1
|
Kronek J, Minarčíková A, Kroneková Z, Majerčíková M, Strasser P, Teasdale I. Poly(2-isopropenyl-2-oxazoline) as a Versatile Functional Polymer for Biomedical Applications. Polymers (Basel) 2024; 16:1708. [PMID: 38932057 PMCID: PMC11207257 DOI: 10.3390/polym16121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Functional polymers play an important role in various biomedical applications. From many choices, poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a promising reactive polymer with great potential in various biomedical applications. PIPOx, with pendant reactive 2-oxazoline groups, can be readily prepared in a controllable manner via several controlled/living polymerization methods, such as living anionic polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) or rare earth metal-mediated group transfer polymerization. The reactivity of pendant 2-oxazoline allows selective reactions with thiol and carboxylic group-containing compounds without the presence of any catalyst. Moreover, PIPOx has been demonstrated to be a non-cytotoxic polymer with immunomodulative properties. Post-polymerization functionalization of PIPOx has been used for the preparation of thermosensitive or cationic polymers, drug conjugates, hydrogels, brush-like materials, and polymer coatings available for drug and gene delivery, tissue engineering, blood-like materials, antimicrobial materials, and many others. This mini-review covers new achievements in PIPOx synthesis, reactivity, and use in biomedical applications.
Collapse
Affiliation(s)
- Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Alžbeta Minarčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (A.M.); (Z.K.); (M.M.)
| | - Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria; (P.S.); (I.T.)
| |
Collapse
|
2
|
Opsomer L, Jana S, Mertens I, Cui X, Hoogenboom R, Sanders NN. Efficient in vitro and in vivo transfection of self-amplifying mRNA with linear poly(propylenimine) and poly(ethylenimine-propylenimine) random copolymers as non-viral carriers. J Mater Chem B 2024; 12:3927-3946. [PMID: 38563779 DOI: 10.1039/d3tb03003b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Messenger RNA (mRNA) based vaccines have been introduced worldwide to combat the Covid-19 pandemic. These vaccines consist of non-amplifying mRNA formulated in lipid nanoparticles (LNPs). Consequently, LNPs are considered benchmark non-viral carriers for nucleic acid delivery. However, the formulation and manufacturing of these mRNA-LNP nanoparticles are expensive and time-consuming. Therefore, we used self-amplifying mRNA (saRNA) and synthesized novel polymers as alternative non-viral carrier platform to LNPs, which enable a simple, rapid, one-pot formulation of saRNA-polyplexes. Our novel polymer-based carrier platform consists of randomly concatenated ethylenimine and propylenimine comonomers, resulting in linear, poly(ethylenimine-ran-propylenimine) (L-PEIx-ran-PPIy) copolymers with controllable degrees of polymerization. Here we demonstrate in multiple cell lines, that our saRNA-polyplexes show comparable to higher in vitro saRNA transfection efficiencies and higher cell viabilities compared to formulations with Lipofectamine MessengerMAX™ (LFMM), a commercial, lipid-based carrier considered to be the in vitro gold standard carrier. This is especially true for our in vitro best performing saRNA-polyplexes with N/P 5, which are characterised with a size below 100 nm, a positive zeta potential, a near 100% encapsulation efficiency, a high retention capacity and the ability to protect the saRNA from degradation mediated by RNase A. Furthermore, an ex vivo hemolysis assay with pig red blood cells demonstrated that the saRNA-polyplexes exhibit negligible hemolytic activity. Finally, a bioluminescence-based in vivo study was performed over a 35-day period, and showed that the polymers result in a higher and prolonged bioluminescent signal compared to naked saRNA and L-PEI based polyplexes. Moreover, the polymers show different expression profiles compared to those of LNPs, with one of our new polymers (L-PPI250) demonstrating a higher sustained expression for at least 35 days after injection.
Collapse
Affiliation(s)
- Lisa Opsomer
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | - Somdeb Jana
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
| | - Ine Mertens
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
| | - Xiaole Cui
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
- Cancer Research Institute (CRIG), Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
3
|
Drain BA, Becer RC. Hydrolysis of hydrophobic poly(2-oxazoline)s and their subsequent modification via aza-Michael addition. Des Monomers Polym 2023; 26:214-222. [PMID: 37840642 PMCID: PMC10569348 DOI: 10.1080/15685551.2023.2267232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Partially hydrolysed poly(2-oxazoline)s possess unique properties. However, much of the focus in this area has been on water soluble poly(2-oxazoline)s. Where hydrophobic poly(2-oxazoline)s have been used, this is often for selective hydrolysis. However, hydrolysis of very hydrophobic polymers could lead to interesting solution behaviour. Herein, we describe universal conditions for the hydrolysis of poly(2-alkyl-2-oxazoline)s suitable for both hydrophobic and hydrophilic 2-oxazolines. We show that the system utilised gives comparable rates to that of water alone for poly(2-ethyl-2-oxazoline). In addition, poly(2-fatty acid-2-oxazoline) was hydrolysed using the developed system and was found to proceed in a controlled manner allowing the targeting of specific degrees of hydrolysis, albeit much slower than for poly(2-ethyl-2-oxazoline). Finally, we demonstrate the partial functionalisation of poly(2-oxazoline)-poly(ethylene imine) co-polymers via aza-Michael addition.
Collapse
Affiliation(s)
- Ben A. Drain
- Department of Chemistry, University of Warwick, Coventry, UK
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Remzi C. Becer
- Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
4
|
Yang L, Wang F, Ren P, Zhang T, Zhang Q. Poly(2-oxazoline)s: synthesis and biomedical applications. Macromol Res 2023. [DOI: 10.1007/s13233-023-00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Haladjova E, Petrova M, Ugrinova I, Forys A, Trzebicka B, Rangelov S. Hollow spherical nucleic acid structures based on polymer-coated phospholipid vesicles. SOFT MATTER 2022; 18:5426-5434. [PMID: 35819021 DOI: 10.1039/d2sm00355d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A feasible one pot synthesis of hollow spherical nucleic acids (SNAs) using phospholipid liposomes is reported. These constructs are synthesized in a chemically straightforward process involving formation of unilamellar liposomes, coating the liposomes with a thin cross-linked polymeric layer, and grafting the latter with short (about 20 bases) DNA oligonucleotide strands. They consist of vesicular cores, composed of readily available phospholipid (1,2-dipalmitoyl-sn-glycero-phosphocholine), whereas the strands are deliberately arranged on the surface of the vesicular entities. The initial vesicular structure and morphology are preserved during the coating and grafting reactions. The novel hollow/vesicular SNAs are characterized with a hydrodynamic radius and radius of gyration of 78.3 and 88.5 nm, respectively, and moderately negative (-14.2 mV) ζ potential. They carry thousands (5868) of oligonucleotide strands per vesicle, which are not strongly radially oriented and adopt an unextended conformation as anticipated from the smaller value of the grafting density compared to the critical grafting density at the transition to brush conformation. The constructs are practically devoid of toxicity and exhibit high binding affinity to complementary nucleic acids. Unlike any other nucleic acid structural motif, they cross the cell membrane and enter cells without the need of transfection agents.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 103-A, 1113 Sofia, Bulgaria.
| | - Maria Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 21, 1113 Sofia, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 21, 1113 Sofia, Bulgaria
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, "Akad. G. Bonchev" St., Bl. 103-A, 1113 Sofia, Bulgaria.
| |
Collapse
|
6
|
|
7
|
Mazrad ZAI, Lai M, Davis TP, Nicolazzo JA, Thurecht KJ, Leiske MN, Kempe K. Protected amine-functional initiators for the synthesis of α-amine homo- and heterotelechelic poly(2-ethyl-2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d2py00649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Screening a series of protected amine cationic ring-opening polymerization initiators revealed the commercially available N-(3-bromopropyl)phthalimide as the most suitable to achieve defined polymers with high degree of amine functionalization.
Collapse
Affiliation(s)
- Zihnil A. I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - May Lai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Australia
| | - Meike N. Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Conka R, Marien Y, Van Steenberge P, Hoogenboom R, D'hooge DR. A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d1py01391b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of well-defined gradient, block-gradient and di-block copolymers with both asymmetric and symmetric compositions considering hydrophilic and hydrophobic monomer units is relevant for application fields, such as drug/gene delivery...
Collapse
|
9
|
Soleymani Movahed F, Foo SW, Mori S, Ogawa S, Saito S. Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of N-(2-Hydroxyethyl)amides into 2-Oxazolines. J Org Chem 2021; 87:243-257. [PMID: 34882422 DOI: 10.1021/acs.joc.1c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal-free, biomimetic catalytic protocol for the cyclization of N-(2-hydroxyethyl)amides to the corresponding 2-oxazolines (4,5-dihydrooxazoles), promoted by the 1,3,5,2,4,6-triazatriphosphorine (TAP)-derived organocatalyst tris(o-phenylenedioxy)cyclotriphosphazene (TAP-1) has been developed. This approach requires less precatalyst compared to the reported relevant systems, with respect to the phosphorus atom (the maximum turnover number (TON) ∼ 30), and exhibits a broader substrate scope and higher functional-group tolerance, providing the functionalized 2-oxazolines with retention of the configuration at the C(4) stereogenic center of the 2-oxazolines. Widely accessible β-amino alcohols can be used in this approach, and the cyclization of N-(2-hydroxyethyl)amides provides the desired 2-oxazolines in up to 99% yield. The mechanism of the reaction was studied by monitoring the reaction using spectral and analytical methods, whereby an 18O-labeling experiment furnished valuable insights. The initial step involves a stoichiometric reaction between the substrate and TAP-1, which leads to the in situ generation of the catalyst, a catechol cyclic phosphate, as well as to a pyrocatechol phosphate and two possible active intermediates. The dehydrative cyclization was also successfully conducted on the gram scale.
Collapse
Affiliation(s)
| | - Siong Wan Foo
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shogo Mori
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Saeko Ogawa
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
10
|
Hahn L, Beudert M, Gutmann M, Keßler L, Stahlhut P, Fischer L, Karakaya E, Lorson T, Thievessen I, Detsch R, Lühmann T, Luxenhofer R. From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking. Macromol Biosci 2021; 21:e2100122. [PMID: 34292657 DOI: 10.1002/mabi.202100122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/20/2021] [Indexed: 12/14/2022]
Abstract
Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.
Collapse
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Matthias Beudert
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Larissa Keßler
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Lena Fischer
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Henkestrasse 91, Erlangen, 91052, Germany
| | - Emine Karakaya
- Institute of Biomaterials, University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen, 91058, Germany
| | - Thomas Lorson
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Ingo Thievessen
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Henkestrasse 91, Erlangen, 91052, Germany
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen, 91058, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg, 97070, Germany.,Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, P.O. Box 55, Helsinki, FIN-00014, Finland
| |
Collapse
|
11
|
Majerčíková M, Nádaždy P, Chorvát D, Satrapinskyy L, Valentová H, Kroneková Z, Šiffalovič P, Kronek J, Zahoranová A. Effect of Dexamethasone on Thermoresponsive Behavior of Poly(2-Oxazoline) Diblock Copolymers. Polymers (Basel) 2021; 13:polym13091357. [PMID: 33919321 PMCID: PMC8122420 DOI: 10.3390/polym13091357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/22/2023] Open
Abstract
Thermoresponsive polymers play an important role in designing drug delivery systems for biomedical applications. In this contribution, the effect of encapsulated hydrophobic drug dexamethasone on thermoresponsive behavior of diblock copolymers was studied. A small series of diblock copoly(2-oxazoline)s was prepared by combining thermoresponsive 2-n-propyl-2-oxazoline (nPrOx) and hydrophilic 2-methyl-2-oxazoline (MeOx) in two ratios and two polymer chain lengths. The addition of dexamethasone affected the thermoresponsive behavior of one of the copolymers, nPrOx20-MeOx180, in the aqueous medium by shifting the cloud point temperature to lower values. In addition, the formation of microparticles containing dexamethasone was observed during the heating of the samples. The morphology and number of microparticles were affected by the structure and concentration of copolymer, the drug concentration, and the temperature. The crystalline nature of formed microparticles was confirmed by polarized light microscopy, confocal Raman microscopy, and wide-angle X-ray scattering. The results demonstrate the importance of studying drug/polymer interactions for the future development of thermoresponsive drug carriers.
Collapse
Affiliation(s)
- Monika Majerčíková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (M.M.); (Z.K.)
| | - Peter Nádaždy
- Institute of Physics of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia; (P.N.); (P.Š.)
| | - Dušan Chorvát
- International Laser Centre, Department of Biophotonics, Ilkovičova 3, 841 04 Bratislava, Slovakia;
| | - Leonid Satrapinskyy
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava, Slovakia;
| | - Helena Valentová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic;
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (M.M.); (Z.K.)
| | - Peter Šiffalovič
- Institute of Physics of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia; (P.N.); (P.Š.)
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; (M.M.); (Z.K.)
- Correspondence: (J.K.); (A.Z.)
| | - Anna Zahoranová
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163MC, A-1060 Vienna, Austria
- Correspondence: (J.K.); (A.Z.)
| |
Collapse
|
12
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
13
|
Halupczok S, Pfister M, Ringhand A, Fetsch C, Cubukova A, Appelt-Menzel A, Luxenhofer R. Poly(2-ethyl-2-oxazoline- co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicity. Polym Chem 2021. [DOI: 10.1039/d0py01258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers obtained via partial reduction of poly(2-ethy-2-oxazoline)s were studied on their cytocompatibility and their buffer capacity in acidic environment.
Collapse
Affiliation(s)
- Sebastian Halupczok
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Maria Pfister
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Annemarie Ringhand
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Corinna Fetsch
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Alevtina Cubukova
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
- University Hospital Würzburg
| | - Robert Luxenhofer
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| |
Collapse
|
14
|
Haladjova E, Rangelov S, Tsvetanov C. Thermoresponsive Polyoxazolines as Vectors for Transfection of Nucleic Acids. Polymers (Basel) 2020; 12:polym12112609. [PMID: 33171983 PMCID: PMC7694630 DOI: 10.3390/polym12112609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
Poly(2-oxazoline)s (POx) are an attractive platform for the development of non-viral gene delivery systems. The combination of POx moieties, exhibiting excellent biocompatibility, with DNA-binding polyethyleneimine (PEI) moieties into a single copolymer chain is a promising approach to balance toxicity and transfection efficiency. The versatility of POx in terms of type of substituent, copolymer composition, degree of polymerization, degree of hydrolysis, and chain architecture, as well as the introduction of stimuli-responsive properties, provides opportunities to finely tune the copolymer characteristics and physicochemical properties of the polyplexes to increase the biological performance. An overview of the current state of research in the POx-PEI-based gene delivery systems focusing particularly on thermosensitive POx is presented in this paper.
Collapse
|
15
|
Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. Int J Pharm 2020; 590:119884. [DOI: 10.1016/j.ijpharm.2020.119884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023]
|
16
|
Wang F, Ren P, Bernaerts KV, Fu Y, Hu W, Zhou N, Zhang T. Thermoresponsive Poly(2-propyl-2-oxazoline) Surfaces of Glass for Nonenzymatic Cell Harvesting. ACS APPLIED BIO MATERIALS 2020; 3:5428-5437. [PMID: 35021716 DOI: 10.1021/acsabm.0c00650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As one of the nonenzymatic cell-harvesting technologies, a thermal-responsive surface based on poly(2-oxazoline)s has achieved initial success in supporting the adhesion and thermal-induced detachment of animal cells. However, because of the laborious preparation procedure, this technique was only limited to research purposes. In this work, through using poly(glycidyl methacrylate) (PGMA) as the anchor layer, poly(2-propyl-2-oxazoline)s (PPOx) were grafted onto glass wafers through a facile two-step coating and annealing procedure for nonenzymatic cell harvesting. In the first step, the piranha solution-activated glass wafers were immersed into the chloroform solution of PGMA and then annealed for a given period of time to immobilize PGMA onto the glass wafers through the bonding between epoxy groups and hydroxyl groups. In the second step, the PGMA-coated glass wafers were further immersed into the chloroform solution of carboxyl-functionalized PPOx. After annealing, PPOx were immobilized onto the PGMA layer through the bonding between carboxyl groups and the residual epoxy groups. Atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry were used to characterize the modified glass wafers. The results of cytocompatibility evaluation showed that the PPOx-coated glass wafers were almost nontoxic and were able to support the adhesion and proliferation of L929 cells well. By lowering the temperature to 8 °C, L929 and Vero cells were successfully detached from the PPOx-coated glass wafers without any enzymatic treatment. Further cultivation has demonstrated that the cooling procedure had little effect on cell viability, and the cells still retained good viability after harvesting.
Collapse
Affiliation(s)
- Faming Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Pengfei Ren
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Geleen 6167 RD, The Netherlands
| | - Yifu Fu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Wanjun Hu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Naizhen Zhou
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 Jiangsu, PR China
| |
Collapse
|
17
|
Oleszko-Torbus N, Mendrek B, Kowalczuk A, Utrata-Wesołek A, Dworak A, Wałach W. Selective Partial Hydrolysis of 2-isopropyl-2-oxazoline Copolymers towards Decreasing the Ability to Crystallize. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3403. [PMID: 32752250 PMCID: PMC7435452 DOI: 10.3390/ma13153403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Poly(2-isopropyl-2-oxazoline) (PiPrOx) is readily prone to crystallization both in solid and from solutions. This feature is detrimental for certain applications. Here, we examine whether the presence of unsubstituted ethyleneimine (EI) units, a gradient distributed within a polymer chain composed of 2-isopropyl-2-oxazoline (iPrOx) and 2-methyl-2-oxazoline (MOx) units, decreases the ability to crystallize the copolymer and affects thermal properties compared to the homopolymer of iPrOx. We assumed that the separation of stiff iPrOx units by the more flexible EI will affect the spatial arrangements of the ordered chains, slightly plasticize and, as a result, decrease their ability to crystallize. The selective hydrolysis of gradient iPrOx and 2-methyl-2-oxazoline (MOx) copolymers, carried out under mild conditions, led to iPrOx/MOx/EI copolymers. To the best of our knowledge, the selective hydrolysis of these copolymers has never been carried out before. Their thermal properties and crystallization abilities, both in a solid state and from an aqueous solution, were analyzed. Based on the analysis of polymer charge and cytotoxicity studies, the potential use of the copolymers obtained was indicated in some biological systems.
Collapse
Affiliation(s)
- Natalia Oleszko-Torbus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (B.M.); (A.K.); (A.U.-W.); (A.D.); (W.W.)
| | | | | | | | | | | |
Collapse
|
18
|
Sedlacek O, Jirak D, Vit M, Ziołkowska N, Janouskova O, Hoogenboom R. Fluorinated Water-Soluble Poly(2-oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova, 2030, 128 40 Prague 2, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Martin Vit
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Natalia Ziołkowska
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
19
|
Lu W, Xu X, Imbernon L, Zhu J, Hoogenboom R, Du Prez FE, Pan X. On-Demand Dissoluble Diselenide-Containing Hydrogel. Biomacromolecules 2020; 21:3308-3317. [PMID: 32658477 DOI: 10.1021/acs.biomac.0c00762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
On-demand dissolution of hydrogels is being increasingly studied for their potential use in burn wound dressing applications. Herein, a dynamic diselenide-containing hydrogel is developed through a very simple one-pot and two-step process starting from the selenol functionalization of a partially hydrolyzed poly(2-ethyl-2-oxazoline) with γ-butyroselenolactone. The hydrogel spontaneously cross-links via an in situ oxidation of the selenol functionalities in air. The gelation process and the final viscoelastic properties of the gel are characterized by rheological experiments. The mechanical properties of those new diselenide-containing hydrogels are easily tuned by varying the concentration of γ-butyroselenolactone. The materials also show good skin adhesion and UV light responsiveness. A unique feature of the hydrogel is its capability to be fully and rapidly dissolved on-demand, via oxidation or reduction of the diselenide cross-links, making them particularly attractive for burn wound dressing applications.
Collapse
|
20
|
Haladjova E, Smolíček M, Ugrinova I, Momekova D, Shestakova P, Kroneková Z, Kronek J, Rangelov S. DNA delivery systems based on copolymers of poly (2‐methyl‐2‐oxazoline) and polyethyleneimine: Effect of polyoxazoline moieties on the endo‐lysosomal escape. J Appl Polym Sci 2020. [DOI: 10.1002/app.49400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Maroš Smolíček
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Mlynská dolina Bratislava Slovakia
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences Sofia Bulgaria
| | | | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Zuzana Kroneková
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | - Juraj Kronek
- Department for Biomaterials ResearchPolymer Institute, Slovak Academy of Sciences Bratislava Slovakia
| | | |
Collapse
|
21
|
Sedlacek O, Hoogenboom R. Drug Delivery Systems Based on Poly(2‐Oxazoline)s and Poly(2‐Oxazine)s. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900168] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ondrej Sedlacek
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| |
Collapse
|
22
|
Bauer M, Tauhardt L, Lambermont-Thijs HM, Kempe K, Hoogenboom R, Schubert US, Fischer D. Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. Eur J Pharm Biopharm 2018; 133:112-121. [DOI: 10.1016/j.ejpb.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023]
|
23
|
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018; 178:204-280. [DOI: 10.1016/j.biomaterials.2018.05.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|
24
|
Cegłowski M, Hoogenboom R. Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michał Cegłowski
- Supramolecular Chemistry Group, Centre of Macromolecular
Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular
Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
25
|
Papagiannopoulos A, Vlassi E, Pispas S, Houston JE. Association and Internal Morphology of Self-Assembled HPPhOx/BSA Hybrid Nanoparticles in Aqueous Solutions. J Phys Chem B 2018; 122:7426-7435. [PMID: 29947516 DOI: 10.1021/acs.jpcb.8b04364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the formation of hybrid polyelectrolyte/protein nanoparticles by associations between aggregates of partially hydrolyzed poly(2-phenyl-2-oxazoline) (HPPhOx) and bovine serum albumin (BSA) in aqueous solutions. Light scattering experiments show that at conditions of low salt, BSA creates interaggregate bridges and increases the size of the HPPhOx nanoparticles. At high salt contents, breaking of aggregates leads to well-defined nanoparticles. The interior of the formed nanoparticles is probed by small-angle neutron scattering. At low salt, diffuse arrangements are observed, whereas at high salt concentration, scattering is dominated by well-defined hydrophobic domains enhanced by the incorporation of BSA. This system shows that the combination of hydrophobic and electrostatic interactions in random-amphiphilic-polyelectrolyte/protein complexes can be used to determine the properties of self-assembled hybrid multifunctional nanoparticles.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute , National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue , 11635 Athens , Greece
| | - Eleni Vlassi
- Theoretical and Physical Chemistry Institute , National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue , 11635 Athens , Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute , National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue , 11635 Athens , Greece
| | - Judith Elizabeth Houston
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier Leibnitz-Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstrasse 1 , 85748 Garching , Germany
| |
Collapse
|
26
|
Blakney AK, Yilmaz G, McKay PF, Becer CR, Shattock RJ. One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules 2018; 19:2870-2879. [PMID: 29698602 DOI: 10.1021/acs.biomac.8b00429] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - Gokhan Yilmaz
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Paul F McKay
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| | - C Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science , Queen Mary University of London , London E1 4NS , U.K
| | - Robin J Shattock
- Department of Medicine, Division of Infectious Diseases, Section of Virology , Imperial College London , Norfolk Place, London W21PG , U.K
| |
Collapse
|
27
|
Nanoparticulate polyelectrolyte complexes of thermally sensitive poly(l-lysine)-based copolymers and DNA. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Hertz D, Leiske MN, Wloka T, Traeger A, Hartlieb M, Kessels MM, Schubert S, Qualmann B, Schubert US. Comparison of random and gradient amino functionalized poly(2-oxazoline)s: Can the transfection efficiency be tuned by the macromolecular structure? ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Hertz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Meike N. Leiske
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Thomas Wloka
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Anja Traeger
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Matthias Hartlieb
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Institute of Pharmacy, Pharmaceutical Technology, Friedrich Schiller University Jena, Otto-Schott-Straße 41; Jena 07745 Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2; Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
| | - Ulrich S. Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7; Jena 07743 Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena, Humboldtstraße 10; Jena 07743 Germany
| |
Collapse
|
29
|
Haladjova E, Halacheva S, Momekova D, Moskova-Doumanova V, Topouzova-Hristova T, Mladenova K, Doumanov J, Petrova M, Rangelov S. Polyplex Particles Based on Comb-Like Polyethylenimine/Poly(2-ethyl-2-oxazoline) Copolymers: Relating Biological Performance with Morphology and Structure. Macromol Biosci 2018; 18:e1700349. [DOI: 10.1002/mabi.201700349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Emi Haladjova
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| | - Silviya Halacheva
- Institute for Materials Research and Innovation; University of Bolton; Deane road Bolton Greater Manchester BL3 5AB UK
| | - Denitsa Momekova
- Faculty of Pharmacy; Medical University of Sofia; Sofia 1000 Bulgaria
| | | | | | - Kirilka Mladenova
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Jordan Doumanov
- Faculty of Biology; Sofia University “St. Kliment Ohridski”; 1164 Sofia Bulgaria
| | - Maria Petrova
- Institute of Molecular Biology; Bulgarian Academy of Sciences; Sofia 1113 Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev St. 103A Sofia 1113 Bulgaria
| |
Collapse
|
30
|
Mees MA, Hoogenboom R. Full and partial hydrolysis of poly(2-oxazoline)s and the subsequent post-polymerization modification of the resulting polyethylenimine (co)polymers. Polym Chem 2018. [DOI: 10.1039/c8py00978c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the full and partial hydrolysis of poly(2-oxazoline)s as well as the synthetic methods that have been reported to modify the resulting secondary amine groups.
Collapse
Affiliation(s)
- Maarten A. Mees
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- 9000 Ghent
- Belgium
| |
Collapse
|
31
|
Sahoo S, Bera S, Maiti S, Dhara D. Temperature- and Composition-Dependent DNA Condensation by Thermosensitive Block Copolymers. ACS OMEGA 2017; 2:7946-7958. [PMID: 30023568 PMCID: PMC6045361 DOI: 10.1021/acsomega.7b01331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/03/2017] [Indexed: 06/08/2023]
Abstract
Successful intracellular delivery of genes requires an efficient carrier, as genes by themselves cannot diffuse across cell membranes. Because of the toxicity and immunogenicity of viral vectors, nonviral vectors are gaining tremendous interest in research. In this work, we have investigated the temperature-dependent DNA condensation efficiency of various compositions of a thermosensitive block copolymer viz., poly(N-isopropylacrylamide)-b-poly(2-(diethylamino)ethyl methacrylate) (PNIPA-b-PDMAEMA). Three different copolymer compositions of varying molecular weights were successfully synthesized via the RAFT polymerization technique. Steady-state fluorescence and circular dichroism (CD) spectroscopies, dynamic light scattering (DLS) and zeta potential measurements, agarose gel electrophoresis, and atomic force microscopy techniques were utilized to study the interaction of the copolymers with DNA at temperatures above and below the critical aggregation temperature (CAT). All these experiments revealed that, above the CAT, there was formation of highly stable and tight polymer-DNA complexes (polyplexes). The size of polyplexes was dependent on the temperature up to a certain charge ratio, as determined by the DLS results. The results obtained from temperature-dependent fluorescence spectroscopy, CD, and gel electrophoresis indicated that the DNA molecules were shielded more from aqueous exposure above the CAT because of the formation of relatively more compact complexes. The polyplexes also exhibited changes in the particle morphology below and above the CAT, with particles generated above CAT being more spherical in morphology. These results suggested at the possibility of modulating the complex formation by temperature modification. The present biophysical studies would provide new physical insight into the design of novel gene carriers.
Collapse
Affiliation(s)
| | | | | | - Dibakar Dhara
- E-mail: , . Phone: +91-3222-282326. Fax: +91-3222-282252 (D.D.)
| |
Collapse
|
32
|
Haladjova E, Kyulavska M, Doumanov J, Topouzova-Hristova T, Petrov P. Polymeric vehicles for transport and delivery of DNA via cationic micelle template method. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Toncheva-Moncheva N, Veleva-Kostadinova E, Tsvetanov C, Momekova D, Rangelov S. Preparation and properties of positively charged mesoglobules based on poly(2-isopropyl-2-oxazoline) and evaluation of their potential as carriers of polynucleotides. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|