1
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
2
|
Ma Z, An R, Chen M, Wang X, Zhu M. Random versus Block Glycopolymers Bearing Betulin and Porphyrin for Enhanced Photodynamic Therapy. Biomacromolecules 2022; 23:5074-5083. [PMID: 36350056 DOI: 10.1021/acs.biomac.2c00922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Porphyrins and their derivatives, representing the second-generation photosensitizers, can generate reactive oxygen species (ROS) and kill tumors upon light irradiation. To compensate for the fluorescence quenching and reduced ROS production caused by aggregation and rigid inherent hydrophobicity of porphyrins, a series of comparable random and block glycopolymers bearing betulin and porphyrin were prepared via RAFT polymerization. Betulin was introduced into the copolymers to decrease aggregation-induced quenching of porphyrins and to improve the photodynamic therapy (PDT) efficiency of copolymers. The characteristics, self-assembly, and photophysical chemistry properties of these copolymers were systemically studied. The effect of polymer structure on photophysical chemistry properties and cellular interaction was investigated as well to demonstrate their potential targeting for PDT applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Ran An
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Man Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Xiao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai201620, China
| |
Collapse
|
3
|
Wang Z, Guo X, Hao L, Zhang X, Lin Q, Sheng R. Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6476. [PMID: 36143789 PMCID: PMC9504105 DOI: 10.3390/ma15186476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
For achieving successful chemotherapy against cancer, designing biocompatible drug delivery systems (DDSs) with long circulation times, high cellular endocytosis efficiency, and targeted drug release is of upmost importance. Herein, a well-defined PEG-b-P(MASSChol-co-MANBoc) block copolymer bearing redox-sensitive cholesteryl-side group was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization (with non-redox PEG-b-P(MACCChol-co-MAN-DCA) as the reference), and 1,2-dicarboxylic-cyclohexene acid (DCA) was then grafted onto the hydrophobic block to endow it with charge-convertible characteristics under a tumor microenvironment. The amphiphilic copolymer could be assembled into polymeric spherical micelles (SSMCs) with polyethylene glycol (PEG) as the corona/shell, and anti-cancer drug doxorubicin (DOX) was successfully encapsulated into the micellar core via strong hydrophobic and electrostatic interactions. This nanocarrier showed high stability in the physiological environment and demonstrated "smart" surface charge conversion from negative to positive in the slightly acidic environment of tumor tissues (pH 6.5~6.8), as determined by dynamic light scattering (DLS). Moreover, the cleavage of a disulfide bond linking the cholesterol grafts under an intracellular redox environment (10 mM GSH) resulted in micellar dissociation and accelerated drug release, with the non-redox-responsive micelles (CCMCs) as the control. Additionally, a cellular endocytosis and tumor proliferation inhibition study against MCF-7 tumor cells demonstrated the enhanced endocytosis and tumor cell inhibitory efficiency of dual-responsive SSMCs/DOX nanomedicines, revealing potentials as multifunctional nanoplatforms for effective oncology treatment.
Collapse
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Campus da Penteada, Universidade da Madeira, 9000390 Funchal, Madeira, Portugal
| |
Collapse
|
4
|
Wang Z, Song W, Sheng R, Guo X, Hao L, Zhang X. Controlled preparation of cholesterol-bearing polycations with pendent l-lysine for efficient gene delivery. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2058943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Wenli Song
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| |
Collapse
|
5
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation‐Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zuojie Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zifen Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hang Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jing Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chuan Peng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Mingming Ding
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
6
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation-Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021; 60:22529-22536. [PMID: 34390299 DOI: 10.1002/anie.202109637] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/07/2022]
Abstract
In nature, the folding and conformation of proteins can control the cell or organelle membrane permeability and regulate the life activities. Here we report the first example of synthetic polypeptide vesicles that regulate their permeability via ordered transition of secondary conformations, in a manner similar to biological systems. The polymersomes undergo a β-sheet to α-helix transition in response to reactive oxygen species (ROS), leading to wall thinning without loss of vesicular integrity. The change of membrane structure increases the vesicular permeability and enables specific transport of payloads with different molecular weights.The change of membrane structure increases the vesicular permeability. As a proof-of-concept, the polymersomes encapsulating enzymes could serve as nanoreactors and carries for glucose-stimulated insulin secretion in vivo inspired by human glucokinase, resulting in safe and effective treatment of type 1 diabetes mellitus in mouse models. This study will help understand the biology of biomembranes and facilitate the engineering of nanoplatforms for biomimicry, biosensing, and controlled delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- Sichuan University, College of Polymer Science and Engineering, 5805, CHINA
| | - Zuojie Wang
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Zifen Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hang Liu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jing Wei
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Chuan Peng
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Yeqiang Zhou
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jianshu Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Qiang Fu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hong Tan
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Mingming Ding
- Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, 610065, Chengdu, CHINA
| |
Collapse
|
7
|
Olim F, Neves AR, Vieira M, Tomás H, Sheng R. Self‐Assembly of Cholesterol‐Doxorubicin and TPGS into Prodrug‐Based Nanoparticles with Enhanced Cellular Uptake and Lysosome‐Dependent Pathway in Breast Cancer Cells. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Filipe Olim
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Ana Rute Neves
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Mariana Vieira
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Helena Tomás
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Ruilong Sheng
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| |
Collapse
|
8
|
Kumari R, Sunil D. A mechanistic insight into benefits of aggregation induced emissive luminogens in cancer. J Drug Target 2021; 29:592-608. [PMID: 33399029 DOI: 10.1080/1061186x.2020.1868479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Exploration of advanced chemotheranostics that benefit from a combined in vivo strategy of cancer diagnosis and chemotherapy simultaneously is highly valued and will expose novel possibilities in modifying treatment and reduce side effects. In recent years, nanodrug delivery systems that incorporate aggregation-induced emissive luminogens (AIEgens) have been developed to track and monitor anticancer drug release, trace translocation processes and predict chemotherapeutic responses. There are several classes of AIEgen based chemotheranostics such us stimuli-responsive nanoprodrugs, pH-sensitive mesoporous silica nanocarriers, supramolecular polymer systems, drug encapsulated carriers, carrier-free nanodrugs, self-indicating drug delivery nanomachines and AIEgen-prodrug co-assembly. The present review conveys mechanistic insight into the benefits of AIEgens in the theranostic application by illustrating the recent breakthroughs in chemotheranostic nanomedicines that incorporate these unique fluorophores as signal reporters. The perspectives that can be further explored are also highlighted with the hope to instil more research interest in the advancement of AIE active cancer chemotheranostics for imaging and treatment in vivo.HIGHLIGHTSAggregation induced emissive materials (AIEgens) exhibit unique advantages over conventional luminogens for synergistic diagnosis and chemotherapy of cancer in vivo.The combination of AIE and nanotechnology offers an excellent platform to fabricate advanced chemotheranostics for cancer therapy.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Yang Cong, Zhou Q, Rao Z, Zhai W, Yu J. Multicompartment Self-assemblies of Triblock Copolymer for Drug Delivery. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x2101004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Misiak P, Markiewicz KH, Szymczuk D, Wilczewska AZ. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers (Basel) 2020; 12:E2620. [PMID: 33172152 PMCID: PMC7694753 DOI: 10.3390/polym12112620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
This review aims to provide an overview of polymers comprising cholesterol moiety/ies designed to be used in drug delivery. Over the last two decades, there have been many papers published in this field, which are summarized in this review. The primary focus of this article is on the methods of synthesis of polymers bearing cholesterol in the main chain or as side chains. The data related to the composition, molecular weight, and molecular weight distribution of polymers are presented. Moreover, other aspects, such as forms of carriers, types of encapsulated drugs, encapsulation efficiency and capacity, are also included.
Collapse
Affiliation(s)
- Paweł Misiak
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| | | | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| |
Collapse
|
11
|
Liu X, Guo Z, Ge T, Hu J, Wang J, Yang L. Self-assembly and in vitro drug release behaviors of amphiphilic copolymers based on functionalized aliphatic liquid crystalline polycarbonate with pH/temperature dual response. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Functional Glycopolypeptides: Synthesis and Biomedical Applications. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6052078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Employing natural-based renewable sugar and saccharide resources to construct functional biopolymer mimics is a promising research frontier for green chemistry and sustainable biotechnology. As the mimics/analogues of natural glycoproteins, synthetic glycopolypeptides attracted great attention in the field of biomaterials and nanobiotechnology. This review describes the synthetic strategies and methods of glycopolypeptides and their analogues, the functional self-assemblies of the synthesized glycopolypeptides, and their biological applications such as biomolecular recognition, drug/gene delivery, and cell adhesion and targeting, as well as cell culture and tissue engineering. Future outlook of the synthetic glycopolypeptides was also discussed.
Collapse
|
13
|
Ma Z, Cunningham AJ, Zhu XX. Enzymatic Conversion of Galactose Polymers into Copolymers Containing Galactonic Acid by Glucose Oxidase. Biomacromolecules 2020; 21:2268-2275. [DOI: 10.1021/acs.biomac.0c00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiyuan Ma
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Alexander J. Cunningham
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
14
|
Gao M, Yang Y, Bergfel A, Huang L, Zheng L, Bowden TM. Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery. J Nanobiotechnology 2020; 18:13. [PMID: 31941501 PMCID: PMC6964014 DOI: 10.1186/s12951-020-0575-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND During the past few decades, drug delivery system (DDS) has attracted many interests because it could enhance the therapeutic effects of drugs and reduce their side effects. The advent of nanotechnology has promoted the development of nanosized DDSs, which could promote drug cellular uptake as well as prolong the half-life in blood circulation. Novel polymer micelles formed by self-assembly of amphiphilic polymers in aqueous solution have emerged as meaningful nanosystems for controlled drug release due to the reversible destabilization of hydrophobic domains under different conditions. RESULTS The amphiphilic polymers presented here were composed of cholesterol groups end capped and poly (poly (ethylene glycol) methyl ether methacrylate) (poly (OEGMA)) as tailed segments by the synthesis of cholesterol-based initiator, followed by atom transfer radical polymerization (ATRP) with OEGMA monomer. FT-IR and NMR confirmed the successfully synthesis of products including initiator and polymers as well as the Mw of the polymers were from 33,233 to 89,088 g/mol and their corresponding PDI were from 1.25 to 1.55 by GPC. The average diameter of assembled polymer micelles was in hundreds nanometers demonstrated by DLS, AFM and SEM. The behavior of the amphiphilic polymers as micelles was investigated using pyrene probing to explore their critical micelle concentration (CMC) ranging from 2.53 × 10-4 to 4.33 × 10-4 mg/ml, decided by the balance between cholesterol and poly (OEGMA). Besides, the CMC of amphiphilic polymers, the quercetin (QC) feeding ratio and polarity of solvents determined the QC loading ratio maximized reaching 29.2% certified by UV spectrum, together with the corresponding size and stability changes by DLS and Zeta potential, and thermodynamic changes by TGA and DSC. More significantly, cholesterol end-capped polymer micelles were used as nanosized systems for controlled drug release, not only alleviated the cytotoxicity of QC from 8.6 to 49.9% live cells and also achieved the QC release in control under different conditions, such as the presence of cyclodextrin (CD) and change of pH in aqueous solution. CONCLUSIONS The results observed in this study offered a strong foundation for the design of favorable polymer micelles as nanosized systems for controlled drug release, and the molecular weight adjustable amphiphilic polymer micelles held potential for use as controlled drug release system in practical application.
Collapse
Affiliation(s)
- Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Yifeng Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Andreas Bergfel
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Lanli Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Tim Melander Bowden
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden.
| |
Collapse
|
15
|
Novel lanthanidomesogens based on poly(ethylene glycol) cholesterol ether: Liquid crystal phase behavior and luminescence properties. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Zhao J, Yan C, Chen Z, Liu J, Song H, Wang W, Liu J, Yang N, Zhao Y, Chen L. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. J Colloid Interface Sci 2019; 540:66-77. [PMID: 30634060 DOI: 10.1016/j.jcis.2019.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 01/14/2023]
Abstract
Multifunctional nanoparticles (NPs) with high blood-stability, tumor-targeting ability, and stimuli-bioresponsive drug release behaviors are urgently demanded. Herein, folic acid (FA) and galactose (GAL) functionalized, core-crosslinked NPs (CC NPs) with dual-targeting and pH/redox-bioresponsive properties were developed based on amphiphilic FA-poly(6-O-methacryloyl-d-galactopyranose)-b-poly[2-(diisopropylamino) ethyl methacrylate-co-pyridyl disulfide methylacrylate] [FA-PMAgGP-b-P(DPA-co-PDEMA), termed as FA-PMgDP] block copolymers, and then investigated for facilitated hepatoma-targeting delivery of doxorubicin (DOX). A series of PMgDP copolymers were synthesized though two-step RAFT copolymerization followed by acid-induced acetal deprotection reaction. Their well-defined chemical structures and compositions were characterized by 1H NMR and gel permeation chromatography. Nano-sized, non-crosslinked PMgDP NPs (PMgDP NC NPs) with sizes of less than 25 nm in aqueous solution were self-assembled via the solvent exchange method, and PMgDP CC NPs were readily prepared in the presence of dithiothreitol. The drug-loading content of PMgDP CC NPs was up to 15.8% and its entrapment efficiency was 89.0%. In normal physiological conditions, 11.6% of DOX was released from DOX-loaded PMgDP CC NPs at 25 h, whereas in analogous intracellular microenvironment, 95.5% was released at 11 h owing to the acid-induced protonation of tertiary amine and reductive cleavage of disulfide bond in the hydrophobic core. In a cellular uptake study, FA and GAL-mediated, active, dual-targeted DOX-loaded FA-PMgDP CC NPs showed a 3.54-fold increase in cellular uptake efficiency to HepG2 cells compared to that of shown by single GAL-targeted, DOX-loaded PMgDP NC NPs. Results of in vitro cytotoxicity study showed that blank FA-PMgDP CC NPs exhibited good biocompatibility, whereas dual-targeting DOX-loaded FA-PMgDP CC NPs increased cell apoptosis. Therefore, the above results indicated that the well-constructed FA-PMgDP CC NPs with multi-synergistic effect may serve as new nanocarriers in the field of precise hepatoma-targeting drug delivery.
Collapse
Affiliation(s)
- Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Caixia Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Ze Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Huijuan Song
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
17
|
Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Mater Chem B 2019; 7:1361-1378. [DOI: 10.1039/c8tb03162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent progress in random and block copolymers containing sugar and other biocompounds, including their design, synthesis, properties and selected applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| | - X. X. Zhu
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| |
Collapse
|
18
|
Albuquerque HMT, Santos CMM, Silva AMS. Cholesterol-Based Compounds: Recent Advances in Synthesis and Applications. Molecules 2018; 24:E116. [PMID: 30597999 PMCID: PMC6337470 DOI: 10.3390/molecules24010116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 01/31/2023] Open
Abstract
This review reports on the latest developments (since 2014) in the chemistry of cholesterol and its applications in different research fields. These applications range from drug delivery or bioimaging applications to cholesterol-based liquid crystals and gelators. A brief overview of the most recent synthetic procedures to obtain new cholesterol derivatives is also provided, as well as the latest anticancer, antimicrobial, and antioxidant new cholesterol-based derivatives. This review discusses not only the synthetic details of the preparation of new cholesterol derivatives or conjugates, but also gives a short summary concerning the specific application of such compounds.
Collapse
Affiliation(s)
- Hélio M T Albuquerque
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Clementina M M Santos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Xue B, Kozlovskaya V, Sherwani MA, Ratnayaka S, Habib S, Anderson T, Manuvakhova M, Klampfer L, Yusuf N, Kharlampieva E. Peptide-Functionalized Hydrogel Cubes for Active Tumor Cell Targeting. Biomacromolecules 2018; 19:4084-4097. [PMID: 30169033 PMCID: PMC7398455 DOI: 10.1021/acs.biomac.8b01088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conjugation of bioactive targeting molecules to nano- or micrometer-sized drug carriers is a pivotal strategy to improve their therapeutic efficiency. Herein, we developed pH- and redox-sensitive hydrogel particles with a surface-conjugated cancer cell targeting ligand for specific tumor-targeting and controlled release of the anticancer drug doxorubicin. The poly(methacrylic acid) (PMAA) hydrogel cubes of 700 nm and 2 μm with a hepsin-targeting (IPLVVPL) surface peptide are produced through multilayer polymer assembly on sacrificial cubical mesoporous cores. Direct peptide conjugation to the disulfide-stabilized hydrogels through a thiol-amine reaction does not compromise the structural integrity, hydrophilicity, stability in serum, or pH/redox sensitivity but does affect internalization by cancer cells. The cell uptake kinetics and the ultimate extent of internalization are controlled by the cell type and hydrogel size. The peptide modification significantly promotes the uptake of the 700 nm hydrogels by hepsin-positive MCF-7 cells due to ligand-receptor recognition but has a negligible effect on the uptake of 2 μm PMAA hydrogels. The selectivity of 700 nm IPLVVPL-PMAA hydrogel cubes to hepsin-overexpressing tumor cells is further confirmed by a 3-10-fold higher particle internalization by hepsin-positive MCF-7 and SK-OV-3 compared to that of hepsin-negative PC-3 cells. This work provides a facile method to fabricate enhanced tumor-targeting carriers of submicrometer size and improves the general understanding of particle design parameters for targeted drug delivery.
Collapse
Affiliation(s)
- Bing Xue
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sithira Ratnayaka
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shahriar Habib
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Theron Anderson
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
20
|
Liu X, Xie Y, Hu Z, Chen Z, Hu J, Yang L. pH responsive self-assembly and drug release behavior of aliphatic liquid crystal block polycarbonate with pendant cholesteryl groups. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Li Z, Sun J, Huang Y, Liu Y, Xu J, Chen Y, Liang L, Li J, Liao Q, Li S, Zhou K. A Nanomicellar Prodrug Carrier Based on Ibuprofen-Conjugated Polymer for Co-delivery of Doxorubicin. Front Pharmacol 2018; 9:781. [PMID: 30154714 PMCID: PMC6102750 DOI: 10.3389/fphar.2018.00781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug (NSAID), which is widely used to reduce fever and treat inflammation and acute pain. Recently, its application in cancer treatment is also being explored. In this work, we synthesized a well-defined IBU-based amphiphilic diblock copolymer via reversible addition fragmentation transfer (RAFT) polymerization of IBU-based vinyl monomer. The amphiphilic copolymer POEG-b-PVBIBU (denoted as POVI) was composed of a hydrophilic poly(oligo(ethylene glycol)) block and a hydrophobic IBU-bearing prodrug block, which was able to self-assemble into prodrug nanomicelles. In addition, it could serve as a carrier to co-load other drugs including doxorubicin (DOX), paclitaxel (PTX), and docetaxel (DTX). By using DOX as a model anti-cancer drug, the delivery function of POVI carrier, including the drug release, in vitro cytotoxicity, cellular uptake, and in vivo antitumor activity, was evaluated. DOX-loaded POVI micelles exhibited sustained release of DOX. Besides, DOX/POVI micelles were effectively taken up by tumor cells with an efficiency comparable to that of free DOX. Moreover, in vivo studies showed that POVI carrier itself had modest antitumor activity. After loading DOX, the antitumor activity was significantly increased, which was significantly higher than that of free DOX. Our results suggest that POVI polymer represents a simple and effective dual-functional carrier for co-delivery of IBU and DOX to improve the anticancer activity.
Collapse
Affiliation(s)
- Zuojun Li
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- State Key Laboratory of Powder Metallurgy, Department of Pharmaceutical Sciences, School of Pharmacy, Central South University, Changsha, China
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lei Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Department of Pharmaceutical Sciences, School of Pharmacy, Central South University, Changsha, China
| |
Collapse
|
22
|
Ma Z, Zhu XX. Core Cross-linked Micelles Made of Glycopolymers Bearing Dopamine and Cholic Acid Pendants. Mol Pharm 2018; 15:2348-2354. [DOI: 10.1021/acs.molpharmaceut.8b00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhiyuan Ma
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
23
|
Li Z, Chen Q, Qi Y, Liu Z, Hao T, Sun X, Qiao M, Ma X, Xu T, Zhao X, Yang C, Chen D. Rational Design of Multifunctional Polymeric Nanoparticles Based on Poly(l-histidine) and d-α-Vitamin E Succinate for Reversing Tumor Multidrug Resistance. Biomacromolecules 2018; 19:2595-2609. [PMID: 29618203 DOI: 10.1021/acs.biomac.8b00213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A multifunctional nanoparticulate system composed of methoxy poly(ethylene glycol)-poly(l-histidine)-d-α-vitamin E succinate (MPEG-PLH-VES) copolymers for encapsulation of doxorubicin (DOX) was elaborated with the aim of circumventing the multidrug resistance (MDR) in breast cancer treatment. The MPEG-PLH-VES nanoparticles (NPs) were subsequently functionalized with biotin motif for targeted drug delivery. The MPEG-PLH-VES copolymer exerts no obvious effect on the P-gp expression level of MCF-7/ADR but exhibited a significant influence on the loss of mitochondrial membrane potential, the reduction of intracellular ATP level, and the inhibition of P-gp ATPase activity of MCF-7/ADR cells. The constructed MPEG-PLH-VES NPs exhibited an acidic pH-induced increase on particle size in aqueous solution. The DOX-encapsulated MPEG-PLH-VES/biotin-PEG-VES (MPEG-PLH-VES/B) NPs were characterized to possess high drug encapsulation efficiency of approximate 90%, an average particle size of approximately 130 nm, and a pH-responsive drug release profile in acidic milieu. Confocal laser scanning microscopy (CLSM) investigations revealed that the DOX-loaded NPs resulted in an effective delivery of DOX into MCF-/ADR cells and a notable carrier-facilitated escape from endolysosomal entrapment. Pertaining to the in vitro cytotoxicity evaluation, the DOX-loaded MPEG-PLH-VES/B NPs resulted in more pronounced cytotoxicity to MCF-/ADR cells compared with DOX-loaded MPEG-PLH-VES NPs and free DOX solution. In vivo imaging study in MCF-7/ADR tumor-engrafted mice exhibited that the MPEG-PLH-VES/B NPs accumulated at the tumor site more effectively than MPEG-PLH-VES NPs due to the biotin-mediated active targeting effect. In accordance with the in vitro results, DOX-loaded MPEG-PLH-VES/B NPs showed the strongest inhibitory effect against the MCF-7/ADR xenografted tumors with negligible systemic toxicity, as evidenced by the histological analysis and change of body weight. The multifunctional MPEG-PLH-VES/B nanoparticulate system has been demonstrated to provide a promising strategy for efficient delivery of DOX into MCF-7/ADR cancerous cells and reversing MDR.
Collapse
Affiliation(s)
- Zhen Li
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China.,Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China
| | - Qixian Chen
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , PR China
| | - Yan Qi
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China
| | - Zhihao Liu
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China
| | - Tangna Hao
- Department of Pharmacy , The Second Affiliated Hospital of Dalian Medical University , Dalian , 116011 , PR China
| | - Xiaoxin Sun
- Institute (College) of Integrative Medicine , Dalian Medical University , Dalian 116044 , PR China
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China
| | - Xiaodong Ma
- School of Pharmacy , Dalian Medical University , Dalian , 116044 , PR China
| | - Ting Xu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , PR China
| | - Xiuli Zhao
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China
| | - Chunrong Yang
- School of pharmacy , Jiamusi University , Jiamusi 154007 , PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , 110016 , PR China.,School of Pharmacy , Medical College of Soochow University , Suzhou 215123 , PR China
| |
Collapse
|
24
|
Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates. NANOMATERIALS 2018; 8:nano8040195. [PMID: 29584691 PMCID: PMC5923525 DOI: 10.3390/nano8040195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 01/06/2023]
Abstract
New amphiphilic liquid crystal (LC) polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR) spectrum, 1H NMR, gel permeation chromatographic (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing optical microscope (POM), and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td), glass temperature (Tg), and isotropic temperature (Ti) increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX), together with drug release tracking, were evaluated by dynamic light scattering (DLS), SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications.
Collapse
|
25
|
Delivery of anticancer drug using pH-sensitive micelles from triblock copolymer MPEG-b-PBAE-b-PLA. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Wang Z, Luo T, Cao A, Sun J, Jia L, Sheng R. Morphology-Variable Aggregates Prepared from Cholesterol-Containing Amphiphilic Glycopolymers: Their Protein Recognition/Adsorption and Drug Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E136. [PMID: 29495614 PMCID: PMC5869627 DOI: 10.3390/nano8030136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022]
Abstract
In this study, a series of diblock glycopolymers, poly(6-O-methacryloyl-d-galactopyranose)-b-poly(6-cholesteryloxyhexyl methacrylate) (PMAgala-b-PMAChols), with cholesterol/galactose grafts were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and deprotection process. The glycopolymers could self-assemble into aggregates with various morphologies depending on cholesterol/galactose-containing block weight ratios, as determined by transmission electronic microscopy (TEM) and dynamic laser light scattering (DLS). In addition, the lectin (Ricinus communis agglutinin II, RCA120) recognition and bovine serum albumin (BSA) adsorption of the PMAgala-b-PMAChol aggregates were evaluated. The SK-Hep-1 tumor cell inhibition properties of the PMAgala-b-PMAChol/doxorubicin (DOX) complex aggregates were further examined in vitro. Results indicate that the PMAgala-b-PMAChol aggregates with various morphologies showed different interaction/recognition features with RCA120 and BSA. Spherical aggregates (d ≈ 92 nm) possessed the highest RCA120 recognition ability and lowest BSA protein adsorption. In addition, the DOX-loaded spherical complex aggregates exhibited a better tumor cell inhibition property than those of nanofibrous complex aggregates. The morphology-variable aggregates derived from the amphiphilic glycopolymers may serve as multifunctional biomaterials with biomolecular recognition and drug delivery features.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 200444, China.
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Lin Jia
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 200444, China.
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| |
Collapse
|
27
|
Ivanenkov YA, Majouga AG, Petrov RA, Petrov SA, Kovalev SV, Maklakova SY, Yamansarov EY, Saltykova IV, Deyneka EV, Filkov GI, Kotelianski VE, Zatsepin TS, Beloglazkina EK. Synthesis and biological evaluation of novel doxorubicin-containing ASGP-R-targeted drug-conjugates. Bioorg Med Chem Lett 2018; 28:503-508. [DOI: 10.1016/j.bmcl.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
28
|
Ma Z, Jia YG, Zhu XX. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition. Biomacromolecules 2017; 18:3812-3818. [DOI: 10.1021/acs.biomac.7b01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhiyuan Ma
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Yong-Guang Jia
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
29
|
Sequence and Architectural Control in Glycopolymer Synthesis. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700212] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/21/2017] [Indexed: 01/10/2023]
|
30
|
Wang Z, Sheng R, Luo T, Sun J, Cao A. Synthesis and self-assembly of diblock glycopolypeptide analogues PMAgala-b-PBLG as multifunctional biomaterials for protein recognition, drug delivery and hepatoma cell targeting. Polym Chem 2017. [DOI: 10.1039/c6py01526c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PMAgala-b-PBLG glycopolypeptide analogues might serve as redox-responsive, highly biocompatible multifunctional biomaterial platforms for practical applications.
Collapse
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
31
|
Wang X, Yang Y, Zhuang Y, Gao P, Yang F, Shen H, Guo H, Wu D. Fabrication of pH-Responsive Nanoparticles with an AIE Feature for Imaging Intracellular Drug Delivery. Biomacromolecules 2016; 17:2920-9. [DOI: 10.1021/acs.biomac.6b00744] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yaping Zhuang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Peiyuan Gao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|