1
|
Liu H, Qiu L, Li H, Tang Y, Wang F, Song Y, Pan Y, Li R, Yan X. A 3D-printed acinar-mimetic silk fibroin-collagen-astragalus polysaccharide scaffold for tissue reconstruction and functional repair of damaged parotid glands. Int J Biol Macromol 2024; 277:134427. [PMID: 39097050 DOI: 10.1016/j.ijbiomac.2024.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Salivary glands are the principal organs responsible for secreting saliva in the oral cavity. Tumors, trauma, inflammation, and other factors can cause functional or structural damage to the glands, leading to reduced saliva secretion. In this study, we innovatively prepared a acinar-mimetic silk fibroin-collagen-astragalus polysaccharide (SCA) scaffold using low-temperature three-dimensional (3D) printing and freeze-drying techniques. We evaluated the material properties and cell compatibility of the scaffold in vitro and implanted it into the damaged parotid glands (PG) of rats to assess its efficacy in tissue reconstruction and functional repair. The results demonstrated that the SCA scaffold featured a porous structure resembling natural acini, providing an environment conducive to cell growth and orderly aggregation. It exhibited excellent porosity, water absorption, mechanical properties, and biocompatibility, fulfilling the requirements for tissue engineering scaffolds. In vitro, the scaffold facilitated adhesion, proliferation, orderly polarization, and spherical aggregation of PG cells. In vivo, the SCA scaffold effectively recruited GECs locally, forming gland-like acinar structures that matured gradually, promoting the regeneration of damaged PGs. The SCA scaffold developed in this study supports tissue reconstruction and functional repair of damaged PGs, making it a promising implant material for salivary gland regeneration.
Collapse
Affiliation(s)
- Han Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology, China
| | - Haoyuan Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yanli Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Fang Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yangyang Song
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China
| | - Yiwei Pan
- Eye Hospital China Academy of Chinese Medicine Sciences, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, China.
| | - Xing Yan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
2
|
Song C, Liu R, Fang Y, Gu H, Wang Y. Developing functional hydrogels for treatment of oral diseases. SMART MEDICINE 2024; 3:e20240020. [PMID: 39420948 PMCID: PMC11425053 DOI: 10.1002/smmd.20240020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/29/2024] [Indexed: 10/19/2024]
Abstract
Oral disease is a severe healthcare challenge that diminishes people's quality of life. Functional hydrogels with suitable biodegradability, biocompatibility, and tunable mechanical properties have attracted remarkable interest and have been developed for treating oral diseases. In this review, we present up-to-date research on hydrogels for the management of dental caries, endodontics, periapical periodontitis, and periodontitis, depending on the progression of dental diseases. The strategies of hydrogels for treating oral mucosal diseases and salivary gland diseases are then classified. After that, we focus on the application of hydrogels related to tumor therapy and tissue defects. Finally, the review prospects the restrictions and the perspectives on the utilization of hydrogels in oral disease treatment. We believe this review will promote the advancement of more amicable, functional and personalized approaches for oral diseases.
Collapse
Affiliation(s)
- Chuanhui Song
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yile Fang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
3
|
Klangprapan J, Souza GR, Ferreira JN. Bioprinting salivary gland models and their regenerative applications. BDJ Open 2024; 10:39. [PMID: 38816372 PMCID: PMC11139920 DOI: 10.1038/s41405-024-00219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Salivary gland (SG) hypofunction is a common clinical condition arising from radiotherapy to suppress head and neck cancers. The radiation often destroys the SG secretory acini, and glands are left with limited regenerative potential. Due to the complex architecture of SG acini and ducts, three-dimensional (3D) bioprinting platforms have emerged to spatially define these in vitro epithelial units and develop mini-organs or organoids for regeneration. Due to the limited body of evidence, this comprehensive review highlights the advantages and challenges of bioprinting platforms for SG regeneration. METHODS SG microtissue engineering strategies such as magnetic 3D bioassembly of cells and microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes have been proposed to replace the damaged acinar units, avoid the use of xenogeneic matrices (like Matrigel), and restore salivary flow. RESULTS Replacing the SG damaged organ is challenging due to its complex architecture, which combines a ductal network with acinar epithelial units to facilitate a unidirectional flow of saliva. Our research group was the first to develop 3D bioassembly SG epithelial functional organoids with innervation to respond to both cholinergic and adrenergic stimulation. More recently, microtissue engineering using coaxial 3D bioprinting of hydrogel microfibers and microtubes could also supported the formation of viable epithelial units. Both bioprinting approaches could overcome the need for Matrigel by facilitating the assembly of adult stem cells, such as human dental pulp stem cells, and primary SG cells into micro-sized 3D constructs able to produce their own matrix and self-organize into micro-modular tissue clusters with lumenized areas. Furthermore, extracellular vesicle (EV) therapies from organoid-derived secretome were also designed and validated ex vivo for SG regeneration after radiation damage. CONCLUSION Magnetic 3D bioassembly and microfluidic coaxial bioprinting platforms have the potential to create SG mini-organs for regenerative applications via organoid transplantation or organoid-derived EV therapies.
Collapse
Affiliation(s)
- Jutapak Klangprapan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Glauco R Souza
- Greiner Bio-one North America Inc., 4238 Capital Drive, Monroe, NC, 28110, USA
| | - João N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Pillai S, Munguia-Lopez JG, Tran SD. Bioengineered Salivary Gland Microtissues─A Review of 3D Cellular Models and their Applications. ACS APPLIED BIO MATERIALS 2024; 7:2620-2636. [PMID: 38591955 DOI: 10.1021/acsabm.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Salivary glands (SGs) play a vital role in maintaining oral health through the production and release of saliva. Injury to SGs can lead to gland hypofunction and a decrease in saliva secretion manifesting as xerostomia. While symptomatic treatments for xerostomia exist, effective permanent solutions are still lacking, emphasizing the need for innovative approaches. Significant progress has been made in the field of three-dimensional (3D) SG bioengineering for applications in gland regeneration. This has been achieved through a major focus on cell culture techniques, including soluble cues and biomaterial components of the 3D niche. Cells derived from both adult and embryonic SGs have highlighted key in vitro characteristics of SG 3D models. While still in its first decade of exploration, SG spheroids and organoids have so far served as crucial tools to study SG pathophysiology. This review, based on a literature search over the past decade, covers the importance of SG cell types in the realm of their isolation, sourcing, and culture conditions that modulate the 3D microenvironment. We discuss different biomaterials employed for SG culture and the current advances made in bioengineering SG models using them. The success of these 3D cellular models are further evaluated in the context of their applications in organ transplantation and in vitro disease modeling.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| | - Jose G Munguia-Lopez
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
5
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
6
|
Nam K, Dos Santos HT, Maslow F, Small T, Samuel RZ, Lei P, Andreadis ST, Baker OJ. Fibrin hydrogels fortified with FGF-7/10 and laminin-1 peptides promote regeneration of irradiated salivary glands. Acta Biomater 2023; 172:147-158. [PMID: 37844750 PMCID: PMC10908308 DOI: 10.1016/j.actbio.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Ionizing radiation, commonly used for head and neck cancer treatment, typically damages the salivary glands, resulting in hyposalivation. The development of treatments to restore this lost function is crucial for improving the quality of life for patients suffering from this condition. To address this clinical need, we have developed an innovative hydrogel by chemically conjugating laminin-1 peptides (A99 and YIGSR) and growth factors, FGF-7 and FGF-10, to fibrin hydrogels. Our results demonstrate that FGF-7/10 and laminin-1 peptides fortified fibrin hydrogel [enhanced laminin-1 peptides fibrin hydrogel (Ep-FH)] promotes salivary gland regeneration and functionality by improving epithelial tissue organization, establishing a healthy network of blood vessels and nerves, while reducing fibrosis in a head and neck irradiated mouse model. These results indicate that fibrin hydrogel-based implantable scaffolds containing pro-regenerative signals promote sustained secretory function of irradiated salivary glands, offering a potential alternative treatment for hyposalivation in head and neck cancer patients undergoing radiation treatment. These unique findings emphasize the potential of fibrin hydrogel-based implantable scaffolds enriched with pro-regenerative signals in sustaining the secretory function of irradiated salivary glands and offer a promising alternative treatment for addressing hyposalivation in head and neck cancer patients undergoing radiation therapy. STATEMENT OF SIGNIFICANCE: Radiation therapies used to treat head and neck cancers often result in damaged salivary gland, leading to severe dryness of the oral cavity. In this study, we engineered FGF-7 and FGF-10 and immobilized them into L1p-FH. The resulting hydrogel, Ep-FH, restored irradiated salivary gland functionality by enhancing epithelial tissue organization, promoting the development of a healthy network of blood vessels and nerves as well as reduction of fibrosis.
Collapse
Affiliation(s)
- Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Harim T Dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Frank Maslow
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Travis Small
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Ronel Z Samuel
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Olga J Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States; Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
7
|
Yin Y, Vázquez-Rosado EJ, Wu D, Viswananthan V, Farach A, Farach-Carson MC, Harrington DA. Microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes for salivary gland tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213588. [PMID: 37634337 PMCID: PMC11214436 DOI: 10.1016/j.bioadv.2023.213588] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023]
Abstract
Replacement therapy for the salivary gland (SG) remains an unmet clinical need. Xerostomia ("dry mouth") due to hyposalivation can result from injury or disease to the SG, such as salivary acinar death caused by radiation therapy (RT) for head and neck squamous cell carcinoma (HNSCC). Currently, only palliative treatments exist for xerostomia, and many patients endure deteriorated oral health and poor quality of life. Tissue engineering could offer a permanent solution for SG replacement by isolating healthy SG tissues prior to RT, expanding its cells in vitro, and recreating a functional salivary neogland for implantation post-RT. 3D bioprinting methods potentiate spatial cell deposition into defined hydrogel-based architectures, mimicking the thin epithelia developed during the complex branching morphogenesis of SG. By leveraging a microfluidics-based bioprinter with coaxial polymer and crosslinker streams, we fabricated thin, biocompatible, and reproducible hydrogel features that recapitulate the thin epithelia characteristics of SG. This flexible platform enabled two modes of printing: we produced solid hydrogel fibers, with diameters <100 μm, that could be rastered to create larger mm-scale structures. By a second method, we generated hollow tubes with wall thicknesses ranging 45-80 μm, total tube diameters spanning 0.6-2.2 mm, and confirmed tube patency. In both cases, SG cells could be printed within the thin hydrogel features, with preserved phenotype and high viability, even at high density (5.0 × 106 cells/mL). Our work demonstrates hydrogel feature control across multiple length scales, and a new paradigm for addressing SG restoration by creating microscale tissue engineered components.
Collapse
Affiliation(s)
- Yu Yin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Ephraim J Vázquez-Rosado
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Department of Biology, University of Puerto Rico-Mayagüez, Mayagüez 00682, Puerto Rico
| | - Danielle Wu
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Vignesh Viswananthan
- Department of Radiation Oncology - Radiation Therapy, Stanford University, Stanford, CA 94305, USA
| | - Andrew Farach
- Department of Radiation Oncology, Institute for Academic Medicine, Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mary C Farach-Carson
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Daniel A Harrington
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| |
Collapse
|
8
|
Mereness JA, Piraino L, Chen CY, Moyston T, Song Y, Shubin A, DeLouise LA, Ovitt CE, Benoit DSW. Slow hydrogel matrix degradation enhances salivary gland mimetic phenotype. Acta Biomater 2023; 166:187-200. [PMID: 37150277 PMCID: PMC10330445 DOI: 10.1016/j.actbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
We recently developed a salivary gland tissue mimetic (SGm), comprised of salivary gland cells encapsulated in matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) hydrogels within arrays of ∼320 µm diameter spherical cavities molded in PDMS. The SGm provides a functional and physiologically relevant platform well-suited to high-throughput drug screening for radioprotective compounds. However, the utility of the SGm would benefit from improved retention of acinar cell phenotype and function. We hypothesized that tuning biochemical cues presented within the PEG hydrogel matrix would improve maintenance of acinar cell phenotype and function by mimicking the natural extracellular matrix microenvironment of the intact gland. Hydrogels formed using slower-degrading MMP-sensitive peptide crosslinkers showed >2-fold increase in sphere number formed at 48 h, increased expression of acinar cell markers, and more robust response to calcium stimulation by the secretory agonist, carbachol, with reduced SGm tissue cluster disruption and outgrowth during prolonged culture. The incorporation of adhesive peptides containing RGD or IKVAV improved calcium flux response to secretory agonists at 14 days of culture. Tuning the hydrogel matrix improved cell aggregation, and promoted acinar cell phenotype, and stability of the SGm over 14 days of culture. Furthermore, combining this matrix with optimized media conditions synergistically prolonged the retention of the acinar cell phenotype in SGm. STATEMENT OF SIGNIFICANCE: Salivary gland (SG) dysfunction occurs due to off-target radiation due to head and neck cancer treatments. Progress in understanding gland dysfunction and developing therapeutic strategies for the SG are hampered by the lack of in vitro models, as salivary gland cells rapidly lose critical secretory function within 24 hours in vitro. Herein, we identify properties of poly(ethylene glycol) hydrogel matrices that enhance the secretory phenotype of SG tissue mimetics within the previously-described SG-microbubble tissue chip environment. Combining slow-degrading hydrogels with media conditions optimized for secretory marker expression further enhanced functional secretory response and secretory marker expression.
Collapse
Affiliation(s)
- Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, United States
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Chiao Yun Chen
- Department of Biomedical Engineering, University of Rochester, United States
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, United States
| | - Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, United States; Knight Campus Department of Bioengineering, Syracuse University, Syracuse, NY, United States
| | - Andrew Shubin
- Department of Biomedical Engineering, University of Rochester, United States; Department of General Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Catherine E Ovitt
- Department of Biomedical Genetics, University of Rochester, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States; Department of Chemical Engineering, University of Rochester, United States; Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States; Knight Campus Bioengineering Department, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
9
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Piraino LR, Benoit DSW, DeLouise LA. Optimizing Soluble Cues for Salivary Gland Tissue Mimetics Using a Design of Experiments (DoE) Approach. Cells 2022; 11:1962. [PMID: 35741092 PMCID: PMC9222211 DOI: 10.3390/cells11121962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The development of therapies to prevent or treat salivary gland dysfunction has been limited by a lack of functional in vitro models. Specifically, critical markers of salivary gland secretory phenotype downregulate rapidly ex vivo. Here, we utilize a salivary gland tissue chip model to conduct a design of experiments (DoE) approach to test combinations of seven soluble cues that were previously shown to maintain or improve salivary gland cell function. This approach uses statistical techniques to improve efficiency and accuracy of combinations of factors. The DoE-designed culture conditions improve markers of salivary gland function. Data show that the EGFR inhibitor, EKI-785, maintains relative mRNA expression of Mist1, a key acinar cell transcription factor, while FGF10 and neurturin promote mRNA expression of Aqp5 and Tmem16a, channel proteins involved in secretion. Mist1 mRNA expression correlates with increased secretory function, including calcium signaling and mucin (PAS-AB) staining. Overall, this study demonstrates that media conditions can be efficiently optimized to support secretory function in vitro using a DoE approach.
Collapse
Affiliation(s)
- Lindsay R. Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA; (L.R.P.); (D.S.W.B.)
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
12
|
Song Y, Sharipol A, Uchida H, Ingalls MH, Piraino L, Mereness JA, Moyston T, DeLouise LA, Ovitt CE, Benoit DS. Encapsulation of Primary Salivary Gland Acinar Cell Clusters and Intercalated Ducts (AIDUCs) within Matrix Metalloproteinase (MMP)-Degradable Hydrogels to Maintain Tissue Structure and Function. Adv Healthc Mater 2022; 11:e2101948. [PMID: 34994104 PMCID: PMC8986612 DOI: 10.1002/adhm.202101948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Progress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands. Encapsulation of AIDUCs in matrix metalloproteinase (MMP)-degradable PEG hydrogels promotes self-assembly into salivary gland mimetics (SGm) with acinar-like structure. Expression of Mist1, a transcription factor associated with secretory function, is detectable throughout the in vitro culture period up to 14 days. Immunohistochemistry also confirms expression of acinar cell markers (NKCC1, PIP and AQP5), duct cell markers (K7 and K5), and myoepithelial cell markers (SMA). Robust carbachol and ATP-stimulated calcium flux is observed within the SGm for up to 14 days after encapsulation, indicating that secretory function is maintained. Though some acinar-to-ductal metaplasia is observed within SGm, it is reduced compared to previous reports. In conclusion, cell-cell interactions maintained within AIDUCs together with the hydrogel microenvironment may be a promising platform for salivary gland regenerative strategies.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Matthew H. Ingalls
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
| | - Jared A. Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| |
Collapse
|
13
|
Hong HJ, Cho JM, Yoon YJ, Choi D, Lee S, Lee H, Ahn S, Koh WG, Lim JY. Thermoresponsive fiber-based microwells capable of formation and retrieval of salivary gland stem cell spheroids for the regeneration of irradiation-damaged salivary glands. J Tissue Eng 2022; 13:20417314221085645. [PMID: 35422983 PMCID: PMC9003645 DOI: 10.1177/20417314221085645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/19/2022] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional spheroid culture enhances cell-to-cell interactions among stem cells and promotes the expression of stem cell properties; however, subsequent retrieval and delivery of these cells remain a challenge. We fabricated a thermoresponsive fiber-based microwell scaffold by combining electrospinning and hydrogel micropatterning. The resultant scaffold appeared to facilitate the formation of cellular spheroids of uniform size and enabled the expression of more stem cell-secreting growth factor genes (EGF, IGF-1, FGF1, FGF2, and HGF), pluripotent stem cell-related genes (SOX2 and NANOG), and adult epithelial stem cell-related genes (LGR4, LGR5, and LGR6) than salivary gland stem cells in a monolayer culture (SGSCmonolayer). The spheroids could be retrieved efficiently by decreasing temperature. SGSC-derived spheroid (SGSCspheroid) cells were then implanted into the submandibular glands of mice at 2 weeks after fractionated X-ray irradiation at a dose of 7.5 Gy/day. At 16 weeks post-irradiation, restoration of salivary function was detected only in SGSCspheroid-implanted mice. The production of submandibular acini specific mucin increased in SGSCspheroid-implanted mice, compared with PBS control. More MIST1+ mature acinar cells were preserved in the SGSCspheroid-implanted group than in the PBS control group. Intriguingly, SGSCspheroid-implanted mice exhibited greater amelioration of tissue damage and preservation of KRT7+ terminally differentiated luminal ductal cells than SGSCmonolayer-implanted mice. The SGSCspheroid-implanted mice also showed less DNA damage and apoptotic cell death than the SGSCmonolayer-implanted mice at 2 weeks post-implantation. Additionally, a significant increase in Ki67+AQP5+ proliferative acinar cells was noted only in SGSCspheroid-implanted mice. Our results suggest that a thermoresponsive fiber-based scaffold could be of use to facilitate the production of function-enhanced SGSCspheroid cells and their subsequent retrieval and delivery to damaged salivary glands to alleviate radiation-induced apoptotic cell death and promote salivary gland regeneration.
Collapse
Affiliation(s)
- Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - DoJin Choi
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Lee
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwajung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sujeong Ahn
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Fowler EW, Ravikrishnan A, Witt RL, Pradhan-Bhatt S, Jia X. RGDSP-Decorated Hyaluronate Hydrogels Facilitate Rapid 3D Expansion of Amylase-Expressing Salivary Gland Progenitor Cells. ACS Biomater Sci Eng 2021; 7:5749-5761. [PMID: 34781679 PMCID: PMC8680203 DOI: 10.1021/acsbiomaterials.1c00745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of salivary glands relies on the availability of synthetic matrices presenting essential cell-instructive signals to guide tissue growth. Here, we describe a biomimetic, hyaluronic acid (HA)-based hydrogel platform containing covalently immobilized bioactive peptides derived from perlecan domain IV (TWSKV), laminin-111 (YIGSR, IKVAV), and fibronectin (RGDSP). The HA network was established by the thiol/acrylate reaction, and bioactive peptides were conjugated to the network with high efficiency without significantly altering the mechanical property of the matrix. When encapsulated as single cells in peptide-modified HA hydrogels, human salivary gland stem/progenitor cells (hS/PCs) spontaneously organized into multicellular spheroids with close cell-cell contacts. Conjugation of RGDSP and TWSKV signals in HA gels significantly accelerated cell proliferation, with the largest spheroids observed in RGDSP-tagged gels. Peptide conjugation did not significantly alter the expression of acinar (AMY1), ductal (TFCP2L1), and progenitor (KRT14) markers at the mRNA level. Characterization of three-dimensional (3D) cultures by immunocytochemistry showed positive staining for keratin-5 (K5), keratin-14 (K14), integrin-β1, and α-amylase under all culture conditions, confirming the maintenance of the secretory progenitor cell population. Two-dimensional (2D) adhesion studies revealed that integrin-β1 played a key role in facilitating cell-matrix interaction in gels with RGDSP, IKVAV, and TWSKV signals. Overall, conjugation of the RGDSP peptide to HA gels improved cell viability, accelerated the formation of epithelial spheroids, and promoted the expansion of the progenitor cell population in 3D. This work represents an essential first step toward the development of an engineered salivary gland.
Collapse
Affiliation(s)
- Eric W. Fowler
- Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA
| | - Anitha Ravikrishnan
- Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA
| | - Robert L. Witt
- Department of Otolaryngology–Head & Neck Surgery, 1020 Walnut St., Thomas Jefferson University, Philadelphia, Pennsylvania, USA,Center for Translational Cancer Research, 4701 Ogletown Stanton Rd., Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
| | - Swati Pradhan-Bhatt
- Center for Translational Cancer Research, 4701 Ogletown Stanton Rd., Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA,Department of Biomedical Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA,Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware, USA,To whom correspondence should be addressed: Xinqiao Jia, Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, DE, 19716, USA. Phone: 302-831-6553, Fax: 302-831-4545,
| |
Collapse
|
15
|
Nam K, Dos Santos HT, Maslow F, Trump BG, Lei P, Andreadis ST, Baker OJ. Laminin-1 Peptides Conjugated to Fibrin Hydrogels Promote Salivary Gland Regeneration in Irradiated Mouse Submandibular Glands. Front Bioeng Biotechnol 2021; 9:729180. [PMID: 34631679 PMCID: PMC8498954 DOI: 10.3389/fbioe.2021.729180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies demonstrated that salivary gland morphogenesis and differentiation are enhanced by modification of fibrin hydrogels chemically conjugated to Laminin-1 peptides. Specifically, Laminin-1 peptides (A99: CGGALRGDN-amide and YIGSR: CGGADPGYIGSRGAA-amide) chemically conjugated to fibrin promoted formation of newly organized salivary epithelium both in vitro (e.g., using organoids) and in vivo (e.g., in a wounded mouse model). While these studies were successful, the model's usefulness for inducing regenerative patterns after radiation therapy remains unknown. Therefore, the goal of the current study was to determine whether transdermal injection with the Laminin-1 peptides A99 and YIGSR chemically conjugated to fibrin hydrogels promotes tissue regeneration in irradiated salivary glands. Results indicate that A99 and YIGSR chemically conjugated to fibrin hydrogels promote formation of functional salivary tissue when transdermally injected to irradiated salivary glands. In contrast, when left untreated, irradiated salivary glands display a loss in structure and functionality. Together, these studies indicate that fibrin hydrogel-based implantable scaffolds containing Laminin-1 peptides promote secretory function of irradiated salivary glands.
Collapse
Affiliation(s)
- Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Harim T Dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Frank Maslow
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bryan G Trump
- School of Dentistry, University of Utah, Salt Lake City, UT, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Olga J Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
16
|
Song Y, Uchida H, Sharipol A, Piraino L, Mereness JA, Ingalls MH, Rebhahn J, Newlands SD, DeLouise LA, Ovitt CE, Benoit DSW. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol 2021; 4:361. [PMID: 33742114 PMCID: PMC7979686 DOI: 10.1038/s42003-021-01876-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew H Ingalls
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
17
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
18
|
Dos Santos HT, Nam K, Brown CT, Dean SM, Lewis S, Pfeifer CS, Lei P, Petris MJ, Andreadis ST, Baker OJ. Trimers Conjugated to Fibrin Hydrogels Promote Salivary Gland Function. J Dent Res 2020; 100:268-275. [PMID: 33043768 DOI: 10.1177/0022034520964784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
New strategies for tissue engineering have great potential for restoring and revitalizing impaired tissues and organs, including the use of smart hydrogels that can be modified to enhance organization and functionality of the salivary glands. For instance, monomers of laminin-111 peptides chemically conjugated to fibrin hydrogel (L1pM-FH) promote cell cluster formation in vitro and salivary gland regeneration in vivo when compared with fibrin hydrogel (FH) alone; however, L1pM-FH produce only weak expression of acinar differentiation markers in vivo (e.g., aquaporin-5 and transmembrane protein 16). Since previous studies demonstrated that a greater impact can be achieved when trimeric forms were used as compared with monomeric or dimeric forms, we investigated the extent to which trimers of laminin-111 chemically conjugated to FH (L1pT-FH) can increase the expression of acinar differentiation markers and elevate saliva secretion. In vitro studies using Par-C10 acinar cells demonstrated that when compared with L1pM-FH, L1pT-FH induced similar levels of acinar-like cell clustering, polarization, lumen formation, and calcium signaling. To assess the performance of the trimeric complex in vivo, we compared the ability of L1pM-FH and L1pT-FH to increase acinar differentiation markers and restore saliva flow rate in a salivary gland wound model of C57BL/6 mice. Our results show that L1pT-FH applied to wounded mice significantly improved the expression of the acinar differentiation markers and saliva secretion when compared with the monomeric form. Together, these positive effects of L1pT-FH warrant its future testing in additional models of hyposalivation with the ultimate goal of applying this technology in humans.
Collapse
Affiliation(s)
- H T Dos Santos
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - K Nam
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - C T Brown
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - S M Dean
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - S Lewis
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - C S Pfeifer
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - P Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - M J Petris
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.,Department of Biochemistry, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - S T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - O J Baker
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.,Department of Biochemistry, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
19
|
Jain R, Roy S. Controlling Neuronal Cell Growth through Composite Laminin Supramolecular Hydrogels. ACS Biomater Sci Eng 2020; 6:2832-2846. [PMID: 33463249 DOI: 10.1021/acsbiomaterials.9b01998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Designing an extracellular matrix mimic by biofunctionalization of polymeric scaffolds is a popular strategy and extremely crucial for facilitating the interactions between cells and the matrix. To this direction, supramolecular gels are gaining exponential attention over the last few years, owing to their potential biocompatibility and biodegradability. In spite of diverse biological roles of native laminin, the bioactivities of self-assembling laminin-derived short peptides were less explored. In this work, we have explored the minimalist design to develop hydrogel scaffolds based on IKVAV and YIGSR peptides individually and their composite matrix, which can provide structurally and functionally relevant materials for tissue engineering. Till date, composite supramolecular gels solely made up of self-assembling IKVAV and YIGSR peptides have never been reported. Such composite gels can be a closer mimic of natural laminin protein, which could mimic the essential functions of the short peptide fragments present on different chains of the extracellular matrix protein, laminin. Interestingly, we used a unique strategy of simple mixing of the two laminin mimetic peptides, which tend to induce coassembly with a self-sorted nanofibrous network with relatively enhanced mechanical strength. The physicochemical properties of the biofunctional hydrogels were studied using different microscopic, spectroscopic, and rheology techniques. To assess the bioactivity of laminin-derived scaffolds in controlling neuronal cell growth, its biocompatibility, cellular growth, and proliferation were quantified using C6 glial cells and SHSY5Y neuroblastoma cells. The live/dead staining further confirmed the adhesion and proliferation of the cells. A significant increase in neurite length provides clear evidence on mimicking the neurite extension function of native laminin protein by its short derivatives. Interestingly, similar β-III tubulin expression and cell cycle phases were observed, in comparison to control, which indicated normal cellular functioning of the cells cultured over short laminin hydrogel scaffolds. All bioassays suggested that Fmoc YIGSR promotes growth of neural cells to a greater extent and maintains healthier morphology, in comparison to hydrophobic Fmoc IKVAV, owing to the entangled longer fibrous network formed by YIGSR peptide. It is expected that thinner long fibers provide a more uniform surface and are more supportive for cell adhesion in comparison to hydrophobic, shorter fibers IKVAV peptide. However, in composite gels, the detrimental effect of hydrophobic IKVAV peptide could be reduced and better adhesion and proliferation could be achieved along with enhanced cell survival. These observations demonstrate the high potential of the laminin-derived hydrogels in tissue engineering and neuronal stem cell differentiation in future.
Collapse
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali, Punjab 160062, India
| | - Sangita Roy
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali, Punjab 160062, India
| |
Collapse
|
20
|
Samuel RZ, Lei P, Nam K, Baker OJ, Andreadis ST. Engineering the mode of morphogenetic signal presentation to promote branching from salivary gland spheroids in 3D hydrogels. Acta Biomater 2020; 105:121-130. [PMID: 31988042 DOI: 10.1016/j.actbio.2020.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Previously we developed a fibrin hydrogel (FH) decorated with laminin-111 peptides (L1p-FH) and supports three-dimensional (3D) gland microstructures containing polarized acinar cells. Here we expand on these results and show that co-culture of rat parotid Par-C10 cells with mesenchymal stem cells produces migrating branches of gland cells into the L1p-FH and we identify FGF-7 as the principal morphogenetic signal responsible for branching. On the other hand, another FGF family member and gland morphogen, FGF-10 increased proliferation but did not promote migration and therefore, limited the number and length of branched structures grown into the gel. By controlling the mode of growth factor presentation and delivery, we can control the length and cellularity of branches as well as formation of new nodes/clusters within the hydrogel. Such spatial delivery of two or more morphogens may facilitate engineering of anatomically complex tissues/mini organs such as salivary glands that can be used to address developmental questions or as platforms for drug discovery. STATEMENT OF SIGNIFICANCE: Hyposalivation leads to the development of a host of oral diseases. Current treatments only provide temporary relief. Tissue engineering may provide promising permanent solutions. Yet current models are limited to salivary spheroids with no branching networks. Branching structures are vital to an effective functioning gland as they increase the surface area/glandular volume ratio of the tissue, allowing a higher output from the small-sized gland. We describe a strategy that controls branch network formation in salivary glands that is a key in advancing the field of salivary gland tissue engineering.
Collapse
|
21
|
Burghartz M, Taeger J, Metzger M, Scherzad A, Gehrke T, Ickrath P, Kolb E, Kleinsasser N, Hagen R, Hackenberg S. Investigation of Cellular Function and DNA Integrity during 2D in vitro Culture of Human Salivary Gland Epithelial Cells. Cells Tissues Organs 2020; 208:66-75. [PMID: 32023622 DOI: 10.1159/000505433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
In vitro culture of human salivary gland epithelial cells (SGEC) is still a challenge. A high quantity and quality of cells are needed for the cultivation of 3D matrices. Furthermore, it is known that DNA damage is supposed to be an important factor involved in carcinogenesis. This study investigates cellular function and DNA integrity of human SGEC during 3 passage steps in 2 groups (group 1: n = 10; group 2: n = 9). Cellular function was analyzed by immunofluorescence, transmission electron microscopy (TEM), and quantitative real-time polymerase chain reaction (qPCR). DNA integrity was tested via the comet assay. Immunohistochemistry and qPCR results showed stable α-amylase and pan-cytokeratin levels; TEM revealed functional cells; and no significant DNA damage could be detected in the comet assay during 3 culture steps. The study shows that not only at cellular but also at DNA level human SGEC can be safely quantified over 3 passages for preclinical tissue engineering without loss of differentiation and function.
Collapse
Affiliation(s)
- Marc Burghartz
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Stuttgart, Stuttgart, Germany
| | - Johannes Taeger
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany,
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Gehrke
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Pascal Ickrath
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Evelyn Kolb
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University, Linz, Austria
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
23
|
Nam K, Kim K, Dean SM, Brown CT, Davis RS, Okano T, Baker OJ. Using cell sheets to regenerate mouse submandibular glands. NPJ Regen Med 2019; 4:16. [PMID: 31285850 PMCID: PMC6609686 DOI: 10.1038/s41536-019-0078-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Temperature-responsive polymer grafted tissue culture dishes release cells as confluent living sheets in response to small changes in temperature, with recovered cell sheets retaining cell-cell communications, functional extracellular matrices and tissue-like behaviors. These features promote tissue regeneration and improve transplantation efficacy in various tissues including cartilage, heart, kidney, liver, endometrium, cornea, middle ear, periodontium, and esophageal living sheet transplants. However, the functional effects of cell sheets for salivary gland regeneration to treat hyposalivation have not yet been studied. Thus, the present study aims to both establish the viability of thermoresponsive cell sheets for use in salivary glands and then explore the delivery option (i.e., single vs. multiple layers) that would result in the most complete tissue growth in terms of cell differentiation and recovered tissue integrity. Results indicate that single cell sheets form polarized structures that maintain cell-cell junctions and secretory granules in vitro while layering of two-single cell sheets forms a glandular-like pattern in vitro. Moreover, double layer cell sheets enhance tissue formation, cell differentiation and saliva secretion in vivo. In contrast, single cell sheets demonstrated only modest gains relative to the robust growth seen with the double layer variety. Together, these data verify the utility of thermoresponsive cell sheets for use in salivary glands and indicates the double layer form to provide the best option in terms of cell differentiation and recovered tissue integrity, thereby offering a potential new therapeutic strategy for treating hyposalivation.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, UT USA
| | - Spencer M. Dean
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Callie T. Brown
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Ryan S. Davis
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, UT USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT USA
| |
Collapse
|
24
|
Nam K, Dean SM, Brown CT, Smith RJ, Lei P, Andreadis ST, Baker OJ. Synergistic effects of laminin-1 peptides, VEGF and FGF9 on salivary gland regeneration. Acta Biomater 2019; 91:186-194. [PMID: 31028910 DOI: 10.1016/j.actbio.2019.04.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Hyposalivation is associated with radiation therapy, Sjögren's syndrome and/or aging, and is a significant clinical problem that decreases oral health and overall health in many patients and currently lacks effective treatment. Hence, methods to regenerate salivary glands and restore saliva secretion are urgently needed. To this end, this study describes the modification of fibrin hydrogels with a combination of laminin-1 peptides (YIGSR and A99) and human growth factors (vascular endothelial growth factor and fibroblast growth factor 9) to enhance regeneration in a salivary gland injury mouse model. Our results indicate that these fortified hydrogels enhanced angiogenesis and neurogenesis while promoting formation of acinar structures, thereby leading to enhanced saliva secretion. Such functional recovery indicates salivary gland regeneration and suggests that our technology may be useful in promoting gland regeneration and reversing hyposalivation in a clinical setting. STATEMENT OF SIGNIFICANCE: We engineered Fibrin Hydrogels (FH) to contain multiple regenerative cues including laminin-1 peptides (L1p) and growth factors (GFs). L1p and GF modified FH were used to induce salivary gland regeneration in a wounded mouse model. Treatment with L1p and GF modified FH promoted salivary epithelial tissue regeneration, vascularization, neurogenesis and healing as compared to L1p-FH or FH alone. Results indicate that L1p and GF modified FH can be used for future therapeutic applications.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, The University of Utah, Salt Lake City, UT 84108, United States
| | - Spencer M Dean
- School of Dentistry, The University of Utah, Salt Lake City, UT 84108, United States
| | - Callie T Brown
- School of Dentistry, The University of Utah, Salt Lake City, UT 84108, United States
| | - Randall J Smith
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, United States; Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, United States; Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, United States.
| | - Olga J Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT 84108, United States.
| |
Collapse
|
25
|
Hozumi K, Nomizu M. Mixed Peptide-Conjugated Chitosan Matrices as Multi-Receptor Targeted Cell-Adhesive Scaffolds. Int J Mol Sci 2018; 19:E2713. [PMID: 30208645 PMCID: PMC6165449 DOI: 10.3390/ijms19092713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023] Open
Abstract
Biomaterials are important for cell and tissue engineering. Chitosan is widely used as a scaffold because it is easily modified using its amino groups, can easily form a matrix, is stable under physiological conditions, and is inactive for cell adhesion. Chitosan is an excellent platform for peptide ligands, especially cell adhesive peptides derived from extracellular matrix (ECM) proteins. ECM proteins, such as collagen, fibronectin, and laminin, are multifunctional and have diverse cell attachment sites. Various cell adhesive peptides have been identified from the ECM proteins, and these are useful to design functional biomaterials. The cell attachment activity of peptides is influenced by the solubility, conformation, and coating efficiency to solid materials, whereas immobilization of peptides to a polysaccharide such as chitosan avoids these problems. Peptide⁻chitosan matrices promote various biological activities depending on the peptide. When the peptides are immobilized to chitosan, the activity of the peptides is significantly enhanced. Further, mixed peptide⁻chitosan matrices, conjugated with more than one peptide on a chitosan matrix, interact with multiple cellular receptors and promote specific biological responses via receptor cross-talk. Receptor cross-talk is important for mimicking the biological activity of ECM and the proteins. The mixed peptide⁻chitosan matrix approach is useful to develop biomaterials as a synthetic ECM for cell and tissue engineering.
Collapse
Affiliation(s)
- Kentaro Hozumi
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
- Department of Applied Clinical Dietetics, Kitasato Junior College of Health and Hygienic Sciences, Minamiuonuma, Niigata 949-7241, Japan.
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
26
|
Maruyama CL, Monroe MM, Hunt JP, Buchmann L, Baker OJ. Comparing human and mouse salivary glands: A practice guide for salivary researchers. Oral Dis 2018; 25:403-415. [PMID: 29383862 DOI: 10.1111/odi.12840] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Mice are a widely utilized in vivo model for translational salivary gland research but must be used with caution. Specifically, mouse salivary glands are similar in many ways to human salivary glands (i.e., in terms of their anatomy, histology, and physiology) and are both readily available and relatively easy and affordable to maintain. However, there are some significant differences between the two organisms, and by extension, the salivary glands derived from them must be taken into account for translational studies. The current review details pertinent similarities and differences between human and mouse salivary glands and offers practical guidelines for using both for research purposes.
Collapse
Affiliation(s)
- C L Maruyama
- University of Utah School of Dentistry, Salt Lake City, UT, USA
| | - M M Monroe
- Department of Otolaryngology-Head and Neck Surgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J P Hunt
- Department of Otolaryngology-Head and Neck Surgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - L Buchmann
- Department of Otolaryngology-Head and Neck Surgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - O J Baker
- University of Utah School of Dentistry, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Nam K, Maruyama CL, Wang CS, Trump BG, Lei P, Andreadis ST, Baker OJ. Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function. PLoS One 2017; 12:e0187069. [PMID: 29095857 PMCID: PMC5667805 DOI: 10.1371/journal.pone.0187069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022] Open
Abstract
Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Christina L. Maruyama
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Ching-Shuen Wang
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Bryan G. Trump
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Olga J. Baker
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
28
|
Foraida ZI, Kamaldinov T, Nelson DA, Larsen M, Castracane J. Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization. Acta Biomater 2017; 62:116-127. [PMID: 28801269 PMCID: PMC5646366 DOI: 10.1016/j.actbio.2017.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 01/24/2023]
Abstract
Development of electrospun nanofibers that mimic the structural, mechanical and biochemical properties of natural extracellular matrices (ECMs) is a promising approach for tissue regeneration. Electrospun fibers of synthetic polymers partially mimic the topography of the ECM, however, their high stiffness, poor hydrophilicity and lack of in vivo-like biochemical cues is not optimal for epithelial cell self-organization and function. In search of a biomimetic scaffold for salivary gland tissue regeneration, we investigated the potential of elastin, an ECM protein, to generate elastin hybrid nanofibers that have favorable physical and biochemical properties for regeneration of the salivary glands. Elastin was introduced to our previously developed poly-lactic-co-glycolic acid (PLGA) nanofiber scaffolds by two methods, blend electrospinning (EP-blend) and covalent conjugation (EP-covalent). Both methods for elastin incorporation into the nanofibers improved the wettability of the scaffolds while only blend electrospinning of elastin-PLGA nanofibers and not surface conjugation of elastin to PLGA fibers, conferred increased elasticity to the nanofibers measured by Young's modulus. After two days, only the blend electrospun nanofiber scaffolds facilitated epithelial cell self-organization into cell clusters, assessed with nuclear area and nearest neighbor distance measurements, leading to the apicobasal polarization of salivary gland epithelial cells after six days, which is vital for cell function. This study suggests that elastin electrospun nanofiber scaffolds have potential application in regenerative therapies for salivary glands and other epithelial organs. STATEMENT OF SIGNIFICANCE Regenerating the salivary glands by mimicking the extracellular matrix (ECM) is a promising approach for long term treatment of salivary gland damage. Despite their topographic similarity to the ECM, electrospun fibers of synthetic polymers lack the biochemical complexity, elasticity and hydrophilicity of the ECM. Elastin is an ECM protein abundant in the salivary glands and responsible for tissue elasticity. Although it's widely used for tissue regeneration of other organs, little is known about its utility in regenerating the salivary tissue. This study describes the use of elastin to improve the elasticity, hydrophilicity and biochemical complexity of synthetic nanofibers and its potential in directing in vivo-like organization of epithelial salivary cells which helps the design of efficient salivary gland regeneration scaffolds.
Collapse
Affiliation(s)
- Zahraa I Foraida
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, United States
| | - Tim Kamaldinov
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, United States
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, United States
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, United States.
| | - James Castracane
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, United States.
| |
Collapse
|
29
|
Silva J, Bento AR, Barros D, Laundos TL, Sousa SR, Quelhas P, Sousa MM, Pêgo AP, Amaral IF. Fibrin functionalization with synthetic adhesive ligands interacting with α6β1 integrin receptor enhance neurite outgrowth of embryonic stem cell-derived neural stem/progenitors. Acta Biomater 2017; 59:243-256. [PMID: 28694236 DOI: 10.1016/j.actbio.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
To enhance fibrin hydrogel affinity towards pluripotent stem cell-derived neural stem/progenitor cells (NSPCs) and its capacity to support NSPC migration and neurite extension, we explored the tethering of synthetic peptides engaging integrin α6β1, a cell receptor enriched in NSPCs. Six α6β1 integrin ligands were tested for their ability to support integrin α6β1-mediated adhesion of embryonic stem cell-derived NSPCs (ES-NSPs) and sustain ES-NSPC viability, migration, and neuronal differentiation. Due to their better performance, peptides T1, HYD1, and A5G81 were immobilized into fibrin and functionalized gels characterized in terms of peptide binding efficiency, structure and viscoelastic properties. Tethering of T1 or HYD1 successfully enhanced cell outgrowth from ES-NSPC neurospheres (up to 2.4-fold increase), which exhibited a biphasic response to peptide concentration. Inhibition assays evidenced the involvement of α6β1 and α3β1 integrins in mediating radial outgrowth on T1-/HYD1-functionalized gels. Fibrin functionalization also promoted neurite extension of single ES-NSPCs in fibrin, without affecting cell proliferation and neuronal differentiation. Finally, HYD1-functionalized gels were found to provide a permissive environment for axonal regeneration, leading up to a 2.0-fold increase in neurite extension from rat dorsal root ganglia explants as compared to unmodified fibrin, and to significant improved locomotor function after spinal cord injury (complete transection), along with a trend toward a higher area positive for growth associated protein 43 (marker for axonal growth cone formation). Our results suggest that conjugation of α6β1 integrin-binding motifs is of interest to increase the biofunctionality of hydrogels used in 3D platforms for ES-NSPC culture and potentially, in matrix-assisted ES-NSPC transplantation. STATEMENT OF SIGNIFICANCE Impact statement: The transplantation of NSPCs derived from pluripotent stem cells holds much promise for the treatment of central nervous system disorders. Moreover, the combinatorial use of biodegradable hydrogels with NSPCs was shown to contribute to the establishment of a more permissive environment for survival and integration of transplanted cells. In this study, fibrin hydrogels functionalized with a synthetic peptide engaging integrin α6β1 (HYD1) were shown to promote neurite extension of ES-NSPCs, which is fundamental for the formation of functional neuronal relay circuits after NSPC transplantation. Notably, HYD1-functionalized fibrin per se led to enhanced axonal growth ex vivo and to an improvement in locomotor function after implantation in a rat model of spinal cord injury. Conjugation of α6β1 integrin-binding motifs may therefore be of interest to confer bioactivity to NSPC hydrogel vehicles.
Collapse
Affiliation(s)
- Joana Silva
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Ana R Bento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Daniela Barros
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Tiago L Laundos
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Susana R Sousa
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Portugal
| | - Pedro Quelhas
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Mónica M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Nerve Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Ana P Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Isabel F Amaral
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Portugal.
| |
Collapse
|
30
|
Burghartz M, Lennartz S, Schweinlin M, Hagen R, Kleinsasser N, Hackenberg S, Steußloff G, Scherzad A, Radeloff K, Ginzkey C, Walles H, Metzger M. Development of Human Salivary Gland-Like Tissue In Vitro. Tissue Eng Part A 2017; 24:301-309. [PMID: 28783453 DOI: 10.1089/ten.tea.2016.0466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The loss of salivary gland function caused by radiation therapy of the head and neck is a serious condition and it affects a patient's quality of life. The current lack of effective therapies demands new options to be explored. This study tested whether human salivary gland epithelial cells (SGECs) could be successfully cultured on a decellularized porcine gut matrix (SIS-muc) in both mono- and coculture with microvascular endothelial cells (mvECs). By performing immunofluorescence imaging, transmission as well as scanning electron microscopy (SEM), quantitative polymerase chain reaction (qPCR), and an amylase enzyme assay, it was investigated as to what extent the three-dimensional (3D)-cultured cells could maintain their molecular differentiation and the production of working α-amylase (α-AMY) compared with two-dimensional (2D) culture. In both 3D mono- and coculture, SGECs were successfully cultured and formed acinar-like structures. Those findings were confirmed by SEM imaging. Immunofluorescence imaging revealed that 3D-cultured cells expressed α-AMY, Claudin-1 (CL-1), and water channel protein aquaporin-5 (AQP-5). Two-dimensional-cultured cells only were positive for α-AMY. Real time (RT)-qPCR analysis showed that α-AMY relative gene expression was higher in both 3D mono- and coculture than in 2D culture. In α-AMY enzyme assay, cocultured SGECs showed about 25 times increased enzyme activity compared with 2D-cultured cells. In conclusion, the SIS-muc combined with endothelial coculture seems a suitable culture setting for the tissue engineering of functional human salivary gland tissue.
Collapse
Affiliation(s)
- Marc Burghartz
- 1 Department of Otorhinolaryngology, Head and Neck Surgery , Klinikum Stuttgart, Stuttgart, Germany
| | - Simon Lennartz
- 2 Institute of Diagnostic and Interventional Radiology, University Hospital Cologne , Cologne, Germany
| | - Matthias Schweinlin
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Rudolf Hagen
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Stephan Hackenberg
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Gudrun Steußloff
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Agmal Scherzad
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Kathrin Radeloff
- 4 University Department of Otorhinolaryngology , Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Universitiy Hospital Würzburg, Würzburg, Germany
| | - Christian Ginzkey
- 5 Department of Otorhinolaryngology, Head and Neck Surgery "Otto-Körner", University Hospital Rostock , Rostock, Germany
| | - Heike Walles
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Marco Metzger
- 3 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| |
Collapse
|
31
|
Shubin AD, Felong TJ, Schutrum BE, Joe DSL, Ovitt CE, Benoit DSW. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics. Acta Biomater 2017; 50:437-449. [PMID: 28039063 PMCID: PMC5455143 DOI: 10.1016/j.actbio.2016.12.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Radiation therapy for head and neck cancers leads to permanent xerostomia due to the loss of secretory acinar cells in the salivary glands. Regenerative treatments utilizing primary submandibular gland (SMG) cells show modest improvements in salivary secretory function, but there is limited evidence of salivary gland regeneration. We have recently shown that poly(ethylene glycol) (PEG) hydrogels can support the survival and proliferation of SMG cells as multicellular spheres in vitro. To further develop this approach for cell-based salivary gland regeneration, we have investigated how different modes of PEG hydrogel degradation affect the proliferation, cell-specific gene expression, and epithelial morphology within encapsulated salivary gland spheres. Comparison of non-degradable, hydrolytically-degradable, matrix metalloproteinase (MMP)-degradable, and mixed mode-degradable hydrogels showed that hydrogel degradation by any mechanism is required for significant proliferation of encapsulated cells. The expression of acinar phenotypic markers Aqp5 and Nkcc1 was increased in hydrogels that are MMP-degradable compared with other hydrogel compositions. However, expression of secretory acinar proteins Mist1 and Pip was not maintained to the same extent as phenotypic markers, suggesting changes in cell function upon encapsulation. Nevertheless, MMP- and mixed mode-degradability promoted organization of polarized cell types forming tight junctions and expression of the basement membrane proteins laminin and collagen IV within encapsulated SMG spheres. This work demonstrates that cellularly remodeled hydrogels can promote proliferation and gland-like organization by encapsulated salivary gland cells as well as maintenance of acinar cell characteristics required for regenerative approaches. Investigation is required to identify approaches to further enhance acinar secretory properties. STATEMENT OF SIGNIFICANCE Regenerative strategies to replace damaged salivary glands require the function and organization of acinar cells. Hydrogel-based approaches have shown promise to control cell function and phenotype. However, little is known about how specific parameters, such as the mechanism of hydrogel degradation (e.g., hydrolytic or enzymatic), influence the viability, proliferation, organization, and phenotype of salivary gland cells. In this work, it is shown that hydrogel-encapsulated primary salivary gland cell proliferation is dependent upon hydrogel degradation. Hydrogels crosslinked with enzymatically degradable peptides promoted the expression of critical acinar cell markers, which are typically downregulated in primary cultures. Furthermore, salivary gland cells encapsulated in enzymatically- but not hydrolytically-degradable hydrogels displayed highly organized and polarized salivary gland cell markers, which mimics characteristics found in native gland tissue. In sum, results indicate that salivary gland cells respond to cellularly remodeled hydrogels, resulting in self-assembly and organization akin to acini substructures of the salivary gland.
Collapse
Affiliation(s)
- Andrew D Shubin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Timothy J Felong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Brittany E Schutrum
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Debria S L Joe
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, United States; Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States; Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States; Department of Chemical Engineering, University of Rochester, Rochester, NY, United States; Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
32
|
Nam K, Wang CS, Maruyama CLM, Lei P, Andreadis ST, Baker OJ. L1 Peptide-Conjugated Fibrin Hydrogels Promote Salivary Gland Regeneration. J Dent Res 2017; 96:798-806. [PMID: 28208029 DOI: 10.1177/0022034517695496] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hyposalivation contributes to dental caries, periodontitis, and microbial infections. Additionally, it impairs activities of daily living (e.g., speaking, chewing, and swallowing). Treatments for hyposalivation are currently limited to medications (e.g., the muscarinic receptor agonists pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells and the use of saliva substitutes. However, given that these therapies provide only temporary relief, the development of alternative treatments to restore gland function is essential. Previous studies demonstrated that laminin 1 (L1) is critical for intact salivary cell cluster formation and organization. However, the full L1 sequence is not suitable for clinical applications, as each protein domain may contribute to unwanted effects, such as degradation, tumorigenesis, and immune responses that, when compounded, outweigh the potential benefits provided by their sum. Although the L1 peptides YIGSR and A99 linked to fibrin hydrogels (FHs) promote intact salivary epithelial formation in vitro, little is known about their role during salivary gland regeneration in vivo. Therefore, the goal of this study was to demonstrate whether L1 peptides conjugated to FHs promote tissue regeneration in a wound-healing model of mouse submandibular glands (mSMGs). Our results suggest that YIGSR-A99 peptides, chemically conjugated to FHs and applied to wounded mSMGs in vivo, formed new organized salivary tissue. In contrast, wounded mSMGs treated with FHs alone or in the absence of a scaffold showed disorganized collagen formation and poor tissue healing. Together these studies indicate that damaged salivary gland tissue can grow and differentiate when treated with FHs containing L1 peptides.
Collapse
Affiliation(s)
- K Nam
- 1 School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - C-S Wang
- 1 School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - C L M Maruyama
- 1 School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - P Lei
- 2 Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - S T Andreadis
- 2 Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.,3 Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,4 Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - O J Baker
- 1 School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|