1
|
Xu W, Werzer O, Spiliopoulos P, Mihhels K, Jiang Q, Meng Z, Tao H, Resel R, Tammelin T, Pettersson T, Kontturi E. Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32874-32885. [PMID: 38863159 PMCID: PMC11212027 DOI: 10.1021/acsami.4c06182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Polymer coating to substrates alters surface chemistry and imparts bulk material functionalities with a minute thickness, even in nanoscale. Specific surface modification of a substate usually requires an active substrate that, e.g., undergoes a chemical reaction with the modifying species. Here, we present a generic method for surface modification, namely, solid-state adsorption, occurring purely by entropic strive. Formed by heating above the melting point or glass transition and subsequent rinsing of the excess polymer, the emerging ultrathin (<10 nm) layers are known in fundamental polymer physics but have never been utilized as building blocks for materials and they have never been explored on soft matter substrates. We show with model surfaces as well as bulk substrates, how solid-state adsorption of common polymers, such as polystyrene and poly(lactic acid), can be applied on soft, cellulose-based substrates. Our study showcases the versatility of solid-state adsorption across various polymer/substrate systems. Specifically, we achieve proof-of-concept hydrophobization on flexible cellulosic substrates, maintaining irreversible and miniscule adsorption yet with nearly 100% coverage without compromising the bulk material properties. The method can be considered generic for all polymers whose Tg and Tm are below those of the to-be-coated adsorbed layer, and whose integrity can withstand the solvent leaching conditions. Its full potential has broad implications for diverse materials systems where surface coatings play an important role, such as packaging, foldable electronics, or membrane technology.
Collapse
Affiliation(s)
- Wenyang Xu
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden
- Laboratory
of Natural Materials Technology, Åbo
Akademi University, FI-20500 Turku, Finland
| | - Oliver Werzer
- Joanneum
Research, Institute for Sensors, Photonics
and Manufacturing Technologies, Franz-Pichler-Strasse 30, 8160 Weiz, Austria
| | - Panagiotis Spiliopoulos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Karl Mihhels
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Qixiang Jiang
- Polymer
and Composite Engineering (PaCE) Group, Institute of Materials Chemistry,
Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria
| | - Zhuojun Meng
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Han Tao
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Roland Resel
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Tekla Tammelin
- Biomass
Processing and Products, VTT Technical Research
Centre of Finland Ltd., FI-02044 Espoo, Finland
| | - Torbjörn Pettersson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden
- Wallenberg
Wood Science Centre, KTH Royal Institute
of Technology, Teknikringen
56, SE-10044 Stockholm, Sweden
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| |
Collapse
|
2
|
Wang S, Tang Y, Kou X, Chen J, Edgar KJ. Dextran Macroinitiator for Synthesis of Polysaccharide- b-Polypeptide Block Copolymers via NCA Ring-Opening Polymerization. Biomacromolecules 2024; 25:3122-3130. [PMID: 38696355 DOI: 10.1021/acs.biomac.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (Đ < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.
Collapse
Affiliation(s)
- Shuo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, Analyses and Testing Center, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Junyi Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Woods S, Tinkler JD, Bensabeh N, Palà M, Martin SJ, Martin-Fabiani I, Lligadas G, Hatton FL. Temperature-Responsive Lactic Acid-Based Nanoparticles by RAFT-Mediated Polymerization-Induced Self-Assembly in Water. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9979-9988. [PMID: 37448723 PMCID: PMC10337250 DOI: 10.1021/acssuschemeng.3c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/08/2023] [Indexed: 07/15/2023]
Abstract
This work demonstrates for the first-time biobased, temperature-responsive diblock copolymer nanoparticles synthesized by reversible addition-fragmentation chain-transfer (RAFT) aqueous emulsion polymerization-induced self-assembly (PISA). Here, monomers derived from green solvents of the lactic acid portfolio, N,N-dimethyl lactamide acrylate (DMLA) and ethyl lactate acrylate (ELA), were used. First, DMLA was polymerized by RAFT aqueous solution polymerization to produce a hydrophilic PDMLA macromolecular chain transfer agent (macro-CTA), which was chain extended with ELA in water to form amphiphilic PDMLA-b-PELA diblock copolymer nanoparticles by RAFT aqueous emulsion polymerization. PDMLAx homopolymers were synthesized targeting degrees of polymerization, DPx from 25 to 400, with relatively narrow molecular weight dispersities (Đ < 1.30). The PDMLA64-b-PELAy diblock copolymers (DPy = 10-400) achieved dispersities, Đ, between 1.18 and 1.54 with two distinct glass transition temperatures (Tg) identified by differential scanning calorimetry (DSC). Tg(1) (7.4 to 15.7 °C) representative of PELA and Tg(2) (69.1 to 79.7 °C) of PDMLA. Dynamic light scattering (DLS) studies gave particle z-average diameters between 11 and 74 nm (PDI = 0.04 to 0.20). Atomic force microscopy (AFM) showed evidence of spherical particles when dispersions were dried at ∼5 °C and film formation when dried at room temperature. Many of these polymers exhibited a reversible lower critical solution temperature (LCST) in water with a concomitant increase in z-average diameter for the PDMLA-b-PELA diblock copolymer nanoparticles.
Collapse
Affiliation(s)
- Sarah
E. Woods
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - James David Tinkler
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Nabil Bensabeh
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Marc Palà
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Simon J. Martin
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | | | - Gerard Lligadas
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Fiona L. Hatton
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
5
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Muthumari B, Kumar BV, Kavitha M, Kumar JKJP, Arumugam N, Basu MJ. Optimization of sodium alginate-galactoxyloglucan blended hydrogel beads through ionotropic gelation method. Int J Biol Macromol 2023; 242:124630. [PMID: 37119903 DOI: 10.1016/j.ijbiomac.2023.124630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Hydrogels are 3D crosslinking networks of hydrophilic biopolymers which can able to absorb and retain large amount of water. In this present study, the Sodium alginate (SA)- Galactoxyloglucan (GXG) blended hydrogel beads were prepared and optimized through two level optimization steps. Alginates and xyloglucan are the cell wall polysaccharides biopolymers obtained from the plant sources, Sargassum sp. and Tamarindus indica L. respectively. The extracted biopolymers were confirmed and characterized by UV-Spectroscopy, FT-IR, NMR and TGA analysis. Based on the hydrophilicity, non-toxicity and biocompatibility, SA-GXG hydrogel were prepared and optimized through two-level optimization steps. The optimized hydrogel bead formulation was characterized through FT-IR, TGA and SEM analysis. From the obtained result, it is found that the polymeric formulation GXG (2 % w/v)-SA (1.5 % w/v), cross-linker (CaCl2) concentration at 0.1 M and the cross-linking time at 15 Min showed significant swelling index. The optimized hydrogel beads are porous and show good swelling capacity and thermal stability. The optimized protocol of hydrogel beads may be useful in designing hydrogel beads for specific applications in agricultural, Biomedical and remediation sectors.
Collapse
Affiliation(s)
| | | | - Murugan Kavitha
- Department of Botany, Alagappa University, Karaikudi 630 003, India
| | | | - Nagarajan Arumugam
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
7
|
Efraim Alexakis A, Rosella Telaretti Leggieri M, Wågberg L, Malmström E, Benselfelt T. Nanolatex architectonics: Influence of cationic charge density and size on their adsorption onto surfaces with a 2D or 3D distribution of anionic groups. J Colloid Interface Sci 2023; 634:610-620. [PMID: 36549209 DOI: 10.1016/j.jcis.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
HYPOTHESIS It is theoretically predicted and hypothesized that the charge density and size of spherical nanoparticles are the key factors for their adsorption onto oppositely charged surfaces. It is also hypothesized that the morphology and charge of the surface are of great importance. In-plane 2D (silica) or a volumetric 3D (regenerated TEMPO-oxidized cellulose model surfaces) distribution of charged groups is expected to influence charge compensation and, thus, the adsorption behavior. EXPERIMENTS In this work, self-stabilized nanolatexes with a range of cationic charge densities and sizes were synthesized through reversible addition - fragmentation chain-transfer (RAFT) polymerization coupled with polymerization-induced self-assembly (PISA). Their adsorption onto silica and anionic cellulose model surfaces was investigated using stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). FINDINGS Experiments and theory agree and show that the size of the nanolatex and the difference in charge density compared to the substrate determine the charge compensation and, thus, the surface coverage. Highly charged or large nanolatexes overcompensate the surface charge of non-porous substrates leading to a significant repulsive zone where other particles cannot adsorb. For porous substrates like cellulose, the vertical distribution of charged groups in the 3D volume prevents overcompensation and thus increases the adsorption. This systematic study investigates the isolated effect of surface charge and size and paves the way for on-demand particles specifically designed for a surface with particular characteristics.
Collapse
Affiliation(s)
- Alexandros Efraim Alexakis
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Maria Rosella Telaretti Leggieri
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Lars Wågberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Fibre Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Tobias Benselfelt
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Fibre Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden; School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore, Singapore.
| |
Collapse
|
8
|
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Farbod Shirinichi
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Tarek Ibrahim
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Mia Rodriguez
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| | - Hao Sun
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering University of New Haven West Haven Connecticut USA
| |
Collapse
|
9
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
10
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
11
|
Romero Castro VL, Nomeir B, Arteni AA, Ouldali M, Six JL, Ferji K. Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly. Polymers (Basel) 2021; 13:4064. [PMID: 34883567 PMCID: PMC8658814 DOI: 10.3390/polym13234064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xn-- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.
Collapse
Affiliation(s)
| | - Brahim Nomeir
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Malika Ouldali
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| |
Collapse
|
12
|
Ikkene D, Arteni AA, Ouldali M, Francius G, Brûlet A, Six JL, Ferji K. Direct Access to Polysaccharide-Based Vesicles with a Tunable Membrane Thickness in a Large Concentration Window via Polymerization-Induced Self-Assembly. Biomacromolecules 2021; 22:3128-3137. [PMID: 34137600 DOI: 10.1021/acs.biomac.1c00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymersomes are multicompartmental vesicular nano-objects obtained by self-assembly of amphiphilic copolymers. When prepared in the aqueous phase, they are composed of a hydrophobic bilayer enclosing water. Although such fascinating polymeric nano-objects have been widely reported with synthetic block copolymers, their formation from polysaccharide-based copolymers remains a significant challenge. In the present study, the powerful platform technology known as polymerization-induced self-assembly was used to prepare in situ pure vesicles from a polysaccharide-grafted copolymer: dextran-g-poly(2-hydroxypropyl methacrylate) (Dex-g-PHPMA). The growth of the PHPMA grafts was performed with a dextran-based macromolecular chain transfer agent in water at 20 °C using photomediated reversible addition fragmentation chain transfer polymerization at 405 nm. Transmission electron microscopy, cryogenic electron microscopy, small-angle X-ray scattering, atomic force microscopy, and dynamic light scattering revealed that amphiphilic Dex-g-PHPMAX = 100-300 (X is the targeted average degree of polymerization, Xn̅, of each graft at full conversion) exhibit remarkable self-assembly behavior. On the one hand, vesicles were obtained over a wide range of solid concentrations (from 2.5% to 13.5% w/w), which can facilitate posterior targeting of such rare morphology. On the other hand, the extension of Xn̅ induces an increase in the vesicle membrane thickness, rather than a morphological evolution (spherical micelles to cylinders to vesicles).
Collapse
Affiliation(s)
- Djallal Ikkene
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Ana Andreea Arteni
- Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, Université Paris-Saclay, CEA, CNRS, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), Cryo-electron Microscopy Facility, Université Paris-Saclay, CEA, CNRS, CRYOEM-Gif, 91198 Gif-sur-Yvette, France
| | - Gregory Francius
- Université de Lorraine, CNRS, LCPME, F-54600 Villers-lès-Nancy, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin (UMR12 CEA, CNRS), Université Paris-Saclay, CEA Saclay Bât., 563 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
13
|
Engström J, Reid MS, Brotherton EE, Malmström E, Armes SP, Hatton FL. Investigating the adsorption of anisotropic diblock copolymer worms onto planar silica and nanocellulose surfaces using a quartz crystal microbalance. Polym Chem 2021. [DOI: 10.1039/d1py00644d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report physical adsorption of highly anisotropic copolymer worms with either anionic or cationic charge onto planar silica, cellulose nanocrystal or cellulose nanofibril surfaces using a quartz crystal microbalance with dissipation monitoring.
Collapse
Affiliation(s)
- Joakim Engström
- Division of Coating Technology and Wallenberg Wood Science Center, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Michael S. Reid
- Division of Fibre Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Emma E. Brotherton
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Eva Malmström
- Division of Coating Technology and Wallenberg Wood Science Center, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Fiona L. Hatton
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
14
|
Chan DHH, Cockram AA, Gibson RR, Kynaston EL, Lindsay C, Taylor P, Armes SP. RAFT aqueous emulsion polymerization of methyl methacrylate: observation of unexpected constraints when employing a non-ionic steric stabilizer block. Polym Chem 2021. [DOI: 10.1039/d1py01008e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a non-ionic steric stabilizer for the RAFT aqueous emulsion polymerization of methyl methacrylate leads to flocculated nanoparticles when targeting DPs > 100; there is no such constraint when employing an anionic stabilizer block.
Collapse
Affiliation(s)
- Derek H. H. Chan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Amy A. Cockram
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Rebecca R. Gibson
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Emily L. Kynaston
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Christopher Lindsay
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
15
|
Xiao Z, Jia J, Niu Y, Zhu G, Kou X. The adsorption mechanism of poly‐methyl methacrylate microparticles onto paper cellulose fiber surfaces without crosslinking agents. J Appl Polym Sci 2020. [DOI: 10.1002/app.49269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Jinhui Jia
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Yunwei Niu
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Guangyong Zhu
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| | - Xingran Kou
- School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| |
Collapse
|
16
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
17
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
18
|
Jiang P, Ji H, Li G, Chen S, Lv L. Structure formation in pH-sensitive micro porous membrane from well-defined ethyl cellulose-g-PDEAEMA via non-solvent-induced phase separation process. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1722691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ping Jiang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Hongmin Ji
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Gen Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Shaowei Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| | - Linda Lv
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
19
|
Ikkene D, Arteni AA, Ouldali M, Six JL, Ferji K. Self-assembly of amphiphilic copolymers containing polysaccharide: PISA versus nanoprecipitation, and the temperature effect. Polym Chem 2020. [DOI: 10.1039/d0py00407c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-assembly methods and the temperature have a considerable impact on the morphology of the resulting nanoobjects in the case of amphiphilic glycopolymers.
Collapse
Affiliation(s)
| | - Ana Andreea Arteni
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Malika Ouldali
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Jean-Luc Six
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| | - Khalid Ferji
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| |
Collapse
|
20
|
Hatton FL, Derry MJ, Armes SP. Rational synthesis of epoxy-functional spheres, worms and vesicles by RAFT aqueous emulsion polymerisation of glycidyl methacrylate. Polym Chem 2020. [DOI: 10.1039/d0py01097a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rational synthesis of epoxy-functional diblock copolymer nano-objects has been achieved by RAFT aqueous emulsion polymerisation of glycidyl methacrylate under mild conditions (50 °C, pH 7) to preserve the epoxy groups.
Collapse
Affiliation(s)
- Fiona L. Hatton
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Matthew J. Derry
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
21
|
Brotherton EE, Hatton FL, Cockram AA, Derry MJ, Czajka A, Cornel EJ, Topham PD, Mykhaylyk OO, Armes SP. In Situ Small-Angle X-ray Scattering Studies During Reversible Addition-Fragmentation Chain Transfer Aqueous Emulsion Polymerization. J Am Chem Soc 2019; 141:13664-13675. [PMID: 31364361 PMCID: PMC6716212 DOI: 10.1021/jacs.9b06788] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 11/29/2022]
Abstract
Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. In situ small-angle X-ray scattering (SAXS) studies of reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., Chem. Sci. 2016 , 7 , 5078 - 5090 ). However, conducting the analogous in situ SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for in situ SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows in situ monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA29-PMOEMA30 spheres at 10% w/w solids. When targeting PGMA29-PMOEMA70 vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Fiona L. Hatton
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Amy A. Cockram
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Matthew J. Derry
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Adam Czajka
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Erik J. Cornel
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Paul D. Topham
- Aston Institute of
Materials Research, Aston University, Birmingham B4 7ET, United Kingdom
| | - Oleksandr O. Mykhaylyk
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Steven P. Armes
- Dainton Building,
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| |
Collapse
|
22
|
Cheng Z, Liu Y, Zhang D, Lu C, Wang C, Xu F, Wang J, Chu F. Sustainable elastomers derived from cellulose, rosin and fatty acid by a combination of “graft from” RAFT and isocyanate chemistry. Int J Biol Macromol 2019; 131:387-395. [DOI: 10.1016/j.ijbiomac.2019.02.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
|
23
|
Jiménez Saelices C, Save M, Capron I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size. Polym Chem 2019. [DOI: 10.1039/c8py01575a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose nanocrystals (CNCs) are sustainable rod-shaped nanoparticles able to adsorb at oil–water interfaces to produce highly stable Pickering emulsions with enhanced mechanical properties.
Collapse
Affiliation(s)
| | - Maud Save
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Isabelle Capron
- UR 1268 Biopolymères Interactions Assemblages
- INRA
- 44316 Nantes
- France
| |
Collapse
|
24
|
Ghavidel N, Fatehi P. Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Adv 2019; 9:17639-17652. [PMID: 35520539 PMCID: PMC9064571 DOI: 10.1039/c9ra02526j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products. Polystyrene (PS) is known for its worldwide application in water purification processes. To induce a sustainable PS, kraft lignin (KL) and polystyrene were polymerized via free radical polymerization in a facile aqueous emulsion process. KL enhanced surface area and porosity of PS. The physicochemical properties of induced KL–PS were analyzed, and the fate of lignin in KL–PS was discussed fundamentally. Wettability and surface energy analyses were implemented to monitor the surface properties of KL, PS and KL–PS. Incorporation of KL in PS (40 wt%) boosted its surface energy and oxygen content, which led to KL–PS with better compatibility than PS with copper ions in aqueous systems. A quartz crystal microbalance with dissipation (QCM-D) confirmed the noticeably higher adsorption performance of copper ion on KL–PS than on PS and KL. The sorption mechanism, which was revealed by FTIR studies, was primarily attributed to the coordination of Cu(ii) and hydroxyl group of KL–PS as well as the quadrupolar system of KL–PS. Lignin has gained intensive interest as an excellent raw material for the generation of advanced green products.![]()
Collapse
Affiliation(s)
- Nasim Ghavidel
- Green Processes Research Centre and Chemical Engineering Department
- Lakehead University
- Thunder Bay
- Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department
- Lakehead University
- Thunder Bay
- Canada
| |
Collapse
|
25
|
Six JL, Ferji K. Polymerization induced self-assembly: an opportunity toward the self-assembly of polysaccharide-containing copolymers into high-order morphologies. Polym Chem 2019. [DOI: 10.1039/c8py01295d] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembly of polysaccharide-containing amphiphilic copolymers: polymerization induced self-assembly versus traditional techniques.
Collapse
Affiliation(s)
- Jean-Luc Six
- Université de Lorraine
- CNRS, LCPM
- F-5400 Nancy
- France
| | - Khalid Ferji
- Université de Lorraine
- CNRS, LCPM
- F-5400 Nancy
- France
| |
Collapse
|
26
|
Design of hybrid molecular brushes with reversible surface adaptability on exposure to specific solvents. Biointerphases 2018; 13:041006. [PMID: 30001629 DOI: 10.1116/1.5029479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hybrid molecular brushes (HMBs) are macromolecules made of a linear backbone and polymeric side chains that differ in their chemical nature. The authors developed a new method of synthesis of HMB with chitosan (CHI) backbone. In the first step, chitosan-graft-polylactide (CHI-g-PLA) was synthesized by interfacial ring opening polymerization of lactide initiated from CHI. CHI-g-PLA is characterized for its molecular weight and structure. In the second step, polyvinylpyrrolidone (PNVP) or polyacrylamide (PAAm) is grafted by radical polymerization from the CHI in CHI-g-PLA to form CHI-g-PLA-g-PNVP and CHI-g-PLA-g-PAAm. This results in the formation of HMB, with hydrophobic PLA and hydrophilic PNVP or PAAm side chains grafted to CHI. The chemical structure and thermal behavior of the HMBs are characterized. The morphology of CHI-g-PLA as well as the HMBs is determined using atomic force microscopy (AFM). Both the HMBs tethered to separate surfaces exhibit reversible switching between the hydrophilic and hydrophobic polymers on exposure to specific solvents. This is studied by AFM and water contact angle measurements. Hence, the authors developed a method for synthesis of HMB that can be applied for surface modification.
Collapse
|
27
|
Niu X, Liu Y, Song Y, Han J, Pan H. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydr Polym 2018; 183:102-109. [DOI: 10.1016/j.carbpol.2017.11.079] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023]
|
28
|
Zhou J, Yao H, Ma J. Recent advances in RAFT-mediated surfactant-free emulsion polymerization. Polym Chem 2018. [DOI: 10.1039/c8py00065d] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We summarized the RAFT-mediated surfactant-free emulsion polymerization using various RAFT agents and the polymerization types for the preparation of organic/inorganic hybrid materials.
Collapse
Affiliation(s)
- Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Hongtao Yao
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| |
Collapse
|
29
|
Song L, Li Y, Xiong Z, Pan L, Luo Q, Xu X, Lu S. Water-Induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydr Polym 2017; 179:110-117. [PMID: 29111033 DOI: 10.1016/j.carbpol.2017.09.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022]
Abstract
A novel water-induced shape memory nanocomposites were prepared by introducing graphene oxide (GO), which was based on microcrystalline cellulose nanofibers (MSF-g-COOH) extracting from sisal fibers. The results showed that the water-induced shape memory properties of MSF-g-COOH were significantly improved by the strong hydrogen bonding interaction between MSF-g-COOH and GO, It leads to some additional physically cross-linked points in MSF-g-COOH. On the other hand, at 0.5wt% GO loading, tensile strength and Young modulus of the nanocomposite increased from 139 to 184MPa, and from 5.77 to 8.54GPa, respectively, compared to those of pure MSF-g-COOH. Furthermore, a water-induced model was proposed to discuss the water-induced shape memory behaviors of the MSF-g-COOH/GO nanocomposites. This study provides a framework for developing a cellulose based shape memory polymers (CSMPs) and better understanding the shape recovery mechanism in water-induced CSMPs.
Collapse
Affiliation(s)
- Laifu Song
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - Zhongqiang Xiong
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lulu Pan
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qiyun Luo
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xu Xu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Department of Mechanical, Automotive & Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON, N9 B 3P4, Canada
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
30
|
Cunningham VJ, Giakoumatos EC, Ireland PM, Mable CJ, Armes SP, Wanless EJ. Giant Pickering Droplets: Effect of Nanoparticle Size and Morphology on Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7669-7679. [PMID: 28712294 DOI: 10.1021/acs.langmuir.7b01383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interaction between a pair of millimeter-sized nanoparticle-stabilized n-dodecane droplets was analyzed using a high-speed video camera. The droplets were grown in the presence of either poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer spheres or poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) (PGMA-PHPMA-PBzMA) triblock copolymer worms prepared by polymerization-induced self-assembly. The effect of nanoparticle morphology on droplet coalescence was analyzed by comparing 22 nm spheres to highly anisotropic worms with a mean worm width of 26 nm and comparable particle contact angle. Both morphologies lowered the interfacial tension, providing direct evidence for nanoparticle adsorption at the oil-water interface. At 0.03 w/v % copolymer, an aging time of at least 90 s was required to stabilize the n-dodecane droplets in the presence of the worms, whereas no aging was required to produce stable droplets when using the spheres, suggesting faster diffusion of the latter to the surface of the oil droplets. The enhanced stability of the sphere-coated droplets is consistent with the higher capillary pressure in this system as the planar interfaces approach. However, the more strongly adsorbing worms ultimately also confer stability. At lower copolymer concentrations (≤0.01 w/v %), worm adsorption promoted droplet stability, whereas the spheres were unable to stabilize droplets even after longer aging times. The effect of mean sphere diameter on droplet stability was also assessed while maintaining an approximately constant particle contact angle. Small spheres of either 22 or 41 nm stabilized n-dodecane droplets, whereas larger spheres of either 60 or 91 nm were unable to prevent coalescence when the two droplets were brought into contact. These observations are consistent with the greater capillary pressure stabilizing the oil-water interfaces coated with the smaller spheres. Addition of an oil-soluble polymeric diisocyanate cross-linker to either the 60 or the 91 nm spheres produced highly stable colloidosomes, thus confirming adsorption of these nanoparticles.
Collapse
Affiliation(s)
- Victoria J Cunningham
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Emma C Giakoumatos
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Peter M Ireland
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Charlotte J Mable
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle , Callaghan, New South Wales 2308, Australia
| |
Collapse
|
31
|
Pradeepkumar P, Govindaraj D, Jeyaraj M, Munusamy MA, Rajan M. Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomed Pharmacother 2017; 87:461-470. [DOI: 10.1016/j.biopha.2016.12.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 12/31/2016] [Indexed: 11/15/2022] Open
|
32
|
Jesson C, Pearce CM, Simon H, Werner A, Cunningham VJ, Lovett JR, Smallridge MJ, Warren NJ, Armes SP. H 2O 2 Enables Convenient Removal of RAFT End-Groups from Block Copolymer Nano-Objects Prepared via Polymerization-Induced Self-Assembly in Water. Macromolecules 2017; 50:182-191. [PMID: 31007283 PMCID: PMC6471490 DOI: 10.1021/acs.macromol.6b01963] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Indexed: 12/21/2022]
Abstract
RAFT-synthesized polymers are typically colored and malodorous due to the presence of the sulfur-based RAFT end-group(s). In principle, RAFT end-groups can be removed by treating molecularly dissolved copolymer chains with excess free radical initiators, amines, or oxidants. Herein we report a convenient method for the removal of RAFT end-groups from aqueous dispersions of diblock copolymer nano-objects using H2O2. This oxidant is relatively cheap, has minimal impact on the copolymer morphology, and produces benign side products that can be readily removed via dialysis. We investigate the efficiency of end-group removal for various diblock copolymer nano-objects prepared with either dithiobenzoate- or trithiocarbonate-based RAFT chain transfer agents. The advantage of using UV GPC rather than UV spectroscopy is demonstrated for assessing both the kinetics and extent of end-group removal.
Collapse
Affiliation(s)
- Craig
P. Jesson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Charles M. Pearce
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Helene Simon
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Arthur Werner
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Joseph R. Lovett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Nicholas J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
33
|
Hatton FL, Lovett JR, Armes SP. Synthesis of well-defined epoxy-functional spherical nanoparticles by RAFT aqueous emulsion polymerization. Polym Chem 2017. [DOI: 10.1039/c7py01107e] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The environmentally-friendly synthesis of epoxy-functional spherical nanoparticles is achieved via RAFT aqueous emulsion polymerization of glycidyl methacrylate under mild conditions; derivatization of such nanoparticles with sodium azide or diamines is demonstrated.
Collapse
Affiliation(s)
- Fiona L. Hatton
- Dainton Building
- Department of Chemistry
- University of Sheffield
- South Yorkshire S3 7HF
- UK
| | - Joseph R. Lovett
- Dainton Building
- Department of Chemistry
- University of Sheffield
- South Yorkshire S3 7HF
- UK
| | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- South Yorkshire S3 7HF
- UK
| |
Collapse
|
34
|
Hatton FL, Engström J, Forsling J, Malmström E, Carlmark A. Biomimetic adsorption of zwitterionic–xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials. RSC Adv 2017. [DOI: 10.1039/c6ra28236a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Block-copolymer of xyloglucan and zwitterionic PSBMA prepared by RAFT as a biomimetic adsorbent for cellulose nanofibrils to create super-adsorbing gels.
Collapse
Affiliation(s)
- F. L. Hatton
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - J. Engström
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - J. Forsling
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - E. Malmström
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| | - A. Carlmark
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Fibre and Polymer Technology
- SE-100 44 Stockholm
- Sweden
| |
Collapse
|
35
|
Maiti B, Bauri K, Nandi M, De P. Surface functionalized nano-objects from oleic acid-derived stabilizer via non-polar RAFT dispersion polymerization. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Binoy Maiti
- Department of Chemical Sciences; Polymer Research Centre, Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 West Bengal India
| | - Kamal Bauri
- Department of Chemical Sciences; Polymer Research Centre, Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 West Bengal India
| | - Mridula Nandi
- Department of Chemical Sciences; Polymer Research Centre, Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 West Bengal India
| | - Priyadarsi De
- Department of Chemical Sciences; Polymer Research Centre, Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 West Bengal India
| |
Collapse
|