodynamic inactivation is a therapeutic option used in the treatment of infectious diseases. It is based on a combination of a photosensitizer, light and oxygen to remove highly metabolically active cells.
Collapse
|
46
|
Jia R, Tian W, Bai H, Zhang J, Wang S, Zhang J. Sunlight-Driven Wearable and Robust Antibacterial Coatings with Water-Soluble Cellulose-Based Photosensitizers. Adv Healthc Mater 2019; 8:e1801591. [PMID: 30734526 DOI: 10.1002/adhm.201801591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Herein, a simple, effective, and general strategy is demonstrated to obtain a water-soluble and nontoxic cellulose-based photosensitizer (CPS) with enhanced photodynamic antibacterial activity through introducing protoporphyrin IX (PpIX) and quaternary ammonium salt (QAS) groups onto the cellulose backbone. The synergistic effect of the anchoring and diluting effect of the cellulose backbone and the electrostatic repulsion between QAS groups effectively inhibit the π-π stacking of PpIX groups, thus the as-prepared CPS exhibits markedly enhanced reactive oxygen species (ROS) yield. Meanwhile, the positively charged QAS groups endow the CPS with water-solubility and a strong attractive force to bacteria. As a result, the CPS can rapidly and efficiently kill drug-resistant bacteria strains, including E. coli and S. aureus, with a low light dose (2.4 J cm-2 ) and low concentration of PpIX groups (0.35 × 10-6 m). Benefiting from the excellent processability and formability, the CPS is readily applied as a sunlight-driven wearable and robust antibacterial coating by a spray coating and later crosslinking procedure.
Collapse
Affiliation(s)
- Ruonan Jia
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weiguo Tian
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Haotian Bai
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Shu Wang
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
47
|
Xia Q, Yang L, Hu K, Li K, Xiang J, Liu G, Wang Y. Chromium Cross-Linking Based Immobilization of Silver Nanoparticle Coating on Leather Surface with Broad-Spectrum Antimicrobial Activity and Durability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2352-2363. [PMID: 30565910 DOI: 10.1021/acsami.8b17061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Leather with durable and broad-spectrum antimicrobial properties is very attractive in applications to produce diabetic shoes. In this work, gallic acid stabilized silver nanoparticles (GA@AgNPs) were prepared as water-borne finishing agent to be spray-coated on leather surface, with subsequent immobilization onto skin collagen via chromium(III) cross-linking. Such chemical anchoring of AgNPs onto microscaled collagen fibers not only enhanced the hydrophobicity of leather surface but also converted the surface ζ-potential from a positive charge to a negative charge, resulting in the excellent microbial antiadhesive ability of GA@AgNP-coated leather because of its dual-hydrophobic and electrostatic repelling of microbial adhesion. Such GA@AgNP coating also exhibited broad-spectrum antimicrobial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus, and Candida albicans, with killing efficiencies all higher than 99%. Moreover, the killed microbes could be easily released from this anionic GA@AgNP spray coating by simply washing, preserving, and giving long-term antimicrobial activity to leather products. Most of all, the robust immobilization of AgNPs guaranteed the durably antimicrobial activity of such GA@AgNP-coated leather against laundry, perspiration, and mechanical abrasion in real daily use.
Collapse
Affiliation(s)
- Qiongfen Xia
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , Chengdu 610065 , China
| | - Li Yang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Kun Hu
- Guangdong Huizhou Quality & Measuring Supervision Testing Institute , Huizhou 516003 , China
| | - Kaijun Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , Chengdu 610065 , China
| | - Jun Xiang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , Chengdu 610065 , China
- Chengdu Boyan Technology Co. Ltd , Chengdu 610041 , China
| | - Gongyan Liu
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , Chengdu 610065 , China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
48
|
Grammatikova NE, George L, Ahmed Z, Candeias NR, Durandin NA, Efimov A. Zinc phthalocyanine activated by conventional indoor light makes a highly efficient antimicrobial material from regular cellulose. J Mater Chem B 2019. [DOI: 10.1039/c9tb01095e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A phthalocyanine-cellulose material quickly inactivates drug-resistant microbes under indoor light.
Collapse
Affiliation(s)
| | - Lijo George
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Zafar Ahmed
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Nikita A. Durandin
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Alexander Efimov
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| |
Collapse
|
49
|
Turksoy A, Yildiz D, Akkaya EU. Photosensitization and controlled photosensitization with BODIPY dyes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.09.029] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Q Mesquita M, J Dias C, P M S Neves MG, Almeida A, F Faustino MA. Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy. Molecules 2018; 23:E2424. [PMID: 30248888 PMCID: PMC6222430 DOI: 10.3390/molecules23102424] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial infection is a severe concern, requiring the use of significant amounts of antimicrobials/biocides, not only in the hospital setting, but also in other environments. The increasing use of antimicrobial drugs and the rapid adaptability of microorganisms to these agents, have contributed to a sharp increase of antimicrobial resistance. It is obvious that the development of new strategies to combat planktonic and biofilm-embedded microorganisms is required. Photodynamic inactivation (PDI) is being recognized as an effective method to inactivate a broad spectrum of microorganisms, including those resistant to conventional antimicrobials. In the last few years, the development and biological assessment of new photosensitizers for PDI were accompanied by their immobilization in different supports having in mind the extension of the photodynamic principle to new applications, such as the disinfection of blood, water, and surfaces. In this review, we intended to cover a significant amount of recent work considering a diversity of photosensitizers and supports to achieve an effective photoinactivation. Special attention is devoted to the chemistry behind the preparation of the photomaterials by recurring to extensive examples, illustrating the design strategies. Additionally, we highlighted the biological challenges of each formulation expecting that the compiled information could motivate the development of other effective photoactive materials.
Collapse
Affiliation(s)
- Mariana Q Mesquita
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Biomedical Sciences and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cristina J Dias
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|