1
|
Sánchez-Arribas N, Velasco Rodríguez B, Aicart E, Guerrero-Martínez A, Junquera E, Taboada P. Lipid nanoparticles as nano-Trojan-horses for siRNA delivery and gene-knockdown. J Colloid Interface Sci 2025; 679:975-987. [PMID: 39488022 DOI: 10.1016/j.jcis.2024.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
The therapeutic messenger RNA strategies, such as those using small interfering RNAs, take several advantages (versatility, efficiency and selectivity) over plasmid DNA-based strategies. However, the challenge remains to find nanovectors capable of properly loading the genetic material, transporting it through troublesome environments, like a tumoral site, and delivering it into the cytoplasm of target cells. Here, lipid nanoparticles, consisting of a gemini cationic/neutral helper lipid mixture, are proposed as siRNA nanovector. Cells from cervical and brain cancer overexpressing the green fluorescent protein (GFP) were chosen to analyse the biological response as well as the efficiency and safety of the siRNA-loaded nanovector according to the cell phenotype. Flow cytometry and epifluorescence or confocal microscopy were used to follow the gene knockdown in these overexpressed cells. The effect of the nanovector on cellular proliferation was evaluated with cytotoxicity assays while their potential oxidative stress generation was determined by quantifying the generation of reactive oxygen species. To explore the mechanism of cellular uptake, different inhibitors of endocytic pathways were used during incubation with cells. Finally, nanovectors were incubated in 3D-grown cells (spheroids) to see whether they can penetrate the complex tumoral microenvironments, their efficiency to knockdown GFP expression being monitored by confocal microscopy.
Collapse
Affiliation(s)
- Natalia Sánchez-Arribas
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Brenda Velasco Rodríguez
- Departamento de Física de Partículas-Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Emilio Aicart
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Andrés Guerrero-Martínez
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Elena Junquera
- Dpto. Química Física, Fac. CC. Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Pablo Taboada
- Departamento de Física de Partículas-Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Liu Y, Chen X, Tan X, Huang Y, Zhang W, Wang Z, Yang L, Wang Y, Li Z, Zhang X. Double network hydrogels encapsulating genetically modified dedifferentiated chondrocytes for auricular cartilage regeneration. J Mater Chem B 2025; 13:1823-1844. [PMID: 39745373 DOI: 10.1039/d4tb02352h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions. To tackle these issues, here we employ guanidinobenzoic acid (GBA) modified generation 5 polyamidoamine (PAMAM) dendrimers (PG) as a Runx1 plasmid carrier to construct PG/pRunx1 polyplex nanoparticles. The PG/pRunx1 polyplexes are transfected into human auricular chondrocytes, significantly mitigating chondrocyte dedifferentiation and enhancing cartilage regeneration during the in vitro culture. Furthermore, we develop highly porous double-network hydrogels based on methacrylate-functionalized and oxidized chondroitin sulfate and carbohydrazide-modified gelatin and the hydrogels possessed both dynamic adaptability and mechanical support characteristics by reversible dynamic covalent crosslinking and static covalent crosslinking, serving as an ideal scaffold for tissue engineering. Consequently, chondrocytes treated with PG/pRunx1 polyplex nanoparticles are incorporated into the hydrogels to construct tissue-engineered auricular cartilage scaffolds. After subcutaneous implantation in nude mice, the scaffolds containing chondrocytes treated with PG/pRunx1 nanoparticles showed more mature cartilaginous tissue, characterized by prominent ECM deposition and enhanced chondrogenesis. Therefore, this research provides a novel strategy for the development of tissue-engineered auricular cartilage scaffolds.
Collapse
Affiliation(s)
- Yang Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Tan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yeqian Huang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wen Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zhengyong Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Xin J, Lu X, Cao J, Wu W, Liu Q, Wang D, Zhou X, Ding D. Fluorinated Organic Polymers for Cancer Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404645. [PMID: 38678386 DOI: 10.1002/adma.202404645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/22/2024] [Indexed: 04/30/2024]
Abstract
In the realm of cancer therapy, the spotlight is on nanoscale pharmaceutical delivery systems, especially polymer-based nanoparticles, for their enhanced drug dissolution, extended presence in the bloodstream, and precision targeting achieved via surface engineering. Leveraging the amplified permeation and retention phenomenon, these systems concentrate therapeutic agents within tumor tissues. Nonetheless, the hurdles of systemic toxicity, biological barriers, and compatibility with living systems persist. Fluorinated polymers, distinguished by their chemical idiosyncrasies, are poised for extensive biomedical applications, notably in stabilizing drug metabolism, augmenting lipophilicity, and optimizing bioavailability. Material science heralds the advent of fluorinated polymers that, by integrating fluorine atoms, unveil a suite of drug delivery merits: the hydrophobic traits of fluorinated alkyl chains ward off lipid or protein disruption, the carbon-fluorine bond's stability extends the drug's lifecycle in the system, and a lower alkalinity coupled with a diminished ionic charge bolsters the drug's ability to traverse cellular membranes. This comprehensive review delves into the utilization of fluorinated polymers for oncological pharmacotherapy, elucidating their molecular architecture, synthetic pathways, and functional attributes, alongside an exploration of their empirical strengths and the quandaries they encounter in both experimental and clinical settings.
Collapse
Affiliation(s)
- Jingrui Xin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Lu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Weihui Wu
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen, Futian), and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Vakili-Azghandi M, Mollazadeh S, Ghaemi A, Ramezani M, Alibolandi M. Dendrimer-based nanomedicines for cancer immunotherapy. NANOMEDICINE IN CANCER IMMUNOTHERAPY 2024:317-347. [DOI: 10.1016/b978-0-443-18770-4.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Alfei S. Cationic Materials for Gene Therapy: A Look Back to the Birth and Development of 2,2-Bis-(hydroxymethyl)Propanoic Acid-Based Dendrimer Scaffolds. Int J Mol Sci 2023; 24:16006. [PMID: 37958989 PMCID: PMC10649874 DOI: 10.3390/ijms242116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Gene therapy is extensively studied as a realistic and promising therapeutic approach for treating inherited and acquired diseases by repairing defective genes through introducing (transfection) the "healthy" genetic material in the diseased cells. To succeed, the proper DNA or RNA fragments need efficient vectors, and viruses are endowed with excellent transfection efficiency and have been extensively exploited. Due to several drawbacks related to their use, nonviral cationic materials, including lipidic, polymeric, and dendrimer vectors capable of electrostatically interacting with anionic phosphate groups of genetic material, represent appealing alternative options to viral carriers. Particularly, dendrimers are highly branched, nanosized synthetic polymers characterized by a globular structure, low polydispersity index, presence of internal cavities, and a large number of peripheral functional groups exploitable to bind cationic moieties. Dendrimers are successful in several biomedical applications and are currently extensively studied for nonviral gene delivery. Among dendrimers, those derived by 2,2-bis(hydroxymethyl)propanoic acid (b-HMPA), having, unlike PAMAMs, a neutral polyester-based scaffold, could be particularly good-looking due to their degradability in vivo. Here, an overview of gene therapy, its objectives and challenges, and the main cationic materials studied for transporting and delivering genetic materials have been reported. Subsequently, due to their high potential for application in vivo, we have focused on the biodegradable dendrimer scaffolds, telling the history of the birth and development of b-HMPA-derived dendrimers. Finally, thanks to a personal experience in the synthesis of b-HMPA-based dendrimers, our contribution to this field has been described. In particular, we have enriched this work by reporting about the b-HMPA-based derivatives peripherally functionalized with amino acids prepared by us in recent years, thus rendering this paper original and different from the existing reviews.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| |
Collapse
|
7
|
Wang C, Pan C, Yong H, Wang F, Bo T, Zhao Y, Ma B, He W, Li M. Emerging non-viral vectors for gene delivery. J Nanobiotechnology 2023; 21:272. [PMID: 37592351 PMCID: PMC10433663 DOI: 10.1186/s12951-023-02044-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Gene therapy holds great promise for treating a multitude of inherited and acquired diseases by delivering functional genes, comprising DNA or RNA, into targeted cells or tissues to elicit manipulation of gene expression. However, the clinical implementation of gene therapy remains substantially impeded by the lack of safe and efficient gene delivery vehicles. This review comprehensively outlines the novel fastest-growing and efficient non-viral gene delivery vectors, which include liposomes and lipid nanoparticles (LNPs), highly branched poly(β-amino ester) (HPAE), single-chain cyclic polymer (SCKP), poly(amidoamine) (PAMAM) dendrimers, and polyethyleneimine (PEI). Particularly, we discuss the research progress, potential development directions, and remaining challenges. Additionally, we provide a comprehensive overview of the currently approved non-viral gene therapeutics, as well as ongoing clinical trials. With advances in biomedicine, molecular biology, materials science, non-viral gene vectors play an ever-expanding and noteworthy role in clinical gene therapy.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Tao Bo
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
8
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
9
|
Joubert F, Munson MJ, Sabirsh A, England RM, Hemmerling M, Alexander C, Ashford MB. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J Control Release 2023; 356:580-594. [PMID: 36918085 DOI: 10.1016/j.jconrel.2023.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Here, we aimed to chemically modify PAMAM dendrimers using lysine as a site-selective anchor for successfully delivering mRNA while maintaining a low toxicity profile. PAMAM dendrimers were multi-functionalised by amidation reactions in a regioselective, quantitative and stepwise manner with carefully selected property-modifying surface groups. Alternatively, novel lysine-based dendrimers were prepared in the same manner with the aim to unlock their potential in gene delivery. The modified dendrimers were then formulated with Cy5-EGFP mRNA by bulk mixing via liquid handling robotics across different nitrogen to phosphate ratios. The resulting dendriplexes were characterised by size, charge, mRNA encapsulation, and mRNA binding affinity. Finally, their in-vitro delivery activity was systematically investigated across key cellular trafficking stages to relate chemical design to cellular effect. We demonstrate our findings in different cell lines and benchmarked relative to a commercially available transfection agent, jetPEI®. We demonstrate that specific surface modifications are required to generate small, reliable and well-encapsulated positively charged dendriplex complexes. Furthermore, we show that introduction of fusogenic groups is essential for driving endosomal escape and achieving cellular delivery and translation of mRNA in these cell lines.
Collapse
Affiliation(s)
- Fanny Joubert
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Michael J Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.
| | - Martin Hemmerling
- Medicinal Chemistry, Early Respiratory & Immunology, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| |
Collapse
|
10
|
Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Guanidinium-functionalized Block Copolyelectrolyte Micelleplexes for Safe and Efficient siRNA Delivery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
13
|
Ruan W, Jiao M, Xu S, Ismail M, Xie X, An Y, Guo H, Qian R, Shi B, Zheng M. Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy. J Control Release 2022; 351:739-751. [PMID: 36174804 DOI: 10.1016/j.jconrel.2022.09.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
CRISPR/Cas9 gene-editing technology shows great potential for treating a variety of diseases, such as glioblastoma multiforme (GBM). However, CRISPR components suffer from inherent delivery challenges, such as poor in vivo stability of Cas9 protein and gRNA, low blood-brain barrier (BBB) permeability and non-specific tissue or cell targeting. These defects have limited the application of Cas9/gRNA ribonucleoprotein (RNP) complexes for GBM therapy. Here, we developed a brain-targeted CRISPR/Cas9 based nanomedicine by fabricating an angiopep-2 decorated, guanidinium and fluorine functionalized polymeric nanoparticle with loading Cas9/gRNA RNP for the treatment of GBM. The guanidinium and fluorine domains of our polymeric nanoparticles were both capable of interacting with Cas9/gRNA RNP to stabilize it in blood circulation, without impairing its activity. Moreover, by leveraging angiopep-2 peptide functionality, the RNP nanoparticles efficiently crossed the BBB and accumulated in brain tumors. In U87MG cells, we achieved approximately 32% gene knockout and 67% protein reduction in the targeted proto-oncogene polo-like kinase 1 (PLK1). This was sufficient to suppress tumor growth and significantly improved the median survival time of mice bearing orthotopic glioblastoma to 40 days, while inducing negligible side or off-target effects. These results suggest that the developed brain-targeted CRISPR/Cas9 based nanomedicine shows promise for effective human glioblastoma gene therapy.
Collapse
Affiliation(s)
- Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingzhu Jiao
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan Chemical Technician College, Kaifeng, Henan 475002, China
| | - Sen Xu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Muhammad Ismail
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xuan Xie
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Yang An
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Haixing Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Meng Zheng
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
14
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
15
|
Application of Dendrimers in Anticancer Diagnostics and Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103237. [PMID: 35630713 PMCID: PMC9144149 DOI: 10.3390/molecules27103237] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
The application of dendrimeric constructs in medical diagnostics and therapeutics is increasing. Dendrimers have attracted attention due to their compact, spherical three-dimensional structures with surfaces that can be modified by the attachment of various drugs, hydrophilic or hydrophobic groups, or reporter molecules. In the literature, many modified dendrimer systems with various applications have been reported, including drug and gene delivery systems, biosensors, bioimaging contrast agents, tissue engineering, and therapeutic agents. Dendrimers are used for the delivery of macromolecules, miRNAs, siRNAs, and many other various biomedical applications, and they are ideal carriers for bioactive molecules. In addition, the conjugation of dendrimers with antibodies, proteins, and peptides allows for the design of vaccines with highly specific and predictable properties, and the role of dendrimers as carrier systems for vaccine antigens is increasing. In this work, we will focus on a review of the use of dendrimers in cancer diagnostics and therapy. Dendrimer-based nanosystems for drug delivery are commonly based on polyamidoamine dendrimers (PAMAM) that can be modified with drugs and contrast agents. Moreover, dendrimers can be successfully used as conjugates that deliver several substances simultaneously. The potential to develop dendrimers with multifunctional abilities has served as an impetus for the design of new molecular platforms for medical diagnostics and therapeutics.
Collapse
|
16
|
Chen S, Ouyang H, He D, Liu D, Wang X, Chen H, Pan W, Li Q, Xie W, Yu C. Functionalized PAMAM-Based Nanoformulation for Targeted Delivery of 5-Fluorouracil in Hepatocellular Carcinoma. Curr Pharm Des 2022; 28:2113-2125. [PMID: 35524673 DOI: 10.2174/1381612828666220506111918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Efficacy of a traditional anticancer drug is challenged by adverse effects of the drug including its nonspecific bio-distribution, short half-life and side effects. Dendrimer-based targeted drug delivery sysytem has been considered as a promising strategy to increase targeting ability and reduce adverse effects of anti-cancer drugs. OBJECTIVE This study analyzed the feasibility whether the anticancer drug 5-fluorouracil (5-FU) could be delivered by functionalized fifth-poly(amidoamine) (PAMAM) with the peptide WP05 and the acetic anhydride to the liver cancer cells, reducing toxicity of the PAMAM and improving the targeting property of 5-FU during delivery. METHODS The functionalized PAMAM-based nanoformulation (WP05-G5.0NHAC-FUA) was fabricated through an amide condensation reaction to improve therapeutic efficacy of 5-Fluorouracil (5-FU) in hepatocellular carcinoma (HCC). The physicochemical structure, particle size, zeta potential, stability and in vitro release characteristics of WP05-G5.0NHAC-FUA were evaluated. In addition, the targeting, biocompatibility, anti-proliferation and anti-migration of WP05-G5.0NHAC-FUA were investigated. The anti-tumor effect of WP05-G5.0NHAC-FUA in vivo was evaluated by constructing xenograft tumor models of hunman hepatoma cells (Bel-7402) implanted in nude mice. RESULTS The resultant WP05-G5.0NHAC-FUA displayed spherical-like nanoparticles with the size of 174.20 ± 3.59 nm. Zeta potential and the drug loading of WP05-G5.0NHAC-FUA were 5.62 ± 0.41mV and 28.67 ± 1.25 %, respectively. Notably, the optimized 5-FU-loaded formulation showed greater cytotoxicity with an IC50 of 30.80 ±4.04 μg/mL than free 5-FU (114.93 ±1.43 μg/mL) in Bel-7402 cancer liver cells, but a significantly reduced side effect relative to free 5-FU in L02 normal liver cells. In vivo animal study further confirmed efficient tumor accumulation and enhanced therapeutic efficiency. CONCLUSION The developed nanoformulation is a promising platform for the targeting delivery of 5-FU and provides a promising solution for improving the efficacy of hepatocellular carcinoma chemotherapy.
Collapse
Affiliation(s)
- Siwei Chen
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| | - Hu Ouyang
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Dongxiu He
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| | - Daquan Liu
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Xiao Wang
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Hongyuan Chen
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Wei Pan
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Qi Li
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Weiquan Xie
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Cuiyun Yu
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| |
Collapse
|
17
|
Chen D, Zhang P, Li M, Li C, Lu X, Sun Y, Sun K. Hyaluronic acid-modified redox-sensitive hybrid nanocomplex loading with siRNA for non-small-cell lung carcinoma therapy. Drug Deliv 2022; 29:574-587. [PMID: 35156491 PMCID: PMC8856077 DOI: 10.1080/10717544.2022.2032874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A novel hyaluronic acid (HA)-modified hybrid nanocomplex HA-SeSe-COOH/siR-93C@PAMAM, which could efficiently deliver siRNA into tumor cells via a redox-mediated intracellular disassembly, was constructed for enhanced antitumor efficacy. Thereinto, siR-93C (siRNA) and positive PAMAM were firstly mixed into the electrostatic nano-intermediate, and then diselenide bond (-SeSe-)-modified HA was coved to shield excessive positive charges. This hybrid nanocomplex displayed uniform dynamic sizes, high stability, controlled zeta potential and narrow PDI distribution. Moreover, the -SeSe- linkage displayed GSH/ROS dual responsive properties, improving intracellular trafficking of siRNA. In vitro assays in A549 cell line presented that HA-SeSe-COOH/siR-93C@PAMAM has low cytotoxicity, rapid lysosomal escape and significant transfection efficiency; besides, an efficient proliferation inhibition ability and enhanced apoptosis. Furthermore, in animal studies, this negative-surfaced hybrid nanocomplex showed a prolonged circulation in blood and improved inhibition of tumor growth. All these results verified our hypothesis in this study that diselenide bonds-modified HA could promote not only stability and safety of nanoparticles in vivo but also intracellular behavior of siRNA via redox-dual sensitive properties; furthermore, this hybrid nanocomplex provided a visible potential approach for siRNA delivery in the antitumor field.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Minghui Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Congcong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co. Ltd, Yantai, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| |
Collapse
|
18
|
Cai C, Zhang X, Li Y, Liu X, Wang S, Lu M, Yan X, Deng L, Liu S, Wang F, Fan C. Self-Healing Hydrogel Embodied with Macrophage-Regulation and Responsive-Gene-Silencing Properties for Synergistic Prevention of Peritendinous Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106564. [PMID: 34816470 DOI: 10.1002/adma.202106564] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Indexed: 05/24/2023]
Abstract
Antiadhesion barriers such as films and hydrogels used to wrap repaired tendons are important for preventing the formation of adhesion tissue after tendon surgery. However, sliding of the tendon can compress the adjacent hydrogel barrier and cause it to rupture, which may then lead to unexpected inflammation. Here, a self-healing and deformable hyaluronic acid (HA) hydrogel is constructed as a peritendinous antiadhesion barrier. Matrix metalloproteinase-2 (MMP-2)-degradable gelatin-methacryloyl (GelMA) microspheres (MSs) encapsulated with Smad3-siRNA nanoparticles are entrapped within the HA hydrogel to inhibit fibroblast proliferation and prevent peritendinous adhesion. GelMA MSs are responsively degraded by upregulation of MMP-2, achieving on-demand release of siRNA nanoparticles. Silencing effect of Smad3-siRNA nanoparticles is around 75% toward targeted gene. Furthermore, the self-healing hydrogel shows relatively attenuated inflammation compared to non-healing hydrogel. The mean adhesion scores of composite barrier group are 1.67 ± 0.51 and 2.17 ± 0.75 by macroscopic and histological evaluation, respectively. The proposed self-healing hydrogel antiadhesion barrier with MMP-2-responsive drug release behavior is highly effective for decreasing inflammation and inhibiting tendon adhesion. Therefore, this research provides a new strategy for the development of safe and effective antiadhesion barriers.
Collapse
Affiliation(s)
- Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Mingkuan Lu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Xiong Yan
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| |
Collapse
|
19
|
|
20
|
Sarkar AK, Debnath K, Arora H, Seth P, Jana NR, Jana NR. Direct Cellular Delivery of Exogenous Genetic Material and Protein via Colloidal Nano-Assemblies with Biopolymer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3199-3206. [PMID: 34985241 DOI: 10.1021/acsami.1c22009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct cytosolic delivery of large biomolecules that bypass the endocytic pathways is a promising strategy for therapeutic applications. Recent works have shown that small-molecule, nanoparticle, and polymer-based carriers can be designed for direct cytosolic delivery. It has been shown that the specific surface chemistry of the carrier, nanoscale assembly between the carrier and cargo molecule, good colloidal stability, and low surface charge of the nano-assembly are critical for non-endocytic uptake processes. Here we report a guanidinium-terminated polyaspartic acid micelle for direct cytosolic delivery of protein and DNA. The polymer delivers the protein/DNA directly to the cytosol by forming a nano-assembly, and it is observed that <200 nm size of colloidal assembly with near-zero surface charge is critical for efficient cytosolic delivery. This work shows the importance of size and colloidal property of the nano-assembly for carrier-based cytosolic delivery of large biomolecules.
Collapse
Affiliation(s)
- Ankan Kumar Sarkar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Koushik Debnath
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612, United States
| | - Himali Arora
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurugram, Haryana 122052, India
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Centre, Gurugram, Haryana 122052, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil R Jana
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
21
|
Qi LY, Wang Y, Hu LF, Zhao PS, Yu HY, Xing L, Gao XD, Cao QR, Jiang HL. Enhanced nuclear gene delivery via integrating and streamlining intracellular pathway. J Control Release 2021; 341:511-523. [PMID: 34864117 DOI: 10.1016/j.jconrel.2021.11.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
The essential challenge of gene therapy is to develop safe and efficient vectors that escort genes to target sites. However, due to the cumbersome workflow of gene transfection into cells, successive gene loss occurs. This leads to considerable reductions in nuclear gene uptake, eventually causing low gene expression. Herein, we designed a gene vector named CA3S2 (C: N,N'-cystamine-bis-acrylamide [CBA], A: agmatine dihydrochloride [Agm], S: 4-(2-aminoethyl) benzenesulfonamide [ABS]) with excellent gene transfection ability. This vector can promote gene delivery to the nucleus via enhanced endoplasmic reticulum (ER) targeting through integrating and streamlining of the complex intracellular pathway. Briefly, ABS endowed CA3S2/DNA nanoparticles with not only a natural ER-targeting tendency attributed to the caveolae-mediated pathway but also direct receptor-binding capacity on the ER surface. Agm enabled CA3S2 to enhance lysosomal escape and nuclear uptake ability. The gene delivery efficiency of CA3S2 was significantly better than that of polyethyleneimine 25K (PEI 25K). Therefore, CA3S2 is a promising gene carrier, and the ER-targeting strategy involving intracellular pathway integration and streamlining has potential for gene therapy.
Collapse
Affiliation(s)
- Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Pu-Song Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang-Dong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Affiliation(s)
- Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences East China Normal University Shanghai 200241 China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
23
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
24
|
Chopra M, Sgro A, Norret M, Blancafort P, Iyer KS, Evans CW. A peptide-functionalised dendronised polymer for selective transfection in human liver cancer cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj01566d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dendronised polymer functionalised with SP94 targeting peptide achieves highly selective transient transfection of liver cancer cells over normal non-transformed hepatocytes.
Collapse
Affiliation(s)
- Meenu Chopra
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Agustin Sgro
- The Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA 6009, Australia
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Pilar Blancafort
- The Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, WA 6009, Australia
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Cameron W. Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
25
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
26
|
Hack FJ, Cokca C, Städter S, Hülsmann J, Peneva K, Fischer D. Indole, Phenyl, and Phenol Groups: The Role of the Comonomer on Gene Delivery in Guanidinium Containing Methacrylamide Terpolymers. Macromol Rapid Commun 2020; 42:e2000580. [PMID: 33274813 DOI: 10.1002/marc.202000580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/28/2020] [Indexed: 12/29/2022]
Abstract
This report highlights the importance of hydrophobic groups mimicking the side chains of aromatic amino acids, which are tryptophan, phenylalanine, and tyrosine, in guanidinium bearing poly(methacrylamide)s for the design of non-viral gene delivery agents. Guanidinium containing methacrylamide terpolymers are prepared by aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization with different hydrophobic monomers, N-(2-indolethyl)methacrylamide (IEMA), N-phenethylmethacrylamide (PhEMA), or N-(4-hydroxyphenethyl)methacrylamide (PhOHEMA) by aiming similar contents. The well-defined polymers are obtained with a molar mass of ≈15 000 g mol-1 and ≈1.1 dispersity. All terpolymers demonstrate almost comparable in vitro cell viability and hemocompatibility profiles independent of the type of side chain. Although they all form positively charged, enzymatically stable polyplexes with plasmid DNA smaller than 200 nm, the incorporation of the IEMA monomer improve these parameters by demonstrating a higher DNA binding affinity and forming nanoassemblies of about 100 nm. These physicochemical characteristics are correlated with increased transfection rates in CHO-K1 cells dependent on the type of the monomer and the nitrogen to phosphate (N/P) ratio of the polyplexes, as determined by luciferase reporter gene assays.
Collapse
Affiliation(s)
- Franz J Hack
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, D-07743, Germany
| | - Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, D-07743, Germany
| | - Sebastian Städter
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, D-07743, Germany
| | - Juliana Hülsmann
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, D-07743, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, D-07743, Germany
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, D-07743, Germany
| |
Collapse
|
27
|
Song J, Wang D, Wang J, Shen Q, Xie C, Lu W, Wang R, Liu M. Low molecular weight polyethyleneimine modified by 2-aminoimidazole achieving excellent gene transfection efficiency. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Kong F, Tang C, Yin C. Benzylguanidine and Galactose Double-Conjugated Chitosan Nanoparticles with Reduction Responsiveness for Targeted Delivery of Doxorubicin to CXCR 4 Positive Tumors. Bioconjug Chem 2020; 31:2446-2455. [DOI: 10.1021/acs.bioconjchem.0c00496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fei Kong
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
29
|
Sánchez-Arribas N, Martínez-Negro M, Villar EM, Pérez L, Aicart E, Taboada P, Guerrero-Martínez A, Junquera E. Biocompatible Nanovector of siRNA Consisting of Arginine-Based Cationic Lipid for Gene Knockdown in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34536-34547. [PMID: 32657573 DOI: 10.1021/acsami.0c06273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the use of small interfering RNAs (siRNAs) as therapeutic agents through the knockdown expression of pathogenic proteins, transportation and delivery of such siRNAs into cells continue to be under investigation. Within nonviral vectors, cationic lipids that include amino acid residues in their structures, and that have already demonstrated their suitability as plasmid DNA nanocarriers, may be also considered as potential siRNA vehicles. A double-chain cationic lipid based on the amino acid arginine mixed with a helper lipid has been the object of this biophysical study. First, ζ-potential measurements and agarose gel electrophoresis experiments confirmed the siRNA compaction, while small-angle X-ray scattering analysis (SAXS) revealed the structural pattern of the lipoplexes. Two bicontinuous cubic phases were found to coexist: the double-gyroid phase (QIIG) and the double-diamond phase (QIID), with Pn3m and Ia3d as crystallographic space groups, respectively; the siRNA is known to be located inside their bicontinuous aqueous channels. Second, in vitro studies in HeLa-green fluorescent protein (GFP) and T731-GFP cell lines (modified for GFP overexpression) showed moderate to high gene knockdown levels (determined by flow cytometry and epifluorescence microscopy) with remarkable cell viabilities (CCK-8 assay). Finally, nano-liquid chromatography/mass spectrometry (nanoLC-MS/MS) was used to identify the nature of the proteins adhered to the surface of the lipoplexes after incubation with human serum, simulating their behavior in biological fluids. The abundant presence of lipoproteins and serum albumin in such protein corona, together with the coexistence of the bicontinuous cubic phases, may be behind the remarkable silencing activity of these lipoplexes. The results reported herein show that the use of amino-acid-based cationic lipids mixed with a suitable helper lipid, which have already provided good results as DNA plasmid nanocarriers in cellular transfection processes, may also be a biocompatible option, and so far little investigated, in gene silencing in vitro strategies.
Collapse
Affiliation(s)
- Natalia Sánchez-Arribas
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Martínez-Negro
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eva M Villar
- Departamento de Fı́sica de Partı́culas, Facultad de Fı́sicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Lourdes Pérez
- Departamento de Tecnologı́a Quı́mica y Tensioactivos, IQAC-CSIC, 08034 Barcelona, Spain
| | - Emilio Aicart
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pablo Taboada
- Departamento de Fı́sica de Partı́culas, Facultad de Fı́sicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Andrés Guerrero-Martínez
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Junquera
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
30
|
Wang D, Wang J, Song J, Shen Q, Wang R, Lu W, Pan J, Xie C, Liu M. Guanidyl and imidazolyl integration group-modified PAMAM for gastric adenocarcinoma gene therapy. J Gene Med 2020; 22:e3240. [PMID: 32558063 DOI: 10.1002/jgm.3240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gene therapy has become a potential strategy for cancer treatment. However, the development of efficient gene vectors restricts the application for cancer gene treatment. Functionalization of polymers with functional groups can significantly improve their transfection efficacy. METHODS Guanidyl can form bidentate hydrogen with the phosphate groups and phosphate groups are present in DNA and cell membranes, thus increasing DNA condensation and cellular uptake. Imidazolyl has high buffering capacity in endosomal/lysosomal acidic environment, facilitating endosome/lysosome escape. We designed a structure-integrated group of guanidyl and imidazolyl, 2-aminoimidazole (AM), which was conjugated to PAMAM generation 2 (G2) for gene therapy of gastric adenocarcinoma. RESULTS Molecular docking results illustrated that G2-AM bound with DNA molecule effectively via multiple interactions. A quantitative luciferase assay showed that the transfection efficacy of G2-AM/pGL3 was approximately 100-fold greater than that of G2/pGL3, 90-fold greater than that of imidazolyl-modified G2 (G2-M) /pGL3 and 100-fold greater than that of G5/pGL3 without additional cytotoxicity. After introducing the pTRAIL gene into gastric adenocarcinoma cells, the apoptosis ratio of gastric adenocarcinoma cells treated with G2-AM/pTRAIL was 36.95%, which is much larger than the corresponding ratio of G2/pTRAIL (7.45%), G2-M/pTRAIL (11.33%) and G5/pTRAIL (23.2%). In a gastric adenocarcinoma xenograft model, the in vivo transfection efficacy of G2-AM/pRFP was much greater than that of G2/pRFP and G2-M/pRFP. CONCLUSIONS These results demonstrate that AM could be modified with cationic polymers for potential application in gene delivery and gastric adenocarcinoma gene therapy.
Collapse
Affiliation(s)
- Dongli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jing Wang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Qing Shen
- Hangzhou YITU Healthcare Technology Co. Ltd, Hangzhou, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jun Pan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
31
|
Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020; 21:2966-2982. [DOI: 10.1021/acs.biomac.0c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
32
|
Vaughan HJ, Green JJ, Tzeng SY. Cancer-Targeting Nanoparticles for Combinatorial Nucleic Acid Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901081. [PMID: 31222852 PMCID: PMC6923623 DOI: 10.1002/adma.201901081] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Indexed: 05/03/2023]
Abstract
Nucleic acids are a promising type of therapeutic for the treatment of a wide range of conditions, including cancer, but they also pose many delivery challenges. For efficient and safe delivery to cancer cells, nucleic acids must generally be packaged into a vehicle, such as a nanoparticle, that will allow them to be taken up by the target cells and then released in the appropriate cellular compartment to function. As with other types of therapeutics, delivery vehicles for nucleic acids must also be designed to avoid unwanted side effects; thus, the ability of such carriers to target their cargo to cancer cells is crucial. Classes of nucleic acids, hurdles that must be overcome for effective intracellular delivery, types of nonviral nanomaterials used as delivery vehicles, and the different strategies that can be employed to target nucleic acid delivery specifically to tumor cells are discussed. Additonally, nanoparticle designs that facilitate multiplexed delivery of combinations of nucleic acids are reviewed.
Collapse
Affiliation(s)
- Hannah J Vaughan
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| |
Collapse
|
33
|
Gao YG, Dang K, Zhang WJ, Liu FL, Patil S, Qadir A, Ding AX, Qian AR. A 1,8-naphthalimide-[12]aneN3 derivative for efficient Cu2+ recognition, lysosome staining and siRNA delivery. Colloids Surf B Biointerfaces 2020; 185:110607. [DOI: 10.1016/j.colsurfb.2019.110607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/01/2019] [Accepted: 10/20/2019] [Indexed: 01/20/2023]
|
34
|
Gabas IM, Nielsen PE. Effective Cellular Delivery of Antisense Peptide Nucleic Acid by Conjugation to Guanidinylated Diaminobutanoic Acid-Based Peptide Dendrons. Biomacromolecules 2019; 21:472-483. [PMID: 31756087 DOI: 10.1021/acs.biomac.9b01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of amino- and guanidino-terminating 3- and 4-generation 2,4-diaminobutanoic acid (Dab) dendrons have been robustly synthesized on a solid phase and characterized as cellular delivery agents in antisense peptide nucleic acid (PNA) conjugates in the pLuc705 HeLa cell splice switching system. The dendron-PNA conjugates exhibited splice correction activity at one digit micromolar concentrations, and guanidino-terminating dendrons were significantly more effective than analogous amine terminating ones. Furthermore, introduction of lipophilic groups such as phenyl, alkyl, or fatty acids increased efficacy, but also increased cellular toxicity. Fluorescence microscopy analyses supported an endosomal uptake mechanism and furthermore predominantly showed colocalization with late endosomes and lysosomes. The robust solid phase synthesis should make such Dab-dendrons a useful platform for further in vitro as well as in vivo optimization.
Collapse
Affiliation(s)
- Isabel Maicas Gabas
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute , University of Copenhagen , Blegdamsvej 3 , 2200 Copenhagen , Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute , University of Copenhagen , Blegdamsvej 3 , 2200 Copenhagen , Denmark
| |
Collapse
|
35
|
Yu J, Li J, Zhai S, Lin L, Wang K, Tang B, Meng H, Tian L. Enzymatically Synthesized DNA Polymer as Co-carrier for Enhanced RNA Interference. ACS APPLIED BIO MATERIALS 2019; 2:5204-5215. [DOI: 10.1021/acsabm.9b00862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Kui Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
36
|
In vitro siRNA delivery via diethylenetriamine- and tetraethylenepentamine-modified carboxyl group-terminated Poly(amido)amine generation 4.5 dendrimers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110245. [PMID: 31753357 DOI: 10.1016/j.msec.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022]
Abstract
The recent discovery of small interfering RNAs (siRNAs) has opened new avenues for designing personalized treatment options for various diseases. However, the therapeutic application of siRNAs has been confronted with many challenges because of short half-life in circulation, poor membrane penetration, difficulty in escaping from endosomes, and insufficient release into the cytosol. To overcome these challenges, we designed a diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA)-modified polyamidoamine dendrimer generation 4.5 (PDG4.5), and characterized it using 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy (COSY), heteronuclear single-quantum correlation spectroscopy (HSQC), and Fourier transform infrared (FTIR) spectroscopy followed by conjugation with siRNA. The PDG4.5-DETA and PDG4.5-TEPA polyplexes exhibited spherical nanosize, ideal zeta potential, and effective siRNA binding ability, protected the siRNA from nuclease attack, and revealed less cytotoxicity of PDG4.5-DETA and PDG4.5-TEPA in HeLa cells. More importantly, the polyplexes also revealed good cellular internalization and facilitated translocation of the siRNA into the cytosol. Thus, PDG4.5-DETA and PDG4.5-TEPA can act as potential siRNA carriers in future medical and pharmaceutical applications.
Collapse
|
37
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
38
|
Methotrexate-plasmid DNA polyplexes for cancer therapy: Characterization, cancer cell targeting ability and tuned in vitro transfection. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Wang L, Shi C, Wang X, Guo D, Duncan TM, Luo J. Zwitterionic Janus Dendrimer with distinct functional disparity for enhanced protein delivery. Biomaterials 2019; 215:119233. [PMID: 31176068 PMCID: PMC6585461 DOI: 10.1016/j.biomaterials.2019.119233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
The development of a facile protein delivery vehicle is challenging and remains an unmet demand for clinical applications. The well-defined structure and functionality of a nanocarrier are highly desirable for the reproducibility and regulatory compliance. Herein, we report for the first time a novel Janus dendrimer (JD) system, comprised of two distinct dendrons with superior protein binding and protein repelling properties, respectively, for efficient spontaneous protein loading and enhanced in vivo protein delivery. Core-forming dendron is tethered with a combination of charged and hydrophobic moieties, which coat protein surface efficiently via the multivalent and synergistic interactions. Zwitterionic peripheries on the counter dendron endow the nanoparticle (<20 nm) with a highly hydrophilic and antifouling surface, which efficiently prevents serum protein adsorption and exchange as demonstrated in biolayer interferometry assay, therefore, reducing premature protein release. Surprisingly, JD nanocarriers containing biomimicking glycerylphosphorylcholine (GPC) surface significantly enhanced the intracellular uptake of protein therapeutics specifically in cancer cells, compared with zwitterionic carboxybetain (CB)-JD and PEGylated nanocarriers. The zwitterionic JD nanocarriers greatly prolonged the in vivo pharmacokinetic profiles of payloads relative to the PEGylated nanocarriers. Janus nanocarrier controlled the in vivo release of insulin and improved the blood sugar control in mice.
Collapse
Affiliation(s)
- Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Xu Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States; National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Thomas M Duncan
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, United States.
| |
Collapse
|
40
|
Oberemok VV, Laikova KV, Gal'chinsky NV, Useinov RZ, Novikov IA, Temirova ZZ, Shumskykh MN, Krasnodubets AM, Repetskaya AI, Dyadichev VV, Fomochkina II, Bessalova EY, Makalish TP, Gninenko YI, Kubyshkin AV. DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection. Sci Rep 2019; 9:6197. [PMID: 30996277 PMCID: PMC6470133 DOI: 10.1038/s41598-019-42688-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Having observed how botanicals and other natural compounds are used by nature to control pests in the environment, we began investigating natural polymers, DNA and RNA, as promising tools for insect pest management. Over the last decade, unmodified short antisense DNA oligonucleotides have shown a clear potential for use as insecticides. Our research has concentrated mainly on Lymantria dispar larvae using an antisense oligoRING sequence from its inhibitor-of-apoptosis gene. In this article, we propose a novel biotechnology to protect plants from insect pests using DNA insecticide with improved insecticidal activity based on a new antisense oligoRIBO-11 sequence from the 5.8S ribosomal RNA gene. This investigational oligoRIBO-11 insecticide causes higher mortality among both L. dispar larvae grown in the lab and those collected from the forest; in addition, it is more affordable and faster acting, which makes it a prospective candidate for use in the development of a ready-to-use preparation.
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Nikita V Gal'chinsky
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Refat Z Useinov
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Ilya A Novikov
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Zenure Z Temirova
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Maksym N Shumskykh
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine.
| | - Alisa M Krasnodubets
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Valeriy V Dyadichev
- Engineering Center, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Evgenia Y Bessalova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Tatiana P Makalish
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Yuri I Gninenko
- All-Russian Research Institute for Silviculture and Mechanization of Forestry, Institutskaya Street 15, 141200, Pushkino, Russia
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| |
Collapse
|
41
|
Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y, Liu Z. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials 2019; 207:1-9. [PMID: 30947117 DOI: 10.1016/j.biomaterials.2019.03.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/06/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
Abstract
Cancer vaccines for prevention and treatment of tumors have attracted tremendous interests as a type of cancer immunotherapy strategy. A major challenge in achieving robust T-cell responses to destruct tumor cells after vaccination is the abilities of antigen cross-presentation for antigen-presenting cells (APCs) such as dendritic cells (DCs). Herein, we demonstrate that a polyamidoamine dendrimer modified with guanidinobenzoic acid (DGBA) could serve as an effective protein carrier to enable delivery of protein antigen, thereby leading to effective antigen cross-presentation by DCs. With ovalbumin (OVA) as the model antigen and unmethylated cytosine-guanine dinucleotides (CpG) as the adjuvant, a unique type of tumor vaccine is formulated. Importantly, such DGBA-OVA-CpG nanovaccine can induce robust antigen-specific cellular immunities and further demonstrates outstanding prophylactic efficacy against B16-OVA melanoma. More significantly, the nanovaccine shows excellent therapeutic effect to treat established B16-OVA melanoma when used in combination with the programmed cell death protein 1 (PD-1) checkpoint-blockade immunotherapy. This study presents the great promises of employing rationally engineered cytosolic protein carriers for the development of tumor vaccines to achieve effective cancer immunotherapy.
Collapse
Affiliation(s)
- Jun Xu
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, PR China
| | - Ligeng Xu
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yu Chao
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Chenya Wang
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiao Han
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Ziliang Dong
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Rui Peng
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, PR China.
| | - Zhuang Liu
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
42
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
43
|
Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery. Biomaterials 2018; 178:559-569. [DOI: 10.1016/j.biomaterials.2018.03.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
|
44
|
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, Dolatabadi JEN, Hamblin MR. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. APPLIED MATERIALS TODAY 2018; 12:177-190. [PMID: 30511014 PMCID: PMC6269116 DOI: 10.1016/j.apmt.2018.05.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Drug delivery systems for cancer chemotherapy are employed to improve the effectiveness and decrease the side-effects of highly toxic drugs. Most chemotherapy agents have indiscriminate cytotoxicity that affects normal, as well as cancer cells. To overcome these problems, new more efficient nanosystems for drug delivery are increasingly being investigated. Polyamidoamine (PAMAM) dendrimers are an example of a versatile and reproducible type of nanocarrier that can be loaded with drugs, and modified by attaching target-specific ligands that recognize receptors that are over-expressed on cancer cells. PAMAM dendrimers with a high density of cationic charges display electrostatic interactions with nucleic acids (DNA, siRNA, miRNA, etc.), creating dendriplexes that can preserve the nucleic acids from degradation. Dendrimers are prepared by conducting several successive "generations" of synthetic reactions so their size can be easily controlled and they have good uniformity. Dendrimers are particularly well-suited to co-delivery applications (simultaneous delivery of drugs and/or genes). In the current review, we discuss dendrimer-based targeted delivery of drugs/genes and co-delivery systems mainly for cancer therapy.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Zhou J, Mohamed Wali AR, Ma S, He Y, Yue D, Tang JZ, Gu Z. Tailoring the Supramolecular Structure of Guanidinylated Pullulan toward Enhanced Genetic Photodynamic Therapy. Biomacromolecules 2018; 19:2214-2226. [PMID: 29689167 DOI: 10.1021/acs.biomac.8b00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the progress of designing a gene carrier system, what is urgently needed is a balance of excellent safety and satisfactory efficiency. Herein, a straightforward and versatile synthesis of a cationic guanidine-decorated dendronized pullulan (OGG3P) for efficient genetic photodynamic therapy was proposed. OGG3P was able to block the mobility of DNA from a weight ratio of 2. However, G3P lacking guanidine residues could not block DNA migration until at a weight ratio of 15, revealing guanidination could facilitate DNA condensation via specific guanidinium-phosphate interactions. A zeta potential plateau (∼+23 mV) of OGG3P complexes indicated the nonionic hydrophilic hydroxyl groups in pullulan might neutralize the excessive detrimental cationic charges. There was no obvious cytotoxicity and hemolysis, but also enhancement of transfection efficiency with regard to OGG3P in comparison with that of native G3P in Hela and HEK293T cells. More importantly, we found that the uptake efficiency in Hela cells between OGG3P and G3P complexes was not markedly different. However, guanidination caused changes in uptake pathway and led to macropinocytosis pathway, which may be a crucial reason for improved transfection efficiency. After introducing a therapeutic pKillerRed-mem plasmid, OGG3P complexes achieved significantly enhanced KillerRed protein expression and ROS production under irradiation. ROS-induced cancer cells proliferation suppression was also confirmed. This study highlights the guanidine-decorated dendronized pullulan could emerge as a reliable nonviral gene carrier to specifically deliver therapeutic genes.
Collapse
Affiliation(s)
- Jie Zhou
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - Aisha Roshan Mohamed Wali
- School of Pharmacy, Faculty of Science and Engineering , University of Wolverhampton , Wulfruna Street , Wolverhampton WV1 1LY , United Kingdom
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - Yiyan He
- College of Materials Science and Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| | - Dong Yue
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China
| | - James Zhenggui Tang
- School of Pharmacy, Faculty of Science and Engineering , University of Wolverhampton , Wulfruna Street , Wolverhampton WV1 1LY , United Kingdom
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29, Wangjiang Road , Chengdu 610065 , Sichuan , People's Republic of China.,College of Materials Science and Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , People's Republic of China
| |
Collapse
|
46
|
Wang H, Miao W, Wang F, Cheng Y. A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules 2018; 19:2194-2201. [PMID: 29684275 DOI: 10.1021/acs.biomac.8b00246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The assembly of low molecular weight polymers into highly efficient and nontoxic nanostructures has broad applicability in gene delivery. In this study, we reported the assembly of coumarin-anchored low generation dendrimers in aqueous solution via hydrophobic interactions. The synthesized material showed significantly improved DNA binding and gene delivery, and minimal toxicity on the transfected cells. Moreover, the coumarin moieties in the assembled nanostructures endow the materials with light-responsive drug delivery behaviors. The coumarin substitutes in the assembled nanostructures were cross-linked with each other upon irradiation at 365 nm, and the cross-linked assemblies were degraded upon further irradiation at 254 nm. As a result, the drug-loaded nanoparticle showed a light-responsive drug release behavior and light-enhanced anticancer activity. The assembled nanoparticle also exhibited a complementary anticancer activity through the codelivery of 5-fluorouracil and a therapeutic gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study provided a facile strategy to develop light-responsive polymers for the codelivery of therapeutic genes and anticancer drugs.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| | - Wujun Miao
- Changzheng Hospital , Department of Orthopedic Oncology , Shanghai , P. R. China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| |
Collapse
|
47
|
Arisaka A, Mogaki R, Okuro K, Aida T. Caged Molecular Glues as Photoactivatable Tags for Nuclear Translocation of Guests in Living Cells. J Am Chem Soc 2018; 140:2687-2692. [DOI: 10.1021/jacs.7b13614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Akio Arisaka
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rina Mogaki
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
48
|
Han H, Chen W, Yang J, Zhang J, Li Q, Yang Y. 2-Amino-6-chloropurine-modified polyamidoamine-mediated p53 gene transfection to achieve anti-tumor efficacy. NEW J CHEM 2018. [DOI: 10.1039/c8nj01870g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modification of 2-amino-6-chloropurine on polyamidoamine was performed to synthesize a derivative, AP-PAMAM, which was then employed as a carrier for p53 gene delivery to achieve anti-tumor efficacy.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|