1
|
Quadrado RFN, Zhai Z, Zavadinack M, Klassen G, Iacomini M, Edgar KJ, Fajardo AR. All-polysaccharide, self-healing, pH-sensitive, in situ-forming hydrogel of carboxymethyl chitosan and aldehyde-functionalized hydroxyethyl cellulose. Carbohydr Polym 2024; 336:122105. [PMID: 38670749 DOI: 10.1016/j.carbpol.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
In situ forming hydrogels are promising for biomedical applications, especially in drug delivery. The precursor solution can be injected at the target site, where it undergoes a sol-gel transition to afford a hydrogel. In this sense, the most significant characteristic of these hydrogels is fast gelation behavior after injection. This study describes an all-polysaccharide, rapidly in situ-forming hydrogel composed of carboxymethyl chitosan (CMCHT) and hydroxyethyl cellulose functionalized with aldehyde groups (HEC-Ald). The HEC-Ald was synthesized through acetal functionalization, followed by acid deprotection. This innovative approach avoids cleavage of pyran rings, as is inherent in the periodate oxidation approach, which is the most common method currently employed for adding aldehyde groups to polysaccharides. The resulting hydrogel exhibited fast stress relaxation, self-healing properties, and pH sensitivity, which allowed it to control the release of an encapsulated model drug in response to the medium pH. Based on the collected data, the HEC-Ald/CMCHT hydrogels show promise as pH-sensitive drug carriers.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, USA
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Fu L, Fang Z, Chen H, Wang A, Sun C, Zhai Y, Liu W, Qiao Z, Wen Y. Fabrication of versatile lignocellulose nanofibril/polymerizable deep eutectic solvent hydrogels with anti-swelling, adhesive and low-temperature resistant properties via a one-pot strategy. Int J Biol Macromol 2024; 256:128289. [PMID: 38000570 DOI: 10.1016/j.ijbiomac.2023.128289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Lignocellulosic nanofibril (LCNF) is indispensable in numerous potential applications because of its unsurpassed quintessential characteristics. While it still remains a challenge to assemble LCNF in a facile and environmental economy-first manner. In this work, a simple and green one-step synthetic approach was reported to prepare a series of LCNF-containing versatile hydrogels using deep eutectic solvent (DES). In particular, the LCNF5% hydrogel (namely LCNF5%-gel) in this work perfectly integrated superior stretchability (∼643 %), and displayed a dramatically improved anti-swelling ability (25 %) compared to the control sample (neat DES hydrogel, 2252 %). Simultaneously, the LCNF5% hydrogel presented underwater adhesiveness and outstanding long-term low-temperature resistance (stable at -25 °C for a month). This novel multifunctional hydrogel, prepared by a facile and eco-friendly strategy, is potentially useful in wet adhesion or underwater applications.
Collapse
Affiliation(s)
- Limei Fu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China; Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai 264006, China
| | - Zhen Fang
- Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai 264006, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongfang Chen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - An Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Changjiang Sun
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Yingying Zhai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Weimin Liu
- Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhuhui Qiao
- Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, PR China.
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
4
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
5
|
Adhesive, antibacterial and double crosslinked carboxylated polyvinyl alcohol/chitosan hydrogel to enhance dynamic skin wound healing. Int J Biol Macromol 2023; 228:744-753. [PMID: 36563817 DOI: 10.1016/j.ijbiomac.2022.12.169] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
An available dressing material which promotes skin tissue repair is of significant importance for public health. Moreover, dynamic wounds have special requirements for hydrogel dressings due to their motion state. Correspondingly, a double crosslinked hydrogel was prepared based on amide and coordination bonds from carboxylated polyvinyl alcohol (PC) and chitosan (CS)/Fe3+. The hydrogel exhibited excellent swelling ratio and suitable biodegradability, which is beneficial to the tissue repair. The results showed that hydrogels with crosslinked structure possessed better unique properties, such as stronger mechanical (78 kPa of G') and adhesion properties, and shorter self-healing time (5 mins), the change of which was consistent with dynamic wounds. The hydrogel exhibited not only antibacterial activity (98 % fatality rate), but also superior hemostatic capacity during the wound healing process. In addition, the hydrogel could shorten skin healing time to 14 days, and obviously accelerated skin structure reconstruction by promoting angiogenesis and collagen deposition. Therefore, double crosslinked hydrogel is a promising dynamic wound dressing.
Collapse
|
6
|
Huang W, Wu J, Huang Z, Zhang D, Chen F, Liu C. A self-gelling starch-based sponge for hemostasis. J Mater Chem B 2023; 11:1331-1343. [PMID: 36655482 DOI: 10.1039/d2tb02224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled bleeding remains one of the direct causes of high mortality. There is an urgent need for developing emergency hemostats capable of coping with uncontrolled bleeding. The commercial starch-based hemostatic powder (PerClot®) requires compression during application, which limits its application in hemostasis of irregular and non-compressed wounds. Herein, a boronic acid-modified thiol starch sponge (St-SP sponge) with self-gelling properties was developed for hemorrhage control. The results show that the St-SP sponge could quickly absorb blood, self-gel and self-heal to seal the bleeding sites. In addition, the St-SP sponge can rapidly initiate the coagulation cascade and promote the adhesion and aggregation of erythrocytes and platelets. The St-SP sponge exhibited significantly improved in vitro and in vivo hemostatic abilities as compared with PerClot. Notably, the St-SP sponge attained complete hemostasis without any compression in 61.5 s and made a great difference compared to PerClot (169 s) for the irregular wound constructed on the rabbit liver. In addition, the St-SP sponge had good hemocompatibility and cytocompatibility. It turns out that the newly developed St-SP sponge is a promising material for first-aid hemostasis of irregular and non-compressed wounds.
Collapse
Affiliation(s)
- Wenjie Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Juan Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
The application of elastin-like peptides in cancer, tissue engineering and ocular disease. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Injectable adhesive self-healing biocompatible hydrogel for haemostasis, wound healing, and postoperative tissue adhesion prevention in nephron-sparing surgery. Acta Biomater 2022; 152:157-170. [PMID: 36100176 DOI: 10.1016/j.actbio.2022.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023]
Abstract
Nephron-sparing surgery is a well-established treatment in patients with T1a renal cell carcinoma; however, the complex suturing process prolongs warm ischaemia time, affects the preservation of normal renal parenchymal function, and causes avoidable postoperative tissue adhesion complications, including chronic abdominal pain, intestinal obstruction, and female infertility. Hence, the design of multifunctional biomaterials with haemostasis, postoperative wound management, and postoperative tissue adhesion prevention properties for nephron-sparing surgeries is urgently needed. In this study, a series of injectable adhesive multifunctional biocompatible hydrogels were designed based on the free-radical polymerisation of monomers acryloyl-6-aminocaproic acid (AA) and N-acryloyl 2-glycine (NAG), and the ionic coordination between Ca2+ and the abundant carboxyl groups in AA and NAG. AA/NAG/Ca (AA, NAG, and Ca refer to acryloyl-6-aminocaproic acid, N-acryloyl 2-glycine and calcium chloride, respectively) hydrogel exhibited good mechanical properties, swelling and adhesion properties, flexibility, in vitro blood-clotting ability, and cytocompatibility. In vivo experiments on liver injury models and rat/rabbit nephron-sparing surgery models elucidated that the AA/NAG/Ca hydrogel had haemostasis performance and wound healing properties that led to short bleeding time, reduced bleeding volume, and well-organised nephron structures. An abdomen-caecum adhesion model indicated that the AA/NAG/Ca hydrogel showed excellent anti-adhesion properties. In summary, this multifunctional hydrogel exhibited potential for improving haemostasis and wound management in nephron-sparing surgeries, showing potential for clinical application. STATEMENT OF SIGNIFICANCE: Extended warm ischemia time during nephron sparing surgery negatively affected postoperative renal function due to the need for hemostasis at the wound with abundant blood supply, and postoperative wound healing and additional adhesions caused by the surgical procedure deserve attention. Based on the efficient and stable adhesion properties of hydrogels and the ability to promote wound healing. Herein, a series of adhesive self-healing biocompatible hydrogels were prepared based on free-radical polymerization of acryloyl-6-aminocaproic acid (AA) and N-acryloyl 2-glycine (NAG) and the ionic coordination between Ca2+ with the abundant carboxyl groups in AA and NAG. AA/NAG/Ca hydrogel showed hemostasis property in nephron sparing surgery model, promote kidney wound healing, and could perform anti-postoperative adhesion efficacy in an abdomen-caecum adhesion model.
Collapse
|
9
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
10
|
Gong X, Zhao C, Wang Y, Luo Y, Zhang C. Antifreezing, Ionically Conductive, Transparent, and Antidrying Carboxymethyl Chitosan Self-Healing Hydrogels as Multifunctional Sensors. ACS Biomater Sci Eng 2022; 8:3633-3643. [PMID: 35876253 DOI: 10.1021/acsbiomaterials.2c00496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through a simple strategy of immersion in a mixed solution of water/ethylene glycol (EG)/lithium chloride (LiCl), self-healing carboxymethyl chitosan (CA) hydrogels, that is, CA/N-vinylpyrrolidone-EG-Li+ hydrogels (CEH) with an ultra-low-temperature freezing resistance below -70 °C were fabricated. The introduction of electrolyte ions and small-molecule polyol also made these hydrogels highly conductive (0.8 S m-1) and imparted antidrying property to them, showing stable and reversible sensitivity to finger-wrist bending as well as 150 cycles of stretching. Such hydrogels also presented highly efficient self-healing ability, with a stress-strain healing efficiency of over 90%. Furthermore, the CEH-based sensors maintained a stable sensing performance over a wide range of temperatures below the freezing point (from -10 to -70 °C) and exhibited stable sensitivity to temperatures with fast response and no significant hysteresis. The present work is expected to provide a simple and sustainable route for the preparation of multifunctional antifreezing conductive hydrogels based on CA, leading to a wide range of potential applications in soft sensor devices.
Collapse
Affiliation(s)
- Xinhu Gong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Caimei Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Yang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Ying Luo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
11
|
Cao J, Zhao X, Ye L. Super-strong and anti-tearing poly(vinyl alcohol)/graphene oxide nano-composite hydrogels fabricated by formation of multiple crosslinking bonding network structure. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Ren D, Wang S, Dong X, Wang T, Song T, Wang Y, Hu GH, Li Q. A polymer hydrogel with high stretchability, good self-recovery and strong adhesiveness. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1988964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Dongdong Ren
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Shiwei Wang
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoxu Dong
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Tiantian Wang
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Tong Song
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Yanxin Wang
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering (Lrgp, Umr 7274), CNRS-University of Lorraine, Nancy, France
| | - Qian Li
- National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
14
|
Hu J, Wang Z, Miszuk JM, Zhu M, Lansakara TI, Tivanski AV, Banas JA, Sun H. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering. Carbohydr Polym 2021; 271:118440. [PMID: 34364578 PMCID: PMC8353169 DOI: 10.1016/j.carbpol.2021.118440] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Chitosan scaffolds crosslinked by current methods insufficiently meet the demands of bone tissue engineering applications. We developed a novel effective crosslinking technique by using the natural and safe vanillin together with bioglass microparticles to generate an antibacterial, osteoconductive, and mechanically robust 3D porous chitosan-vanillin-bioglass (CVB) scaffold. In addition to the significantly improved mechanical properties, the CVB scaffolds had high porosity (>90%) and interconnected macroporous structures. Our data suggested that the crosslinking mainly resulted from the Schiff base reactions between the aldehydes of vanillin and amines of chitosan, together with the hydrogen and ionic bonds formed within them. Importantly, the CVB scaffolds not only showed good biocompatibility, bioactivity, and strong antibacterial ability but also significantly promoted osteoblastic differentiation, mineralization in vitro, and ectopic bone formation in vivo. Thus, the CVB scaffolds hold great promise for bone tissue engineering applications based on their robust mechanical properties, osteoconductivity, and antibacterial abilities.
Collapse
Affiliation(s)
- Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Zhuozhi Wang
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jacob M Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Min Zhu
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | | | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey A Banas
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA; Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Pishavar E, Khosravi F, Naserifar M, Rezvani Ghomi E, Luo H, Zavan B, Seifalian A, Ramakrishna S. Multifunctional and Self-Healable Intelligent Hydrogels for Cancer Drug Delivery and Promoting Tissue Regeneration In Vivo. Polymers (Basel) 2021; 13:2680. [PMID: 34451220 PMCID: PMC8399012 DOI: 10.3390/polym13162680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems. Recently, self-healing supramolecular hydrogels, as a novel class of biomaterials, are being used in preclinical trials with benefits such as biocompatibility, native tissue mimicry, and injectability via a reversible crosslink. Meanwhile, the localized therapeutics agent delivery is beneficial due to the ability to deliver more doses of therapeutic agents to the targeted site and the ability to overcome post-surgical complications, inflammation, and infections. These highly potential materials can help address the limitations of current drug delivery systems and the high clinical demand for customized drug release systems. To this aim, the current review presents the state-of-the-art progress of multifunctional and self-healable hydrogels for a broad range of applications in cancer therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
| | - Fatemeh Khosravi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Mahshid Naserifar
- Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Barbara Zavan
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, UK;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
16
|
Ahn W, Lee JH, Kim SR, Lee J, Lee EJ. Designed protein- and peptide-based hydrogels for biomedical sciences. J Mater Chem B 2021; 9:1919-1940. [PMID: 33475659 DOI: 10.1039/d0tb02604b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea. and Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
17
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
18
|
Abalymov A, Van der Meeren L, Skirtach AG, Parakhonskiy BV. Identification and Analysis of Key Parameters for the Ossification on Particle Functionalized Composites Hydrogel Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38862-38872. [PMID: 32539334 DOI: 10.1021/acsami.0c06641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing materials for tissue engineering and studying the mechanisms of cell adhesion is a complex and multifactor process that needs analysis using physical chemistry and biology. The major challenge is the labor-intensive data mining as well as requirements of the number of advanced techniques. For example, hydrogel-based biomaterials with cell-binding sites, tunable mechanical properties, and complex architectures have emerged as a powerful tool to control cell adhesion and proliferation for tissue engineering. Composite hydrogels could be used for bone tissue regeneration, but they exhibit poor ossification properties. In current work, we have designed new osteoinductive gellan gum hydrogels by a thermal annealing approach and consequently functionalized them with Ca/Mg carbonate submicron particles. Determination of key parameters, which influence a successful hydroxyapatite generation, was done via the principal component analysis of 18 parameters (Young's modulus of the hydrogel and particles, particle size, and mass) and cell behavior at various time points (like viability, numbers of the cells, rate of alkaline phosphatase production, and cells area) obtained by characterizing such composite hydrogel. It is determined that the particles size and concentration of calcium ions have a dominant effect on the hydroxyapatite formation, because of providing local areas with a high Young's modulus in a hydrogel, a desirable property for cell adhesion. The detailed analysis presented here allows identifying hydrogels for cell growth applications, while on the other hand, material properties can be predicted, and their overall number can be minimized leading to efficient optimization of bone reconstruction and other cell growth applications.
Collapse
Affiliation(s)
| | | | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Ghent 9000, Belgium
| | | |
Collapse
|
19
|
Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomater 2020; 113:84-100. [PMID: 32634482 DOI: 10.1016/j.actbio.2020.07.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Self-healing hydrogels can heal themselves on the damaged sites, which opens up a fascinating way for enhancing lifetimes of materials. Polypeptide/poly(amino acid) is a class of polymers in which natural amino acid monomers or derivatives are linked by amide bonds with a stable and similar secondary structure as natural proteins (α-helix or β-fold). They have the advantages of nontoxicity, biodegradability, and low immunogenicity as well as easy modification. All these properties make polypeptides extremely suitable for the preparation of self-healing hydrogels for biomedical applications. In this review, we mainly focus on the progress in the fabrication strategies of polypeptide-based self-healing hydrogels and their biomedical applications in the recent 5 years. Various crosslinking methods for the preparation of polypeptide-based self-healing hydrogels are first introduced, including host-guest interactions, hydrogen bonding, electrostatic interactions, supramolecular self-assembly of β-sheets, and reversible covalent bonds of imine and hydrazone as well as molecular multi-interactions. Some representative biomedical applications of these self-healing hydrogels such as delivery system, tissue engineering, 3D-bioprinting, antibacterial and wound healing as well as bioadhesion and hemostasis are also summarized. Current challenges and perspectives in future for these "smart" hydrogels are proposed at the end . STATEMENT OF SIGNIFICANCE: Polypeptides with the advantages of nontoxicity, biodegradability, hydrophilicity and low immunogenicity, are extremely suitable for the preparation of self-healing hydrogels in biomedical applications. Recently, the researches of polypeptide-based self-healing hydrogel have drawn the great attentions for scientists and engineers. A review to summarize the recent progress in design and biomedical applications of these polypeptide-based self-healing hydrogels is highly needed. In this review, we mainly focus on the progress in fabrication strategies of polypeptide-based self-healing hydrogels and biomedical applications in recent five years and aim to draw the increased attention to the importance of these "smart" hydrogels, facilitating the advances in biomedical applications. We believe this work would draw interest from readers of Acta Biomaterialia.
Collapse
|
20
|
Gao L, Yi M, Xing M, Li H, Zhou Y, Xu Q, Zhang Z, Wen Z, Chang J. In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment. J Mater Chem B 2020; 8:7713-7722. [PMID: 32724972 DOI: 10.1039/d0tb01320j] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stem-cell therapy has been proved as a promising strategy for myocardial infarction (MI) treatment. However, the therapeutic efficacy is mainly limited by the cellular activity of transplanted mesenchymal stem cells (MSCs). In this study, a novel bioglass (BG)/γ-polyglutamic acid (γ-PGA)/chitosan (CS) hydrogel was obtained by in situ adding BG to stimulate the imine bond formation. And the effect of the composite hydrogel on MI therapeutic efficacy was evaluated in a rat acute myocardial infarction (AMI) model in vivo and the possible mechanism of the BG/γ-PGA/CS hydrogel for the stimulation of the intercellular interaction between MSCs and cardiomyocytes (CMs) was explored by a MSC and CM co-culture experiment in vitro. The implantation of the MSC loaded BG/γ-PGA/CS composite hydrogel in the mice AMI model showed a significant improvement in the therapeutic efficacy with improved cardiac function, attenuation of heart remodeling, reduced cardiomyocyte apoptosis and accelerated vascularization. The in vitro cell experiments demonstrated that the BG/γ-PGA/CS hydrogel activated the intercellular interaction between MSCs and CMs, which resulted in reduced cell apoptosis and enhanced angiogenesis. Silicate based bioactive hydrogels activated MSCs and cell-cell interactions in cardiac tissue after AMI and significantly enhanced the efficacy, which suggests that this bioactive hydrogel based approach is an effective way to enhance stem-cell therapy.
Collapse
Affiliation(s)
- Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Desai MS, Chen M, Hong FHJ, Lee JH, Wu Y, Lee SW. Catechol-Functionalized Elastin-like Polypeptides as Tissue Adhesives. Biomacromolecules 2020; 21:2938-2948. [DOI: 10.1021/acs.biomac.0c00740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Malav S. Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Tsinghua Berkeley Shenzhen Institute, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Min Chen
- Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Farn Hing Julio Hong
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ju Hun Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yaojiong Wu
- Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Tsinghua Berkeley Shenzhen Institute, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Kumar P, Kumar V, Kumar R, Kumar R, Pruncu CI. Fabrication and characterization of ZrO 2 incorporated SiO 2-CaO-P 2O 5 bioactive glass scaffolds. J Mech Behav Biomed Mater 2020; 109:103854. [PMID: 32543414 DOI: 10.1016/j.jmbbm.2020.103854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Sol-gel chemistry offers a flexible, widely accepted methodology that enables the creation of a new generation of bioactive glass (BG). In the current study, a sol-gel method was used to synthesize ZrO2 incorporated 56SiO2-34CaO-10P2O5 mol% bioactive glass. The highly crystalline structure was composed of small zirconium oxide nanoparticles (ZrO2) of less than 200 nm in size. It was successfully fabricated using a hydrothermal method. Polyurethane foam (PU) was selected to fabricate a highly porous BG-ZrO2 scaffold using a foam replica technique. The physicochemical, morphological properties of the BG-ZrO2 compositions were evaluated using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM) and scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). In-vitro degradation analysis of the BG-ZrO2 scaffolds was performed after immersion of the samples in simulated body fluid (SBF). The incorporation of ZrO2 nanoparticles into the bioactive glass matrix enhances both the mechanical strength and thermal stability. Since the novel formed BG-ZrO2 scaffolds possesses respectable antibacterial properties against some bacterial strains, this renders it an ideal tissue engineering substitute, capable of reducing failure rates in implants.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Vinod Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| | - Rajnish Kumar
- Department of Mechanical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, 144411, India.
| | - Catalin I Pruncu
- Mechanical Engineering Department, University of Birmingham, Birmingham, B15 2TT, UK; Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Cao J, Zhao X, Ye L. Facile Method to Fabricate Superstrong and Tough Poly(vinyl alcohol) Hydrogels with High Energy Dissipation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jinlong Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
25
|
Zhang Y, Desai MS, Wang T, Lee SW. Elastin-Based Thermoresponsive Shape-Memory Hydrogels. Biomacromolecules 2020; 21:1149-1156. [PMID: 31967464 DOI: 10.1021/acs.biomac.9b01541] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A shape-memory hydrogel is a programmable hydrogel material that can store specific shapes and execute functions in response to stimuli. In this report, we developed shape-memory hydrogels by creating double-network polymeric structures using a physically cross-linking elastin-like polypeptide (ELP) and a chemically cross-linking polyacrylamide (PAM). We synthesized the hydrogel matrix by polymerizing the acrylamide mixed in an ELP solution. We exploited the lower critical solution temperature transition of the ELP to enable the hydrogel to hold a new desired shape at an elevated temperature of 55 °C. The original shape of the hydrogel can then be recovered by lowering the temperature to 20 °C. The shape-memory hydrogels we developed exhibit ultrafast functionality and high repeatability. Taking advantage of the temperature-induced shape-memory capability, we also demonstrate practical functions such as gripping an object and connecting two tubes. Our materials with effective temperature-driven shape-memory functionality will be useful for developing novel materials for biomedical applications in the future.
Collapse
Affiliation(s)
- Yuancheng Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Tsinghua Berkeley Shenzhen Institute, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Malhotra K, Shankar S, Chauhan N, Rai R, Singh Y. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ 4-L-Phe-PEA/chitosan and Boc-L-Phe-γ 4-L-Phe-PEA/chitosan, for biomaterial-related infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110648. [PMID: 32204079 DOI: 10.1016/j.msec.2020.110648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/29/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
Self-assembled peptide gels have generated interest as antibacterial materials to prevent biomaterial-related infections but these peptides are often associated with poor proteolytic stability. Efforts have been made to stabilize peptides by incorporating non-natural amino acids and/or linkages but complexation with polymers have not been explored. Therefore, we developed self-assembled peptide/chitosan gels, Boc-D-Phe-γ4-L-Phe-PEA (NH007)/chitosan and Boc-L-Phe-γ4-L-Phe-PEA (NH009)/chitosan, by complexing dipeptide NH007 or NH009 with chitosan in DMSO:acetic acid. The gels were characterized using SEM, FTIR, contact angle, and rheology data and found to exhibit excellent viscoelastic and self-healing characteristics. Complexation with chitosan led to an increase in stability against proteolytic degradation. Peptide/chitosan gels showed broad spectrum antibacterial activities against Gram-negative and Gram-positive bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis at a high inoculum of 107-108 cfu/mL. NH007/chitosan gels showed 70-75% inhibition, whereas NH009/chitosan showed 78-81% inhibition and NH009/chitosan gels, in particular, showed strong antibacterial activity against pathogenic strain of P. aeruginosa. A unique feature of these gels is that the antibacterial activities did not decrease gradually but were sustained for up to 48 h. The mechanistic studies using SEM and HR-TEM indicated interaction of gels with bacterial membrane components, leading to cell lysis. The MTT and LDH assays indicated >90% cell viability and only 8-10% toxicity towards NIH 3T3 fibroblast cells. Thus, peptide/chitosan gels developed in the present work showed improved proteolytic stability and sustained antibacterial activities and, therefore, may be used for preventing biomaterial-related infections.
Collapse
Affiliation(s)
- Kamal Malhotra
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Sudha Shankar
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India; Academy of Scientific and Innovative Research, New Delhi 110001, Delhi, India
| | - Neelam Chauhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Rajkishor Rai
- Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, Jammu and Kashmir, India; Academy of Scientific and Innovative Research, New Delhi 110001, Delhi, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.
| |
Collapse
|
27
|
Lei K, Li Z, Zhu D, Sun C, Sun Y, Yang C, Zheng Z, Wang X. Polysaccharide-based recoverable double-network hydrogel with high strength and self-healing properties. J Mater Chem B 2020; 8:794-802. [PMID: 31904754 DOI: 10.1039/c9tb01679a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polysaccharide-based hydrogels (PSBHs) have received significant attention for numerous bio-applications due to their biocompatibility and non-immunogenic performance. However, the construction of PSBH with superior mechanical properties by a simple method is rarely adequately researched. This study focuses on the construction of a novel PSBH with superior mechanical and recoverable properties by integrating the synergistic and complementary interactions of covalent bond-associated oxidized sodium alginate (SA-CHO) gel and hydrogen bond-associated agarose (Aga) gel. With the synergy and complementarity of the SA-CHO and Aga networks, the hydrogel exhibited 17 and 15 times (20 and 9 times) greater compressive stress and modulus, respectively, compared with the SA-CHO gel (Aga gel). The hydrogel also displayed excellent fatigue resistance, recurrent shapeability, acid resistance and recovery ability, as well as self-healing ability. This study provides a unique perspective for enhancing the mechanical properties of PSBH through the synergy and complementarity of different kinds of polysaccharides without sacrificing the functionality of the PSBH.
Collapse
Affiliation(s)
- Kun Lei
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chengyuan Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yunlong Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chongchong Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Zhang J, Feng X, Wang J, Fang G, Liu J, Wang S. Nano-crystalline cellulose-coated magnetic nanoparticles for affinity adsorption of glycoproteins. Analyst 2020; 145:3407-3413. [DOI: 10.1039/d0an00442a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new core–shell structured nanomaterial based on Fe3O4 nanoparticles and 2,3-dialdehyde nanocrystalline cellulose (DAC) coatings and its high efficiency in the preconcentration of glycoproteins were described in this work.
Collapse
Affiliation(s)
- Jiaying Zhang
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- 300457 Tianjin
- China
| | - Xiangyu Feng
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- 300457 Tianjin
- China
| | - Jing Wang
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- 300457 Tianjin
- China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- 300457 Tianjin
- China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- 300457 Tianjin
- China
| | - Shuo Wang
- Research Centre of Food Science and Human Health
- School of Medicine
- Nankai University
- 300071 Tianjin
- China
| |
Collapse
|
29
|
Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G, Dolatshahi‐Pirouz A. Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801664. [PMID: 31453048 PMCID: PMC6702654 DOI: 10.1002/advs.201801664] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/04/2019] [Indexed: 05/18/2023]
Abstract
Given their durability and long-term stability, self-healable hydrogels have, in the past few years, emerged as promising replacements for the many brittle hydrogels currently being used in preclinical or clinical trials. To this end, the incompatibility between hydrogel toughness and rapid self-healing remains unaddressed, and therefore most of the self-healable hydrogels still face serious challenges within the dynamic and mechanically demanding environment of human organs/tissues. Furthermore, depending on the target tissue, the self-healing hydrogels must comply with a wide range of properties including electrical, biological, and mechanical. Notably, the incorporation of nanomaterials into double-network hydrogels is showing great promise as a feasible way to generate self-healable hydrogels with the above-mentioned attributes. Here, the recent progress in the development of multifunctional and self-healable hydrogels for various tissue engineering applications is discussed in detail. Their potential applications within the rapidly expanding areas of bioelectronic hydrogels, cyborganics, and soft robotics are further highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Mehdi Mehrali
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Nayere Taebnia
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell ResearchDepartment of Health Science and TechnologyAalborg UniversityFredrik Bajers vej 3B9220AalborgDenmark
| | - Firoz Babu Kadumudi
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Javad Foroughi
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Masoud Hasany
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Mehdi Nikkhah
- School of Biological Health and Systems Engineering (SBHSE)Arizona State UniversityTempeAZ85287USA
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of Victoria3800VictoriaCanada
- Center for Advanced Materials and Related TechnologiesUniversity of Victoria3800VictoriaCanada
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
- BTI Biotechnology InstituteVitoria01007Spain
| | - Alireza Dolatshahi‐Pirouz
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterPhilips van Leydenlaan 25Nijmegen6525EXThe Netherlands
| |
Collapse
|
30
|
Ibáñez-Fonseca A, Flora T, Acosta S, Rodríguez-Cabello JC. Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biol 2019; 84:111-126. [PMID: 31288085 DOI: 10.1016/j.matbio.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
Elastin-like recombinamers (ELRs), which derive from one of the repetitive domains found in natural elastin, have been intensively studied in the last few years from several points of view. In this mini review, we discuss all the recent works related to the investigation of ELRs, starting with those that define these polypeptides as model intrinsically disordered proteins or regions (IDPs or IDRs) and its relevance for some biomedical applications. Furthermore, we summarize the current knowledge on the development of drug, vaccine and gene delivery systems based on ELRs, while also emphasizing the use of ELR-based hydrogels in tissue engineering and regenerative medicine (TERM). Finally, we show different studies that explore applications in other fields, and several examples that describe biomaterial blends in which ELRs have a key role. This review aims to give an overview of the recent advances regarding ELRs and to encourage further investigation of their properties and applications.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Tatjana Flora
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Sergio Acosta
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | | |
Collapse
|
31
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|
32
|
Jin J, Cai L, Jia YG, Liu S, Chen Y, Ren L. Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. J Mater Chem B 2019; 7:1637-1651. [DOI: 10.1039/c8tb02547a] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preparation and biomedical applications of self-healing hydrogels assembled from hosts of cyclodextrins and cucurbit[n]urils with various guests were reviewed.
Collapse
Affiliation(s)
- Jiahong Jin
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Lili Cai
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Yong-Guang Jia
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Yunhua Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| |
Collapse
|
33
|
Jia YG, Jin J, Liu S, Ren L, Luo J, Zhu XX. Self-Healing Hydrogels of Low Molecular Weight Poly(vinyl alcohol) Assembled by Host–Guest Recognition. Biomacromolecules 2018; 19:626-632. [DOI: 10.1021/acs.biomac.7b01707] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong-Guang Jia
- School
of Materials Science and Engineering, National Engineering Research
Center for Tissue Restoration
and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Jiahong Jin
- School
of Materials Science and Engineering, National Engineering Research
Center for Tissue Restoration
and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Sa Liu
- School
of Materials Science and Engineering, National Engineering Research
Center for Tissue Restoration
and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Li Ren
- School
of Materials Science and Engineering, National Engineering Research
Center for Tissue Restoration
and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Juntao Luo
- Department
of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - X. X. Zhu
- Département
de Chimie, Université de Montréal, C.P. 6128, Succ. Centreville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
34
|
Luan YG, Zhang XA, Jiang SL, Chen JH, Lyu YF. Self-healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2025-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Wang S, Zhang Z, Chen B, Shao J, Guo Z. Self-healing hydrogel of poly(vinyl alcohol)/graphite oxide with pH-sensitive and enhanced thermal properties. J Appl Polym Sci 2018. [DOI: 10.1002/app.46143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sui Wang
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University; Ningbo 315211 People's Republic of China
| | - Zheng Zhang
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University; Ningbo 315211 People's Republic of China
| | - Bing Chen
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University; Ningbo 315211 People's Republic of China
| | - Jia Shao
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University; Ningbo 315211 People's Republic of China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|
36
|
Zhou Y, Zhou Y, Gao L, Wu C, Chang J. Synthesis of artificial dental enamel by an elastin-like polypeptide assisted biomimetic approach. J Mater Chem B 2018; 6:844-853. [DOI: 10.1039/c7tb02576a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesized artificial enamel assisted by an elastin-like polypeptide revealed a similar structure and excellent mechanical properties to those of natural enamel.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
- University of Chinese Academy of Sciences
| | - Yanling Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
- University of Chinese Academy of Sciences
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
37
|
Feng X, Liu J, Xu G, Zhang X, Su X, Li W, Zhang A. Thermoresponsive double network cryogels from dendronized copolymers showing tunable encapsulation and release of proteins. J Mater Chem B 2018; 6:1903-1911. [DOI: 10.1039/c7tb03352d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thermoresponsive double network cryogels were prepared from OEG-based dendronized copolymers with PVA, which can reversibly capture and release proteins.
Collapse
Affiliation(s)
- Xiaoqing Feng
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Jie Liu
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Gang Xu
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Xiacong Zhang
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Xinyan Su
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University
- Shanghai 200444
- China
| | - Wen Li
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University
- Shanghai 200444
- China
- School of Engineering and Applied Sciences, Harvard University
- Cambridge
| | - Afang Zhang
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
38
|
Affiliation(s)
- Yong-Guang Jia
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C
3J7, Canada
| | - Meng Zhang
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C
3J7, Canada
| | - X. X. Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C
3J7, Canada
| |
Collapse
|
39
|
Hao Y, Fowler EW, Jia X. Chemical Synthesis of Biomimetic Hydrogels for Tissue Engineering. POLYM INT 2017; 66:1787-1799. [PMID: 31080322 PMCID: PMC6510501 DOI: 10.1002/pi.5407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to the high water content, porous structure, biocompatibility and tissue-like viscoelasticity, hydrogels have become attractive and promising biomaterials for use in drug delivery, 3D cell culture and tissue engineering applications. Various chemical approaches have been developed for hydrogel synthesis using monomers or polymers carrying reactive functional groups. For in vivo tissue repair and in vitro cell culture purposes, it is desirable that the crosslinking reactions occur under mild conditions, do not interfere with biological processes and proceed at high yield with exceptional selectivity. Additionally, the cross-linking reaction should allow straightforward incorporation of bioactive motifs or signaling molecules, at the same time, providing tunability of the hydrogel microstructure, mechanical properties, and degradation rates. In this review, we discuss various chemical approaches applied to the synthesis of complex hydrogel networks, highlighting recent developments from our group. The discovery of new chemistries and novel materials fabrication methods will lead to the development of the next generation biomimetic hydrogels with complex structures and diverse functionalities. These materials will likely facilitate the construction of engineered tissue models that may bridge the gap between 2D experiments and animal studies, providing preliminary insight prior to in vivo assessments.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
40
|
Polysaccharides based injectable hydrogel compositing bio-glass for cranial bone repair. Carbohydr Polym 2017; 175:557-564. [DOI: 10.1016/j.carbpol.2017.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/09/2023]
|
41
|
Anjum S, Gurave P, Badiger MV, Torris A, Tiwari N, Gupta B. Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Fu F, Chen Z, Zhao Z, Wang H, Shang L, Gu Z, Zhao Y. Bio-inspired self-healing structural color hydrogel. Proc Natl Acad Sci U S A 2017; 114:5900-5905. [PMID: 28533368 PMCID: PMC5468601 DOI: 10.1073/pnas.1703616114] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biologically inspired self-healing structural color hydrogels were developed by adding a glucose oxidase (GOX)- and catalase (CAT)-filled glutaraldehyde cross-linked BSA hydrogel into methacrylated gelatin (GelMA) inverse opal scaffolds. The composite hydrogel materials with the polymerized GelMA scaffold could maintain the stability of an inverse opal structure and its resultant structural colors, whereas the protein hydrogel filler could impart self-healing capability through the reversible covalent attachment of glutaraldehyde to lysine residues of BSA and enzyme additives. A series of unprecedented structural color materials could be created by assembling and healing the elements of the composite hydrogel. In addition, as both the GelMA and the protein hydrogels were derived from organisms, the composite materials presented high biocompatibility and plasticity. These features of self-healing structural color hydrogels make them excellent functional materials for different applications.
Collapse
Affiliation(s)
- Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ze Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
43
|
Bu Y, Shen H, Yang F, Yang Y, Wang X, Wu D. Construction of Tough, in Situ Forming Double-Network Hydrogels with Good Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2205-2212. [PMID: 28029238 DOI: 10.1021/acsami.6b15364] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydrogels are required to have high mechanical properties, biocompatibility, and an easy fabrication process for biomedical applications. Double-network hydrogels, although strong, are limited because of the complicated preparation steps and toxic materials involved. In this study, we report a simple method to prepare tough, in situ forming polyethylene glycol (PEG)-agarose double-network (PEG-agarose DN) hydrogels with good biocompatibility. The hydrogels display excellent mechanical strength. Because of the easily in situ forming method, the resulting hydrogels can be molded into any form as needed. In vitro and in vivo experiments illustrate that the hydrogels exhibit satisfactory biocompatibility, and cells can attach and spread on the hydrogels. Furthermore, the residual amino groups in the network can also be functionalized for various biomedical applications in tissue engineering and cell research.
Collapse
Affiliation(s)
- Yazhong Bu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Hong Shen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, PR China
| |
Collapse
|