1
|
Tran HTT, Nisha SS, Radjef R, Nikzad M, Bjekovic R, Fox B. Recyclable and Biobased Vitrimers for Carbon Fibre-Reinforced Composites-A Review. Polymers (Basel) 2024; 16:1025. [PMID: 38674946 PMCID: PMC11054932 DOI: 10.3390/polym16081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Economic and environmental concerns over the accumulation of end-of-life carbon fibre composite waste have led to increased attention to sustainable materials with low environmental impact. Over decades of research, vitrimers, a modern class of covalent adaptable networks, have bridged the gap between thermoplastics and thermosets. With the distinguishing feature of dynamic covalent bonds, vitrimers can be rearranged and reprocessed within their existing network structures in response to external stimuli such as heat or light. This poses a unique solution to repairing damaged composites, extending their service life, and reducing post-consumer waste. However, the synthesis of vitrimers often requires petrochemical consumption, which increases their carbon footprint. Using bio-based materials could be a promising solution to reduce the reliance on petrochemicals and their related pollution. This review compiles the contemporary requirements for bio-based vitrimers regarding their properties, scalability, and recycling features. This article also presents a comprehensive overview of the pathways to produce sustainable bio-based vitrimers and an overview of promising studies showing the potential uses of bio-derived vitrimers on carbon fibre composite productions.
Collapse
Affiliation(s)
- Hoang T. T. Tran
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; (S.S.N.); (R.R.); (M.N.)
| | - Shammi Sultana Nisha
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; (S.S.N.); (R.R.); (M.N.)
| | - Racim Radjef
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; (S.S.N.); (R.R.); (M.N.)
| | - Mostafa Nikzad
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; (S.S.N.); (R.R.); (M.N.)
| | - Robert Bjekovic
- Faculty of Mechanical Engineering, University of Applied Sciences Ravensburg-Weingarten, 88250 Weingarten, Germany;
| | - Bronwyn Fox
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; (S.S.N.); (R.R.); (M.N.)
| |
Collapse
|
2
|
Huang L, Li Y, Zheng Z, Bai Y, Russell TP, He C. Flexible, transparent, and sustainable cellulose-based films for organic solar cell substrates. MATERIALS HORIZONS 2024; 11:1560-1566. [PMID: 38263927 DOI: 10.1039/d3mh01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Cellulose, often considered a highly promising substitute for petroleum-based plastics, offers several compelling advantages, including abundant availability, cost-effectiveness, environmental friendliness, and biodegradability. However, its inherent highly crystalline structure and extensive hydrogen-bonded network pose challenges for processing and recycling. In this study, we introduce the concept of cellulose vitrimers (CVs), wherein dynamic bonds are incorporated to reconfigure the hydrogen-bonded network, resulting in a mechanically robust, highly transparent material. CVs exhibit exceptional malleability, thermal stability, and noteworthy resistance to water and solvents. Due to the dynamic bond disassociation, CVs can be effectively chemically recycled using a well-established "dissolution-and-reforming" process. Moreover, CVs have proven successful as flexible substrate materials for organic solar cells, outperforming traditional petroleum-based polyethylene naphthalate (PEN). Given these advantages, CVs have the potential to replace conventional petroleum-based materials as recyclable and environmentally friendly alternatives, particularly within the realm of electronic devices and displays.
Collapse
Affiliation(s)
- Lewen Huang
- School of Chemistry and Chemical Engineering, Gannan Normal University, 341000, Ganzhou, China.
| | - Yibao Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, 341000, Ganzhou, China.
| | - Zhong Zheng
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yun Bai
- School of Chemistry and Chemical Engineering, Gannan Normal University, 341000, Ganzhou, China.
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Changfei He
- School of Chemistry and Chemical Engineering, Gannan Normal University, 341000, Ganzhou, China.
| |
Collapse
|
3
|
Han T, Ju B, Zhang S. Catalyst-free readily dual-recyclable acetal-based covalent adaptable cellulose networks. Int J Biol Macromol 2024; 261:129563. [PMID: 38278382 DOI: 10.1016/j.ijbiomac.2024.129563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Despite covalent adaptable networks (CANs) imparting the favorable features of crosslinked polymers, as well as the functionality of reprocessing, reshaping and welding, due to exchange reaction enabled topology changes; it is still a huge challenge to design catalyst-free, fast reprocessing, controlled degradation and polymer recyclable biomass base CANs. Herein, for the first time, acetal-based covalent adaptable cellulose networks (ACCs) were utilized to synthesize readily reconstructable cellulose-based thermosets with mechanical tunability. ACCs were synthesized via catalyst-free "click" addition of cellulose and divinyl ether without releasing small molecule byproducts. Different crosslinking densities and crosslinkers were used to explore the structure-property relationship, the mechanical and thermal properties of the ACCs were strongly influenced by these factors. ACCs can obtain enhanced tensile strength or elongation at break by changing the structure of the crosslinker. Furthermore, the reworking, welding and shape memory properties of these ACCs, based on the dynamic exchange reaction of acetal bonds, were investigated. In addition, these ACCs can be degraded under acidic conditions, and closed-loop utilization of polymer was possible. Thus, ACCs can be mechanically and chemically double-cycled, which will contribute to solving the white pollution problem and resource waste as a new class of sustainable plastics.
Collapse
Affiliation(s)
- Tengfei Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Liu ZX, Yang HB, Han ZM, Sun WB, Ge XX, Huang JM, Yang KP, Li DH, Guan QF, Yu SH. A Bioinspired Gradient Design Strategy for Cellulose-Based Electromagnetic Wave Absorbing Structural Materials. NANO LETTERS 2024; 24:881-889. [PMID: 38198246 DOI: 10.1021/acs.nanolett.3c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cellulose nanofiber (CNF) possesses excellent intrinsic properties, and many CNF-based high-performance structural and functional materials have been developed recently. However, the coordination of the mechanical properties and functionality is still a considerable challenge. Here, a CNF-based structural material is developed by a bioinspired gradient structure design using hollow magnetite nanoparticles and the phosphorylation-modified CNF as building blocks, which simultaneously achieves a superior mechanical performance and electromagnetic wave absorption (EMA) ability. Benefiting from the gradient design, the flexural strength of the structural material reached ∼205 MPa. Meanwhile, gradient design improves impedance matching, contributing to the high EMA ability (-59.5 dB) and wide effective absorption width (5.20 GHz). Besides, a low coefficient of thermal expansion and stable storage modulus was demonstrated as the temperature changes. The excellent mechanical, thermal, and EMA performance exhibited great potential for application in stealth equipment and electromagnetic interference protecting electronic packaging materials.
Collapse
Affiliation(s)
- Zhao-Xiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Bin Yang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Meng Han
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Bin Sun
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xing-Xiang Ge
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Ming Huang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Kun-Peng Yang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - De-Han Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Fang Guan
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Stouten J, Cao H, Pich A, Bernaerts KV. Renewable and Functional Latexes Synthesized by Polymerization-Induced Self-Assembly for UV-Curable Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37927076 PMCID: PMC10658448 DOI: 10.1021/acsami.3c11657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
After the development of polymer coatings and films based on renewable resources, there remains a challenge of combining the advantages of water-borne acrylic latexes with the excellent physical properties of cross-linked solvent-borne coatings. After polymerization, the renewable 4-oxocyclopentenyl acrylate (4CPA) is capable of undergoing photocyclodimerization under UV light, yielding a cross-linked polyacrylate. In this work, we investigate the polymerization-induced self-assembly (PISA) of 4CPA with several renewable acrylic monomers in the presence of a macro-RAFT agent. The produced latexes have a small particle size, good colloidal stability, and are free of volatile organic compounds. After film formation and UV curing, flexible to rigid films can be obtained depending on the monomer composition and UV irradiation time. The cross-linked films show promise as oil and water barriers in paper coating applications. This work outlines the development and application of renewable and functional cross-linkable latexes synthesized by PISA.
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Huixing Cao
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Andrij Pich
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- DWI
Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Katrien V. Bernaerts
- Aachen-Maastricht
Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
6
|
Fan X, Wang L, Feng S, Li L. Bio-Based Vitrimeric Silicone Materials with High-Strength, Reprocessable, Healing, and Transparent Properties. Macromol Rapid Commun 2023; 44:e2300445. [PMID: 37706341 DOI: 10.1002/marc.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Indexed: 09/15/2023]
Abstract
Developing reprocessable polymeric materials from earth-abundant elements and renewable biomass is attractive for dealing with fossil resource crisis and achieving sustainable development. Based on the unique reactivity of biomass-derived gluconolactone, polydimethylsiloxane (PDMS) terminated with glucosamide groups is synthesized and used for preparing a series of silicone boronic ester based vitrimers. The whole preparation process is quite straightforward without any purification required and highly efficient with water as the only byproduct. The mechanical properties of obtained vitrimers can be precisely controlled by adjusting the content of 1,4-benzenediboronic acid or the molecular weight of PDMS precursor, producing boronic ester based vitrimers ranging from soft elastomers to rigid plastics. The obtained vitrimers exhibit excellent thermal stability, robust reprocessability, and efficient healing capacity. By encapsulating green-emitting CsPbBr3 nanocrystals, these materials are fabricated into hydrophobic, transparent, and luminescent coatings, promising for applications in flexible optical devices.
Collapse
Affiliation(s)
- Xuexuan Fan
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Advanced Silicone Materials and Technology, Shandong University, Jinan, 250100, China
| | - Linlin Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Advanced Silicone Materials and Technology, Shandong University, Jinan, 250100, China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Advanced Silicone Materials and Technology, Shandong University, Jinan, 250100, China
| | - Lei Li
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shandong Key Laboratory of Advanced Silicone Materials and Technology, Shandong University, Jinan, 250100, China
| |
Collapse
|
7
|
Prasad A, Varshney V, Nepal D, Frank GJ. Bioinspired Design Rules from Highly Mineralized Natural Composites for Two-Dimensional Composite Design. Biomimetics (Basel) 2023; 8:500. [PMID: 37887631 PMCID: PMC10604232 DOI: 10.3390/biomimetics8060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Discoveries of two-dimensional (2D) materials, exemplified by the recent entry of MXene, have ushered in a new era of multifunctional materials for applications from electronics to biomedical sensors due to their superior combination of mechanical, chemical, and electrical properties. MXene, for example, can be designed for specialized applications using a plethora of element combinations and surface termination layers, making them attractive for highly optimized multifunctional composites. Although multiple critical engineering applications demand that such composites balance specialized functions with mechanical demands, the current knowledge of the mechanical performance and optimized traits necessary for such composite design is severely limited. In response to this pressing need, this paper critically reviews structure-function connections for highly mineralized 2D natural composites, such as nacre and exoskeletal of windowpane oysters, to extract fundamental bioinspired design principles that provide pathways for multifunctional 2D-based engineered systems. This paper highlights key bioinspired design features, including controlling flake geometry, enhancing interface interlocks, and utilizing polymer interphases, to address the limitations of the current design. Challenges in processing, such as flake size control and incorporating interlocking mechanisms of tablet stitching and nanotube forest, are discussed along with alternative potential solutions, such as roughened interfaces and surface waviness. Finally, this paper discusses future perspectives and opportunities, including bridging the gap between theory and practice with multiscale modeling and machine learning design approaches. Overall, this review underscores the potential of bioinspired design for engineered 2D composites while acknowledging the complexities involved and providing valuable insights for researchers and engineers in this rapidly evolving field.
Collapse
Affiliation(s)
- Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Vikas Varshney
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
| | - Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
| | - Geoffrey J. Frank
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
- University of Dayton Research Institute, Dayton, OH 45469, USA
| |
Collapse
|
8
|
Aguirre M, Ballard N, Gonzalez E, Hamzehlou S, Sardon H, Calderon M, Paulis M, Tomovska R, Dupin D, Bean RH, Long TE, Leiza JR, Asua JM. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. Macromolecules 2023; 56:2579-2607. [PMID: 37066026 PMCID: PMC10101531 DOI: 10.1021/acs.macromol.3c00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Indexed: 04/18/2023]
Abstract
Polymer colloids are complex materials that have the potential to be used in a vast array of applications. One of the main reasons for their continued growth in commercial use is the water-based emulsion polymerization process through which they are generally synthesized. This technique is not only highly efficient from an industrial point of view but also extremely versatile and permits the large-scale production of colloidal particles with controllable properties. In this perspective, we seek to highlight the central challenges in the synthesis and use of polymer colloids, with respect to both existing and emerging applications. We first address the challenges in the current production and application of polymer colloids, with a particular focus on the transition toward sustainable feedstocks and reduced environmental impact in their primary commercial applications. Later, we highlight the features that allow novel polymer colloids to be designed and applied in emerging application areas. Finally, we present recent approaches that have used the unique colloidal nature in unconventional processing techniques.
Collapse
Affiliation(s)
- Miren Aguirre
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Nicholas Ballard
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Edurne Gonzalez
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Shaghayegh Hamzehlou
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Haritz Sardon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderon
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Maria Paulis
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - Radmila Tomovska
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Damien Dupin
- CIDETEC,
Parque Científico y Tecnológico de Gipuzkoa, P° Miramón 196, 20014 Donostia-San Sebastian, Spain
| | - Ren H. Bean
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Timothy E. Long
- Biodesign
Institute, Center for Sustainable Macromolecular Materials and Manufacturing
(SM3), School of Molecular Sciences, Arizona
State University, Tempe, Arizona 85281, United States
| | - Jose R. Leiza
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| | - José M. Asua
- POLYMAT,
Kimika Fakultatea, University of the Basque
Country UPV/EHU, Joxe Mari Korta Zentroa, Tolosa Hiribidea 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
9
|
Nicolas M, Serghei A, Lucas C, Beyou E, Fumagalli M. Grafting of polyamines onto periodate oxidized nanocellulose, and its application to the fabrication of ionic nanopapers. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Kumar A, Connal LA. Biobased Transesterification Vitrimers. Macromol Rapid Commun 2023; 44:e2200892. [PMID: 36661130 DOI: 10.1002/marc.202200892] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Indexed: 01/21/2023]
Abstract
The rapid increase in the use of plastics and the related sustainability issues, including the depletion of global petroleum reserves, have rightly sparked interest in the use of biobased polymer feedstocks. Thermosets cannot be remolded, processed, or recycled, and hence cannot be reused because of their permanent molecular architecture. Vitrimers have emerged as a novel polymer family capable of bridging the difference between thermoplastic and thermosets. Vitrimers enable unique recycling strategies, however, it is still important to understand where the raw material feedstocks originate from. Transesterification vitrimers derived from renewable resources are a massive opportunity, however, limited research has been conducted in this specific family of vitrimers. This review article provides a comprehensive overview of transesterification vitrimers produced from biobased monomers. The focus is on the biomass structural suitability with dynamic covalent chemistry, as well as the viability of the synthetic methods.
Collapse
Affiliation(s)
- Ashwani Kumar
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | - Luke A Connal
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
11
|
de Souza G, Belgacem MN, Gandini A, Carvalho AJF. Synthesis and characterization of nanofibrilated cellulose films modified with blocked isocyanates in aqueous media and their barrier properties to water vapor and oxygen. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
12
|
Fully rosin-based epoxy vitrimers with high mechanical and thermostability properties, thermo-healing and closed-loop recycling. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Krishna Kumar B, Dickens TJ. Dynamic bond exchangeable thermoset vitrimers in 3D‐printing. J Appl Polym Sci 2022. [DOI: 10.1002/app.53304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Balaji Krishna Kumar
- Department of Industrial & Manufacturing Engineering High‐Performance Materials Institute, FAMU‐FSU College of Engineering Tallahassee Florida USA
| | - Tarik J. Dickens
- Department of Industrial & Manufacturing Engineering High‐Performance Materials Institute, FAMU‐FSU College of Engineering Tallahassee Florida USA
| |
Collapse
|
14
|
Rashid MA, Liu W, Wei Y, Jiang Q. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2080559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Muhammad Abdur Rashid
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Wanshuang Liu
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Yi Wei
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
15
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
16
|
Liu YB, Peng LM, Bao RY, Yang MB, Yang W. Vitrimeric Polylactide by Two-step Alcoholysis and Transesterification during Reactive Processing for Enhanced Melt Strength. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45966-45977. [PMID: 36166428 DOI: 10.1021/acsami.2c15595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Because of its rather low melt strength, polylactide (PLA) has yet to fulfill its promise as advanced biobased and biodegradable foams to replace fossil-based polymer foams. In this work, PLA vitrimers were prepared by two-step reactive processing from commercial PLA thermoplastics, glycerol, and diphenylmethane diisocyanate (MDI) using Zn(II)-catalyzed addition and transesterification chemistry. The transesterification reaction of PLA and glycerol occurs with zinc acetate as the catalyst, and chain scission will take place due to the alcoholysis of the PLA chains by the free hydroxyl groups from the glycerol. Long-chain PLA with hydroxyl groups can be obtained and then cross-linked with MDI. Rheological analysis shows that the formed cross-linked network can significantly improve melt strength and promote strain hardening under extensional flow. PLA vitrimers still maintain the ability of thermoplastic processing via extrusion and compression. The enhanced melt strength and the rearrangement of network topology facilitate the foaming processing. An expansion ratio as large as 49.2-fold and microcellular foam with a uniform cell morphology can be obtained for PLA vitrimers with a gel fraction of 51.8% through a supercritical carbon dioxide foaming technique. This work provides a new way with the scale-up possibility to enhance the melt strength of PLA, and the broadened range of PLA applicability brought by PLA vitrimers is truly valuable in terms of the realization of a sustainable society.
Collapse
Affiliation(s)
- Yong-Bo Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Li-Mei Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
17
|
Weerathaworn S, Abetz V. Tailor‐made Vinylogous Urethane Vitrimers Based on Binary and Ternary Block and Random Copolymers: An Approach toward Reprocessable Materials. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siraphat Weerathaworn
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
| | - Volker Abetz
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany
- Institute of Membrane Research Helmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 21502 Geesthacht Germany
| |
Collapse
|
18
|
Chappuis S, Edera P, Cloitre M, Tournilhac F. Enriching an Exchangeable Network with One of Its Components: The Key to High- Tg Epoxy Vitrimers with Accelerated Relaxation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sélène Chappuis
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| | - Paolo Edera
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| | - Michel Cloitre
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| | - François Tournilhac
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
19
|
Lucherelli MA, Duval A, Avérous L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Aoki D, Lossada F, Hoenders D, Ajiro H, Walther A. Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane. Biomacromolecules 2022; 23:1693-1702. [PMID: 35362317 DOI: 10.1021/acs.biomac.1c01625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellulose nanofibrils (CNFs) have attracted attention as building blocks for sustainable materials owing to their high performance and the advantages of their abundant natural resources. Bioinspired CNF/polymer nanocomposites, consisting of a soft polymer phase and a high fraction (>50 wt %) of CNF reinforcement, have been focused on excellent mechanical properties, including Young's modulus, mechanical strength, and toughness, mimicking the energy dissipation system in nature. However, efficient softening and toughening with a small amount of the soft phase is still a challenge because a large amount of the polymer phase (nearly 50%) is still required to provide ductility and toughness. Here, we describe a topological strategy in the polymer phase for efficient toughening of bioinspired CNF nanocomposites with a water-soluble comb polyurethane (PU). The comb PU provided higher elongation at break and more efficient flexibility for the nanocomposite than the linear PU, even at a small content. Moreover, CNF nanocomposites with 30 wt % of PU content and tetrabutylammonium as bulky counterions showed enhanced toughness (180% higher) and strain at break (250% higher) when compared to pure CNF due to the promotion of slippage between nanofibrils. Scanning electron microscopy (SEM) images of the fracture surface for CNF/comb PU nanocomposites displayed the pull-out of mesoscale layers and nanofibrils, supporting that the comb topology promotes the slippage between fibrils. Furthermore, the rheological study revealed that the comb PU has an entanglement plateau modulus lower than linear PU by 1 order of magnitude, related to the loosened entanglements. Our study establishes an efficient softening and toughening strategy while using small amounts of polymer phase addition, promoting interfibrillar slippage with the loosely entangled comb PU phase.
Collapse
Affiliation(s)
- Daisuke Aoki
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Francisco Lossada
- Department of Chemistry, A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Material Systems, 55128 Mainz, Germany
| | - Daniel Hoenders
- Department of Chemistry, A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Material Systems, 55128 Mainz, Germany
| | - Hiroharu Ajiro
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Andreas Walther
- Department of Chemistry, A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Material Systems, 55128 Mainz, Germany
| |
Collapse
|
21
|
Silva RD, Carvalho LT, Moraes RM, Medeiros SDF, Lacerda TM. Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rodrigo Duarte Silva
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentation Rua XV de Novembro 1452 São Carlos SP 13560‐970 Brazil
| | - Layde Teixeira Carvalho
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Rodolfo Minto Moraes
- Department of Material Engineering Engineering School of Lorena University of São Paulo, (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Simone de Fátima Medeiros
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| |
Collapse
|
22
|
Li C, Chen Y, Zeng Y, Wu Y, Liu W, Qiu R. Strong and recyclable soybean oil-based epoxy adhesives based on dynamic borate. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
24
|
Water-resistant nanopaper with tunable water barrier and mechanical properties from assembled complexes of oppositely charged cellulosic nanomaterials. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Guo X, Gao F, Chen F, Zhong J, Shen L, Lin C, Lin Y. Dynamic Enamine-one Bond Based Vitrimer via Amino-yne Click Reaction. ACS Macro Lett 2021; 10:1186-1190. [PMID: 35549045 DOI: 10.1021/acsmacrolett.1c00550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we report the fabrication of a dynamic enamine-one bond based vitrimer through amino-yne click chemistry. In contrast to amine-acetoacetate condensation, the amino-yne click reaction yields a dynamic enamine-one motif that is composed of cis/trans (3:1) isomers and has a relatively lower activation energy (35 ± 3 kJ/mol vs 59 ± 6 kJ/mol), owing to the absence of a methyl substituent. The resulting vitrimer network has superior mechanical properties and faster dynamic exchange than that of a reference vitrimer derived from amine-acetoacetate condensation, and they are attributed to the fewer network defects and the less sterically hindered exchange reaction, respectively. Lastly, the efficient amino-yne click reaction is demonstrated to be compatible with the secondary-amine substrate, which has a low reactivity toward the amine-acetoacetate condensation. The efficient and side product-free amino-yne reaction offers a powerful chemical tool for vitrimer fabrication and is potentially desirable for sealing and adhesion applications.
Collapse
Affiliation(s)
- Xinru Guo
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Fengbiao Chen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Jiang Zhong
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Cong Lin
- Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science &Technology Normal University, Nanchang, Jiangxi 330013, P. R. China
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Zhao P, Wang L, Xie L, Wang W, Wang L, Zhang C, Li L, Feng S. Mechanically Strong, Autonomous Self-Healing, and Fully Recyclable Silicone Coordination Elastomers with Unique Photoluminescent Properties. Macromol Rapid Commun 2021; 42:e2100519. [PMID: 34587305 DOI: 10.1002/marc.202100519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/17/2021] [Indexed: 12/19/2022]
Abstract
The combination of excellent mechanical performances, high reprocess efficiency, and wide-range tunability for functional dynamic siloxane materials is a challenging subject. Herein, the fabrication of mechanically strong, autonomous self-healing, and fully recyclable silicone elastomers with unique photoluminescent properties by coordination of poly(dimethylsiloxane) (PDMS) containing coordination bonding motifs with Zn2+ ions is reported. Salicylaldimine groups, which are introduced into the polysiloxane backbone via mild Schiff-base reaction, coordinate with zinc ions to form elastomeric networks The obtained supramolecular elastomers have excellent mechanical properties, with the optimized tensile strength up to 10.0 MPa, which is unprecedented among the reported thermoplastic polysiloxane-based elastomers. Both mechanical properties and stress relaxation kinetics are tunable via adjusting the length of PDMS segments or the molar ratio of metal versus salicylaldimine. Furthermore, these elastomers can be conveniently healed and recycled to regain their original mechanical properties and integrity under mild conditions. In addition, this new kind of polysiloxane also exhibits coordination-enhanced fluorescence, showing great promise for preparing photoluminescent elastomers or coatings.
Collapse
Affiliation(s)
- Peijian Zhao
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Linlin Wang
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.,Weihai New Era Chemical Co., Ltd., Weihai, 264205, P. R. China
| | - Lefu Xie
- Weihai New Era Chemical Co., Ltd., Weihai, 264205, P. R. China
| | - Wenyu Wang
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lili Wang
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Changqiao Zhang
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lei Li
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.,Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
27
|
Preparation of butadiene-bridged polymethylsiloxane (BBPMS)/ethyl cellulose (EC) hybrid membranes for gas separation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Lorwanishpaisarn N, Kasemsiri P, Srikhao N, Son C, Kim S, Theerakulpisut S, Chindaprasirt P. Carbon fiber/epoxy vitrimer composite patch cured with bio‐based curing agents for one‐step repair metallic sheet and its recyclability. J Appl Polym Sci 2021. [DOI: 10.1002/app.51406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Narubeth Lorwanishpaisarn
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering Khon Kaen University Khon Kaen Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering Khon Kaen University Khon Kaen Thailand
| | - Natwat Srikhao
- Sustainable Infrastructure Research and Development Center and Department of Chemical Engineering, Faculty of Engineering Khon Kaen University Khon Kaen Thailand
| | - Changhee Son
- Department of Mechanical Engineering Pohang University of Science and Technology Gyeongbuk South Korea
| | - Seok Kim
- Department of Mechanical Engineering Pohang University of Science and Technology Gyeongbuk South Korea
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering Khon Kaen University Khon Kaen Thailand
| | - Prinya Chindaprasirt
- Sustainable Infrastructure Research and Development Center and Department of Civil Engineering, Faculty of Engineering Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
29
|
Marquez-Bravo S, Doench I, Molina P, Bentley FE, Tamo AK, Passieux R, Lossada F, David L, Osorio-Madrazo A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers (Basel) 2021; 13:polym13101563. [PMID: 34068136 PMCID: PMC8152965 DOI: 10.3390/polym13101563] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic-basic-neutralization-stretching-drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young's modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m-3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.
Collapse
Affiliation(s)
- Sofia Marquez-Bravo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Pamela Molina
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Flor Estefany Bentley
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Renaud Passieux
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | | | - Laurent David
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-67363
| |
Collapse
|
30
|
Lossada F, Jiao D, Hoenders D, Walther A. Recyclable and Light-Adaptive Vitrimer-Based Nacre-Mimetic Nanocomposites. ACS NANO 2021; 15:5043-5055. [PMID: 33630585 DOI: 10.1021/acsnano.0c10001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nacre's natural design consists of a perfect hierarchical assembly that resembles a brick-and-mortar structure with synergistic stiffness and toughness. The field of bioinspired materials often provides attractive architecture and engineering pathways which allow to explore outstanding property areas. However, the study of nacre-mimetic materials should not be limited to the design of its architecture but ought to include the understanding, operation, and improvement of internal interactions between their components. Here, we introduce a vitrimer prepolymer system that, once integrated into the nacre-mimetic nanocomposites, cures and cross-links with the presence of Lewis acid catalyst and further manifests associative dynamic exchange reactions. Bond exchanges are controllable by molecular composition and catalyst content and characterized by creep, shear-lag, and shape-locking tests. We exploit the vitrimer properties by laminating ca. 70 films into thick bulk materials, and characterize the flexural resistance and crack propagation. More importantly, we introduce recycling by grinding and hot-pressing. The recycling for highly reinforced nacre-mimetic nanocomposites is critically enabled by the vitrimer chemistry and improves the sustainability of bioinspired nanocomposites in cyclic economy. Finally, we integrate photothermal converters into the structures and use laser irradiation as external trigger to activate the vitrimer exchange reactions.
Collapse
Affiliation(s)
- Francisco Lossada
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dejin Jiao
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Daniel Hoenders
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Walther
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Cluster of Excellence livMatS at FIT, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
31
|
Jiao D, Lossada F, Guo J, Skarsetz O, Hoenders D, Liu J, Walther A. Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nat Commun 2021; 12:1312. [PMID: 33637751 PMCID: PMC7910463 DOI: 10.1038/s41467-021-21599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Nature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics.
Collapse
Affiliation(s)
- Dejin Jiao
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Francisco Lossada
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Jiaqi Guo
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Oliver Skarsetz
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Daniel Hoenders
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Jin Liu
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany.
- Freiburg Materials Research Center, University of Freiburg, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
- A3BMS Lab, Department of Chemistry, University of Mainz, Mainz, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery. SUSTAINABILITY 2021. [DOI: 10.3390/su13031160] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Composite materials, such as carbon fibre reinforced epoxies, provide more efficient structures than conventional materials through light-weighting, but the associated high energy demand during production can be extremely detrimental to the environment. Biocomposites are an emerging material class with the potential to reduce a product’s through-life environmental impact relative to wholly synthetic composites. As with most materials, there are challenges and opportunities with the adoption of biocomposites at the each stage of the life cycle. Life Cycle Engineering is a readily available tool enabling the qualification of a product’s performance, and environmental and financial impact, which can be incorporated in the conceptual development phase. Designers and engineers are beginning to actively include the environment in their workflow, allowing them to play a significant role in future sustainability strategies. This review will introduce Life Cycle Engineering and outline how the concept can offer support in the Design for the Environment, followed by a discussion of the advantages and disadvantages of biocomposites throughout their life cycle.
Collapse
|
33
|
Taplan C, Guerre M, Bowman CN, Du Prez FE. Surface Modification of (Non)-Fluorinated Vitrimers through Dynamic Transamination. Macromol Rapid Commun 2020; 42:e2000644. [PMID: 33368753 DOI: 10.1002/marc.202000644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Indexed: 11/07/2022]
Abstract
Surface modifications are typically permanent in shape and chemistry. Herein, vinylogous urethane (VU) chemistry is presented as an easily accessible and versatile platform for rapid, facile, and reworkable surface modification. It is demonstrated that both physical and chemical post-modification of permanent, yet dynamic elastic polymer networks are achieved. Surface patterns with high regularity are created, both via a straightforward replication process using a polydimethylsiloxane stamp (resolution ca. 10-100 µm) as well as using thermally activated nano-imprint lithography (NIL) to form hole, pillar, or line patterns (ca. 300 nm) in elastic VU-based vitrimers. The tunable, rapid exchange allows patterning at 130 °C in less than 15 min, resulting in an increased water contact angle and surface-structure induced light reflection. Moreover, it is also demonstrated that the use of a single dynamic covalent chemistry makes it possible to strongly adhere to fluorinated and non-fluorinated materials based on incompatible matrices, causing cohesive failure in a peel test. In a topography scan, the visibly transparent interface is shown to possess a continuous phase without a gap, while maintaining distinctively separated (non)-fluorinated domains. Finally, this approach allowed for a straightforward coating of a non-fluorinated material with a fluorinated monomer to minimize the overall fluorinated content.
Collapse
Affiliation(s)
- Christian Taplan
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Marc Guerre
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium.,Laboratoire des IMRCP, Université de Toulouse, CNRS UMR5623, Université Paul Sabatier, 118 route de Narbonne, Toulouse, 31062 Cedex 9, France
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, CO, 80309-0596, USA
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| |
Collapse
|
34
|
Lossada F, Hoenders D, Guo J, Jiao D, Walther A. Self-Assembled Bioinspired Nanocomposites. Acc Chem Res 2020; 53:2622-2635. [PMID: 32991139 DOI: 10.1021/acs.accounts.0c00448] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioinspired materials engineering impacts the design of advanced functional materials across many domains of sciences from wetting behavior to optical and mechanical materials. In all cases, the advances in understanding how biology uses hierarchical design to create failure and defect-tolerant materials with emergent properties lays the groundwork for engaging into these topics. Biological mechanical materials are particularly inspiring for their unique combinations of stiffness, strength, and toughness together with lightweightness, as assembled and grown in water from a limited set of building blocks at room temperature. Wood, nacre, crustacean cuticles, and spider silk serve as some examples, where the correct arrangement of constituents and balanced molecular energy dissipation mechanisms allows overcoming the shortcomings of the individual components and leads to synergistic materials performance beyond additive behavior. They constitute a paradigm for future structural materials engineering-in the formation process, the use of sustainable building blocks and energy-efficient pathways, as well as in the property profiles-that will in the long term allow for new classes of high-performance and lightweight structural materials needed to promote energy efficiency in mobile technologies.This Account summarizes our efforts of the past decade with respect to designing self-assembling bioinspired materials aiming for both mechanical high-performance structures and new types of multifunctional property profiles. The Account is set out to first give a definition of bioinspired nanocomposite materials and self-assembly therein, followed by an in-depth discussion on the understanding of mechanical performance and rational design to increase the mechanical performance. We place a particular emphasis on materials formed at high fractions of reinforcements and with tailor-made functional polymers using self-assembly to create highly ordered structures and elucidate in detail how the soft polymer phase needs to be designed in terms of thermomechanical properties and sacrificial supramolecular bonds. We focus on nanoscale reinforcements such as nanoclay and nanocellulose that lead to high contents of internal interfaces and intercalated polymer layers that experience nanoconfinement. Both aspects add fundamental challenges for macromolecular design of soft phases using precision polymer synthesis. We build upon those design criteria and further develop the concepts of adaptive bioinspired nanocomposites, whose properties are switchable from the outside using molecularly defined triggers with light. In a last section, we discuss how new types of functional properties, in particular flexible and transparent gas barrier materials or fire barrier materials, can be reached on the basis of the bioinspired nanocomposite design strategies. Additionally, we show new types of self-assembled photonic materials that can even be evolved into self-assembling lasers, hence moving the concept of mechanical nanocomposite design to other functionalities.The comparative discussion of different bioinspired nanocomposite architectures with nematic, fibrillar, and cholesteric structures, as based on different reinforcing nanoparticles, aims for a unified understanding of the design principles and shall aid researchers in the field in the more elaborate design of future bioinspired nanocomposite materials based on molecular control principles. We conclude by addressing challenges, in particular also the need for a transfer from fundamental molecular materials science into scalable engineering materials of technological and societal relevance.
Collapse
Affiliation(s)
- Francisco Lossada
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Daniel Hoenders
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Jiaqi Guo
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Dejin Jiao
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Cluster of Excellence livMatS@FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
35
|
Chen F, Xiang W, Sawada D, Bai L, Hummel M, Sixta H, Budtova T. Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength. ACS NANO 2020; 14:11150-11159. [PMID: 32804482 DOI: 10.1021/acsnano.0c02302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellulose nanopaper is a strong lightweight material made from renewable resources with a wide range of potential applications, from membranes to electronic displays. Most studies on nanopaper target high mechanical strength, which compromises ductility and toughness. Herein, we demonstrate the fabrication of highly ductile and tough cellulose nanopaper via mechanical fibrillation of hemicellulose-rich wood fibers and dispersion of the obtained cellulose nanofibrils (CNFs) in an ionic liquid (IL)-water mixture. This treatment allows hemicellulose swelling, which leads to dissociation of CNF bundles into highly disordered long flexible fibrils and the formation of a nanonetwork as supported by cryogenic transmission electron microscopy (cryo-TEM) imaging. Rheology of the suspensions shows a 300-fold increase in storage and loss moduli of CNF-IL-water suspensions, compared to their CNF-water counterparts. The nanopaper prepared by removing the IL-water shows a combination of large elongation (up to 35%), high strength (260 MPa), and toughness as high as 51 MJ/m3, because of efficient interfibrillar slippage and energy dissipation in the highly disordered isotropic structure. This work provides a nanostructure-engineered strategy of making ductile and tough cellulose nanopaper.
Collapse
Affiliation(s)
- Feng Chen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300, FI-00076 Espoo, Finland
| | - Wenchao Xiang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300, FI-00076 Espoo, Finland
| | - Daisuke Sawada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300, FI-00076 Espoo, Finland
| | - Long Bai
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300, FI-00076 Espoo, Finland
| | - Michael Hummel
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300, FI-00076 Espoo, Finland
| | - Herbert Sixta
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300, FI-00076 Espoo, Finland
| | - Tatiana Budtova
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300, FI-00076 Espoo, Finland
- Center for Materials Forming-CEMEF, MINES ParisTech, PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia, Antipolis, France
| |
Collapse
|
36
|
Lossada F, Abbasoglu T, Jiao D, Hoenders D, Walther A. Glass Transition Temperature Regulates Mechanical Performance in Nacre‐Mimetic Nanocomposites. Macromol Rapid Commun 2020; 41:e2000380. [DOI: 10.1002/marc.202000380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/26/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Francisco Lossada
- A 3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry University of Freiburg Stefan‐Meier‐Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan‐Meier‐Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Tansu Abbasoglu
- A 3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry University of Freiburg Stefan‐Meier‐Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan‐Meier‐Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Dejin Jiao
- A 3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry University of Freiburg Stefan‐Meier‐Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan‐Meier‐Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Daniel Hoenders
- A 3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry University of Freiburg Stefan‐Meier‐Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan‐Meier‐Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
| | - Andreas Walther
- A 3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry University of Freiburg Stefan‐Meier‐Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan‐Meier‐Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges‐Köhler‐Allee 105 79110 Freiburg Germany
- Cluster of Excellence Living, Adaptive and Energy‐Autonomous Materials Systems (livMatS) at FIT University of Freiburg Georges‐Köhler‐Allee 105 D‐79110 Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS) University of Freiburg Albertstr. 19 79104 Freiburg Germany
| |
Collapse
|
37
|
Alabiso W, Schlögl S. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications. Polymers (Basel) 2020; 12:E1660. [PMID: 32722554 PMCID: PMC7465221 DOI: 10.3390/polym12081660] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Thermosets are known to be very reliable polymeric materials for high-performance and light-weight applications, due to their retained dimensional stability, chemical inertia and rigidity over a broad range of temperatures. However, once fully cured, they cannot be easily reshaped or reprocessed, thus leaving still unsolved the issues of recycling and the lack of technological flexibility. Vitrimers, introduced by Leibler et al. in 2011, are a valiant step in the direction of bridging the chasm between thermoplastics and thermosets. Owing to their dynamic covalent networks, they can retain mechanical stability and solvent resistance, but can also flow on demand upon heating. More generally, the family of Covalent Adaptable Networks (CANs) is gleaming with astounding potential, thanks to the huge variety of chemistries that may enable bond exchange. Arising from this signature feature, intriguing properties such as self-healing, recyclability and weldability may expand the horizons for thermosets in terms of improved life-span, sustainability and overall enhanced functionality and versatility. In this review, we present a comprehensive overview of the most promising studies featuring CANs and vitrimers specifically, with particular regard for their industrial applications. Investigations into composites and sustainable vitrimers from epoxy-based and elastomeric networks are covered in detail.
Collapse
|
38
|
Jiao D, Guo J, Lossada F, Hoenders D, Groeer S, Walther A. Hierarchical cross-linking for synergetic toughening in crustacean-mimetic nanocomposites. NANOSCALE 2020; 12:12958-12969. [PMID: 32525166 DOI: 10.1039/d0nr02228d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The twisted plywood structure as found in crustacean shells possesses excellent mechanical properties with high stiffness and toughness. Synthetic mimics can be produced by evaporation-induced self-assembly of cellulose nanocrystals (CNCs) with polymer components into bulk films with a cholesteric liquid crystal structure. However, these are often excessively brittle and it has remained challenging to make materials combining high stiffness and toughness. Here, we describe self-assembling cholesteric CNC/polymer nanocomposites with a crustacean-mimetic structure and tunable photonic band gap, in which we engineer combinations of thermo-activated covalent and supramolecular hydrogen-bonded crosslinks to tailor the energy dissipation properties by precise molecular design. Toughening occurs upon increasing the polymer fractions in the nanocomposites, and, critically, combinations of both molecular bonding mechanisms lead to a considerable synergetic increase of stiffness and toughness - beyond the common rule of mixtures. Our concept following careful molecular design allows one to enter previously unreached areas of mechanical property charts for cholesteric CNC-based nanocomposites. The study shows that the subtle engineering of molecular energy dissipation units using sophisticated chemical approaches enables efficient enhancing of the properties of bioinspired CNC/polymer nanocomposites, and opens the design space for future molecular enhancement using tailor-made interactions.
Collapse
Affiliation(s)
- Dejin Jiao
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, University of Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Hayashi M. Implantation of Recyclability and Healability into Cross-Linked Commercial Polymers by Applying the Vitrimer Concept. Polymers (Basel) 2020; 12:E1322. [PMID: 32531918 PMCID: PMC7362076 DOI: 10.3390/polym12061322] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
Vitrimers are a new class of cross-linked materials that are capable of network topology alternation through the associative dynamic bond-exchange mechanism, which has recently been invented to solve the problem of conventional cross-linked materials, such as poor recyclability and healability. Thus far, the concept of vitrimers has been applied to various commercial polymers, e.g., polyesters, polylactides, polycarbonates, polydimethylsiloxanes, polydienes, polyurethanes, polyolefins, poly(meth)acrylates, and polystyrenes, by utilizing different compatible bond-exchange reactions. In this review article, the concept of vitrimers is described by clarifying the difference from thermoplastics and supramolecular systems; in addition, the term "associative bond-exchange" in vitrimers is explained by comparison with the "dissociative" term. Several useful functions attained by the vitrimer concept (including recyclability and healability) are demonstrated, and recent molecular designs of vitrimers are classified into groups depending on the types of molecular frameworks. This review specifically focuses on the vitrimer molecular designs with commercial polymer-based frameworks, which provide useful hints for the practical application of the vitrimer concept.
Collapse
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
40
|
Walther A, Lossada F, Benselfelt T, Kriechbaum K, Berglund L, Ikkala O, Saito T, Wågberg L, Bergström L. Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-Based Materials. Biomacromolecules 2020; 21:2536-2540. [PMID: 32233473 DOI: 10.1021/acs.biomac.0c00330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nanocellulose-based materials and nanocomposites show extraordinary mechanical properties with high stiffness, strength, and toughness. Although the last decade has witnessed great progress in understanding the mechanical properties of these materials, a crucial challenge is to identify pathways to introduce high wet strength, which is a critical parameter for commercial applications. Because of the waterborne fabrication methods, nanocellulose-based materials are prone to swelling by both adsorption of moist air or liquid water. Unfortunately, there is currently no best practice on how to take the swelling into account when reporting mechanical properties at different relative humidity or when measuring the mechanical properties of fully hydrated materials. This limits and in parts fully prevents comparisons between different studies. We review current approaches and propose a best practice for measuring and reporting mechanical properties of wet nanocellulose-based materials, highlighting the importance of swelling and the correlation between mechanical properties and volume expansion.
Collapse
Affiliation(s)
- Andreas Walther
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Francisco Lossada
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| | - Lars Berglund
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Olli Ikkala
- Molecular Materials, Department of Applied Physics, Aalto University, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| |
Collapse
|
41
|
Yao J, Fang W, Guo J, Jiao D, Chen S, Ifuku S, Wang H, Walther A. Highly Mineralized Biomimetic Polysaccharide Nanofiber Materials Using Enzymatic Mineralization. Biomacromolecules 2020; 21:2176-2186. [PMID: 32286801 DOI: 10.1021/acs.biomac.0c00160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many biological high-performance composites, such as bone, antler, and crustacean cuticles, are composed of densely mineralized and ordered nanofiber materials. The mimicry of even simplistic bioinspired structures, i.e., of densely and homogeneously mineralized nanofibrillar materials with controllable mechanical performance, continues to be a grand challenge. Here, using alkaline phosphatase as an enzymatic catalyst, we demonstrate the dense, homogeneous, and spatially controlled mineralization of calcium phosphate nanostructures within networks of anionically charged cellulose nanofibrils (CNFs) and cationically charged chitin nanofibrils (ChNFs)-both emerging biobased nanoscale building blocks for sustainable high-performance materials design. Our study reveals that anionic CNFs lead to a more homogeneous nanoscale mineralization with very high mineral contents up to ca. 70 wt % with a transition from amorphous to crystalline deposits, while cationic ChNFs yield rod-like crystalline morphologies. The bone-inspired CNF bulk films exhibit a significantly increased stiffness, maintain good flexibility and translucency, and have a significant gain in wet state mechanical properties. The mechanical properties can be tuned both by the enzyme concentration and the mineralization time. Moreover, we also show a spatial control of the mineralization using kinetically controlled substrate uptake in a dialysis reactor, and by spatially selectively incorporating the enzyme into 2D printed filament patterns. The strategy highlights possibilities for spatial encoding of enzymes in tailored structures and patterns and programmed mineralization processes, promoting the potential application of mineralized CNF biomaterials with complex gradients for bone substitutes and tissue regeneration in general.
Collapse
Affiliation(s)
- Jingjing Yao
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wenwen Fang
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Jiaqi Guo
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Dejin Jiao
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, 101-4 Koyama-cho Minami, Tottori 680-8502, Japan
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Andreas Walther
- A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
42
|
Development of conductive protein-based film reinforced by cellulose nanofibril template-directed hyperbranched copolymer. Carbohydr Polym 2020; 237:116141. [DOI: 10.1016/j.carbpol.2020.116141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 01/03/2023]
|
43
|
Guerre M, Taplan C, Winne JM, Du Prez FE. Vitrimers: directing chemical reactivity to control material properties. Chem Sci 2020; 11:4855-4870. [PMID: 34122941 PMCID: PMC8159211 DOI: 10.1039/d0sc01069c] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
The development of more sustainable materials with a prolonged useful lifetime is a key requirement for a transition towards a more circular economy. However, polymer materials that are long-lasting and highly durable also tend to have a limited application potential for re-use. This is because such materials derive their durable properties from a high degree of chemical connectivity, resulting in rigid meshes or networks of polymer chains with a high intrinsic resistance to deformation. Once such polymers are fully synthesised, thermal (re)processing becomes hard (or impossible) to achieve without damaging the degree of chemical connectivity, and most recycling options quickly lead to a drop or even loss of material properties. In this context, both academic and industrial researchers have taken a keen interest in materials design that combines high degrees of chemical connectivity with an improved thermal (re)processability, mediated through a dynamic exchange reaction of covalent bonds. In particular vitrimer materials offer a promising concept because they completely maintain their degree of chemical connectivity at all times, yet can show a clear thermally driven plasticity and liquid behavior, enabled through rapid bond rearrangement reactions within the network. In the past decade, many suitable dynamic covalent chemistries were developed to create vitrimer materials, and are now applicable to a wide range of polymer matrices. The material properties of vitrimers, however, do not solely rely on the chemical structure of the polymer matrix, but also on the chemical reactivity of the dynamic bonds. Thus, chemical reactivity considerations become an integral part of material design, which has to take into account for example catalytic and cross-reactivity effects. This mini-review will aim to provide an overview of recent efforts aimed at understanding and controlling dynamic cross-linking reactions within vitrimers, and how directing this chemical reactivity can be used as a handle to steer material properties. Hence, it is shown how a focus on a fundamental chemical understanding can pave the way towards new sustainable materials and applications.
Collapse
Affiliation(s)
- Marc Guerre
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR5623, Université Paul Sabatier 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christian Taplan
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Faculty of Sciences, Ghent University Krijgslaan 281 (S4-bis) 9000 Ghent Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Laboratory of Organic Synthesis, Faculty of Sciences, Ghent University Krijgslaan 281 (S4-bis) 9000 Ghent Belgium
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Faculty of Sciences, Ghent University Krijgslaan 281 (S4-bis) 9000 Ghent Belgium
| |
Collapse
|
44
|
Liu T, Zhao B, Zhang J. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122392] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Dobson AL, Bongiardina NJ, Bowman CN. Combined Dynamic Network and Filler Interface Approach for Improved Adhesion and Toughness in Pressure-Sensitive Adhesives. ACS APPLIED POLYMER MATERIALS 2020; 2:1053-1060. [PMID: 34079938 PMCID: PMC8168480 DOI: 10.1021/acsapm.9b00992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Of importance for adhesive materials, particularly pressure-sensitive adhesive (PSA) systems, is the ability to increase bulk toughness without reduction of adhesion. Previous approaches for increasing PSA durability sacrifice permanent cross-linking or adhesive potential, limiting performance. In this work, covalent adaptable networks (CANs) derived from thiol-thioester exchange (TTE) are utilized as a basis for adhesive films. Tensile and single-lap shear tests were conducted for adhesive materials containing no filler, 15 wt % nanoparticles functionalized with thioester-containing acrylate, or 15 wt % nanoparticles functionalized with nonthioester-containing acrylate. Additionally, fatigue experiments were conducted on unfilled adhesives. Results indicate that TTE improves toughness, adhesion, and fatigue in unfilled materials. Filled adhesives with activated TTE showed a nearly fourfold increase in adhesion with slightly reduced toughness compared to uncatalyzed filled specimens. This work has implications in many industries, from biomedical to automotive, as toughness and fatigue resistance are important considerations for adhesive applications.
Collapse
Affiliation(s)
- Adam L. Dobson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Nicholas J. Bongiardina
- Material Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Material Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
46
|
Kriechbaum K, Bergström L. Antioxidant and UV-Blocking Leather-Inspired Nanocellulose-Based Films with High Wet Strength. Biomacromolecules 2020; 21:1720-1728. [PMID: 31945294 PMCID: PMC7343243 DOI: 10.1021/acs.biomac.9b01655] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The mechanical performance in the
wet state needs to be significantly
improved and the intrinsic functionalities should be fully utilized
to promote the replacement of fossil-based plastics with renewable
biobased materials. We demonstrate a leather-inspired approach to
produce multifunctional materials with a high wet strength that is
based on tannin-induced precipitation of gelatin grafted onto surface-modified
cellulose nanofibrils (CNF). The leather-inspired CNF-based films
had a wet tensile strength of 33 MPa, a Young’s modulus of
310 MPa, and a strain at failure of 22%, making the wet materials
stronger than, for example, dry conventional low-density polyethylene
and more ductile than paper-based food packaging materials. The tannin-containing
films displayed excellent antioxidant and UV-blocking properties,
rapidly scavenging more than 90% of added free radicals and absorbing
100% of light in the UV-B/UV-C range. This work illustrates the prospect
of combining renewable materials in a leather-inspired approach to
form wet strong and multifunctional films with potential application
in food packaging.
Collapse
Affiliation(s)
- Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| |
Collapse
|
47
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020; 59:4294-4298. [DOI: 10.1002/anie.201913430] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
48
|
Tsuruoka A, Takahashi A, Aoki D, Otsuka H. Fusion of Different Crosslinked Polymers Based on Dynamic Disulfide Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayuko Tsuruoka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Akira Takahashi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
49
|
Abstract
We demonstrate waterborne, unimolecularly dissolved vitrimer prepolymer systems that can be transferred into a vitrimer material using catalytic transesterification. The one-component prepolymer system can be processed via film casting and subsequent heat-induced cross-linking. A variation of the density of side chain hydroxy groups over ester and amide groups in the methacrylate/methacrylamide backbone, as well as of the Lewis acid catalyst loading, allow control of the extent of cross-linking and exchange rates. The increase of the amount of both catalyst and hydroxy groups leads to an acceleration of the relaxation times and a decrease of the activation energy of the transesterification reactions. The system features elastomeric properties, and the tensile properties are maintained after two recycling steps. Thus far, vitrimers have been limited largely to hydrophobic polymers; this system is a step forward toward waterborne, one-component materials, and we demonstrate its use in waterborne bioinspired nanocomposites.
Collapse
Affiliation(s)
- Francisco Lossada
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Dejin Jiao
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Xuyang Yao
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstrasse 19, Freiburg 79104, Germany
| | - Andreas Walther
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Cluster of Excellence livMatS at FIT, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstrasse 19, Freiburg 79104, Germany
| |
Collapse
|
50
|
Altuna FI, Casado U, dell'Erba IE, Luna L, Hoppe CE, Williams RJJ. Epoxy vitrimers incorporating physical crosslinks produced by self-association of alkyl chains. Polym Chem 2020. [DOI: 10.1039/c9py01787a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitrimers synthesized from epoxy-carboxylic acid-alkylamine (Cn) formulations exhibit tunable mechanical properties and stress relaxation without using external catalysts.
Collapse
Affiliation(s)
- F. I. Altuna
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - U. Casado
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - I. E. dell'Erba
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - L. Luna
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - C. E. Hoppe
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| | - R. J. J. Williams
- Institute of Materials Science and Technology (INTEMA)
- University of Mar del Plata and National Research Council (CONICET)
- 7600 Mar del Plata
- Argentina
| |
Collapse
|