1
|
Giovannuzzi S, Nikitjuka A, Angeli A, Smietana M, Massardi ML, Turati M, Ronca R, Bonardi A, Nocentini A, Ferraroni M, Supuran CT, Winum JY. Benzoxaborinine, New Chemotype for Carbonic Anhydrase Inhibition: Ex Novo Synthesis, Crystallography, In Silico Studies, and Anti-Melanoma Cell Line Activity. J Med Chem 2024; 67:18221-18234. [PMID: 39378331 DOI: 10.1021/acs.jmedchem.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The benzoxaborinine scaffold, a homologue of benzoxaborole with an additional carbon atom in the boracycle, shows significant potential in developing new therapeutic agents. This study reports the synthesis, inhibition assays against four human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, and anti-melanoma evaluation of 7-aryl(thio)ureido-substituted benzoxaborinines. Some derivatives, particularly compound 11, exhibited potent inhibitory activity (below 65 nM) against hCA IX and XII and stronger antiproliferative effects than SLC-0111 on human melanoma cells under hypoxia. Crystallographic studies of benzoxaborinine 3 adducts with hCA I and II demonstrated the binding mode of this chemotype, revealing that although both benzoxaborinine 3 and benzoxaborole 10 share a similar zinc-binding mode, the expanded ring in benzoxaborinine led to a different orientation within the active site. These findings suggest that benzoxaborinines hold promise for designing novel carbonic anhydrase inhibitors.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Department of NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Firenze, Italy
| | - Anna Nikitjuka
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Andrea Angeli
- Department of NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Firenze, Italy
| | - Michael Smietana
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Maria-Luisa Massardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Bonardi
- Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Firenze, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, 50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Firenze, Italy
| | - Jean-Yves Winum
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
2
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
3
|
Desai S, Carberry B, Anseth KS, Schultz KM. Cell-Material Interactions in Covalent Adaptable Thioester Hydrogels. ACS Biomater Sci Eng 2024; 10:5701-5713. [PMID: 39171932 DOI: 10.1021/acsbiomaterials.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Covalent adaptable networks (CANs) are polymeric networks with cross-links that can break and reform in response to external stimuli, including pH, shear, and temperature, making them potential materials for use as injectable cell delivery vehicles. In the native niche, cells rearrange the extracellular matrix (ECM) to undergo basic functions including migration, spreading, and proliferation. Bond rearrangement enables these hydrogels to mimic viscoelastic properties of the native ECM which promote migration and delivery from the material to the native tissue. In this work, we characterize thioester CANs to inform their design as effective cell delivery vehicles. Using bulk rheology, we characterize the rearrangement of these networks when they are subjected to strain, which mimics the strain applied by a syringe, and using multiple particle tracking microrheology (MPT) we measure cell-mediated remodeling of the pericellular region. Thioester networks are formed by photopolymerizing 8-arm poly(ethylene glycol) (PEG)-thiol and PEG-thioester norbornene. Bulk rheology measures scaffold properties during low and high strain and demonstrates that thioester scaffolds can recover rheological properties after high strain is applied. We then 3D encapsulated human mesenchymal stem cells (hMSCs) in thioester scaffolds. Using MPT, we characterize degradation in the pericellular region. Encapsulated hMSCs degrade these scaffolds within ≈4 days post-encapsulation. We hypothesize that this degradation is mainly due to cytoskeletal tension that cells apply to the matrix, causing adaptable thioester bonds to rearrange, leading to degradation. To verify this, we inhibited cytoskeletal tension using blebbistatin, a myosin-II inhibitor. Blebbistatin-treated cells can degrade these networks only by secreting enzymes including esterases. Esterases hydrolyze thioester bonds, which generate free thiols, leading to bond exchange. Around treated cells, we measure a decrease in the extent of pericellular degradation. We also compare cell area, eccentricity, and speed of untreated and treated cells. Inhibiting cytoskeletal tension results in significantly smaller cell area, more rounded cells, and lower cell speeds when compared to untreated cells. Overall, this work shows that cytoskeletal tension plays a major role in hMSC-mediated degradation of thioester networks. Cytoskeletal tension is also important for the spreading and motility of hMSCs in these networks. This work informs the design of thioester scaffolds for tissue regeneration and cell delivery.
Collapse
Affiliation(s)
- Shivani Desai
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Benjamin Carberry
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kelly M Schultz
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Liu L, Wang W, Huang L, Xian Y, Ma W, Zhao L, Li Y, Zheng Z, Liu H, Wu D. Injectable Inflammation-Responsive Hydrogels for Microenvironmental Regulation of Intervertebral Disc Degeneration. Adv Healthc Mater 2024; 13:e2400717. [PMID: 38649143 DOI: 10.1002/adhm.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Chronic local inflammation and excessive cell apoptosis in nucleus pulposus (NP) tissue are the main causes of intervertebral disc degeneration (IDD). Stimuli-responsive hydrogels have great potential in the treatment of IDD by facilitating localized and controlled drug delivery. Herein, an injectable drug-loaded dual stimuli-responsive adhesive hydrogel for microenvironmental regulation of IDD, is developed. The gelatin methacryloyl is functionalized with phenylboronic acid groups to enhance drug loading capacity and enable dual stimuli-responsive behavior, while the incorporation of oxidized hyaluronic acid further improves the adhesive properties. The prepared hydrogel exhibits an enhanced drug loading capacity for diol-containing drugs, pH- and reactive oxygen species (ROS)-responsive behaviors, excellent radical scavenging efficiency, potent antibacterial activity, and favorable biocompatibility. Furthermore, the hydrogel shows a beneficial protective efficacy on NP cells within an in vitro oxidative stress microenvironment. The in vivo results demonstrate the hydrogel's excellent therapeutic effect on treating IDD by maintaining water retention, restoring disc height, and promoting NP regeneration, indicating that this hydrogel holds great potential as a promising therapeutic approach for regulating the microenvironment and alleviating the progression of IDD.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
6
|
Mashaqbeh H, Al-Ghzawi B, BaniAmer F. Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses. Adv Pharmacol Pharm Sci 2024; 2024:3869387. [PMID: 38831895 PMCID: PMC11147673 DOI: 10.1155/2024/3869387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid's structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the biomedical field's applications for these hydrogel systems. Hyaluronic acid-based hydrogels are divided into two categories based on their injectability mechanisms: in situ-forming injectable hydrogels and shear-thinning injectable hydrogels. Many crosslinking methods are used to create injectable hydrogels; chemical crosslinking techniques are the most frequently investigated technique. Hybrid injectable hydrogel systems are widely investigated by blending hyaluronic acid with other polymers or nanoparticulate systems. Injectable hyaluronic acid hydrogels were thoroughly investigated and proven to demonstrate potential in various medical fields, including delivering drugs and cells, tissue repair, and wound dressings.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Batool Al-Ghzawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fatima BaniAmer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Qin H, Teng Y, Dai R, Wang A, Liu J. Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy. Front Immunol 2024; 15:1395187. [PMID: 38799466 PMCID: PMC11116596 DOI: 10.3389/fimmu.2024.1395187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Glycan-based scaffolds are unique in their high specificity, versatility, low immunogenicity, and ability to mimic natural carbohydrates, making them attractive candidates for use in cancer treatment. These scaffolds are made up of glycans, which are biopolymers with well biocompatibility in the human body that can be used for drug delivery. The versatility of glycan-based scaffolds allows for the modulation of drug activity and targeted delivery to specific cells or tissues, which increases the potency of drugs and reduces side effects. Despite their promise, there are still technical challenges in the design and production of glycan-based scaffolds, as well as limitations in their therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yibin Teng
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Dai
- Department of Pharmacy, Peking Union Medical University Hospital, Beijing, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
9
|
Miki R, Yamaki T, Uchida M, Natsume H. Phenylboronate-salicylate ester cross-linked self-healing hydrogel composed of modified hyaluronan at physiological pH. SOFT MATTER 2024; 20:2926-2936. [PMID: 38466036 DOI: 10.1039/d3sm01417g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Several hydrogels with boronate/diol ester cross-linking have been reported. However, multiple synthetic steps or expensive reagents are required to modify some diol moieties into polymers. Therefore, diol-modified polymers, which are easily and inexpensively prepared via a single-step process, are required for the formation of boronate esters. This study reports a novel hydrogel composed of phenylboronic acid-modified hyaluronic acid and salicylic acid-modified hyaluronic acid. This hydrogel is injectable, can self-heal at physiological pH, and can be easily and inexpensively prepared. The polymer system behaved as a sol at pH 12.0 and a weak gel at pH 9.4 and 11.2, whereas it behaved as a gel over a wide pH range of 4.0-8.2. The viscoelasticity of the system decreased in response to sugar at pH 7.3. Thus, salicylic acid can be considered a promising diol moiety for hydrogel formation via boronate ester cross-linking.
Collapse
Affiliation(s)
- Ryotaro Miki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Tsutomu Yamaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Masaki Uchida
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Hideshi Natsume
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
10
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
11
|
Zhang X, Su W, Guo H, Fang P, Yang K, Song Q. N-Heterocycle-Editing to Access Fused-BN-Heterocycles via Ring-Opening/C-H Borylation/Reductive C-B Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202318613. [PMID: 38196396 DOI: 10.1002/anie.202318613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Skeletal editing of N-heterocycles has recently received considerable attention, and the introduction of boron atom into heterocycles often results in positive property changes. However, direct enlargement of N-heterocycles through boron atom insertion is rarely reported in the literature. Here, we report a N-heterocyclic editing reaction through the combination boron atom insertion and C-H borylation, accessing the fused-BN-heterocycles. The synthetic potential of this chemistry was demonstrated by substrate scope and late-stage diversification of products.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wanlan Su
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Huosheng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Pengyuan Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
12
|
Qiu Y, Zeng Y, Zhang C, Lv X, Ling Y, Si Y, Guo T, Ni Y, Zhang J, Xu C, Wang Z, Hu J. A ROS-responsive loaded desferoxamine (DFO) hydrogel system for traumatic brain injury therapy. Biomed Mater 2024; 19:025016. [PMID: 38215474 DOI: 10.1088/1748-605x/ad1dfd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Traumatic brain injury (TBI) produces excess iron, and increased iron accumulation in the brain leads to lipid peroxidation and reactive oxygen species (ROSs), which can exacerbate secondary damage and lead to disability and death. Therefore, inhibition of iron overload and oxidative stress has a significant role in the treatment of TBI. Functionalized hydrogels with iron overload inhibiting ability and of oxidative stress inhibiting ability will greatly contribute to the repair of TBI. Herein, an injectable, post-traumatic microenvironment-responsive, ROS-responsive hydrogel encapsulated with deferrioxamine mesylate (DFO) was developed. The hydrogel is rapidly formed via dynamic covalent bonding between phenylboronic acid grafted hyaluronic acid (HA-PBA) and polyvinyl alcohol (PVA), and phenylboronate bonds are used to respond to and reduce ROS levels in damaged brain tissue to promote neuronal recovery. The release of DFO from HA-PBA/PVA hydrogels in response to ROS further promotes neuronal regeneration and recovery by relieving iron overload and thus eradicating ROS. In the Feeney model of Sprague Dawley rats, HA-PBA/PVA/DFO hydrogel treatment significantly improved the behavior of TBI rats and reduced the area of brain contusion in rats. In addition, HA-PBA/PVA/DFO hydrogel significantly reduced iron overload to reduce ROS and could effectively promote post-traumatic neuronal recovery. Its effects were also explored, and notably, HA-PBA/PVA/DFO hydrogel can reduce iron overload as well as ROS, thus protecting neurons from death. Thus, this injectable, biocompatible and ROS-responsive drug-loaded hydrogel has great potential for the treatment of TBI. This work suggests a novel method for the treatment of secondary brain injury by inhibiting iron overload and the oxidative stress response after TBI.
Collapse
Affiliation(s)
- Yun Qiu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yu Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Chun Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Xiaorui Lv
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yating Ling
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yu Si
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Tao Guo
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Yinying Ni
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Jingwen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Changgen Xu
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Ziyu Wang
- Health Clinical Laboratories, Health BioMed Co., Ltd, Ningbo, Zhejiang 315042, People's Republic of China
| | - Jiabo Hu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
13
|
Fan F, Su B, Kolodychak A, Ekwueme E, Alderfer L, Saha S, Webber MJ, Hanjaya-Putra D. Hyaluronic Acid Hydrogels with Phototunable Supramolecular Cross-Linking for Spatially Controlled Lymphatic Tube Formation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58181-58195. [PMID: 38065571 PMCID: PMC10739586 DOI: 10.1021/acsami.3c12514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
The dynamics of the extracellular matrix (ECM) influences stem cell differentiation and morphogenesis into complex lymphatic networks. While dynamic hydrogels with stress relaxation properties have been developed, many require detailed chemical processing to tune viscoelasticity, offering a limited opportunity for in situ and spatiotemporal control. Here, a hyaluronic acid (HA) hydrogel is reported with viscoelasticity that is controlled and spatially tunable using UV light to direct the extent of supramolecular and covalent cross-linking interactions. This is achieved using UV-mediated photodimerization of a supramolecular ternary complex of pendant trans-Brooker's Merocyanine (BM) guests and a cucurbit[8]uril (CB[8]) macrocycle. The UV-mediated conversion of this supramolecular complex to its covalent photodimerized form is catalyzed by CB[8], offering a user-directed route to spatially control hydrogel dynamics in combination with orthogonal photopatterning by UV irradiation through photomasks. This material thus achieves spatial heterogeneity of substrate dynamics, recreating features of native ECM without the need for additional chemical reagents. Moreover, these dynamic hydrogels afford spatial control of substrate mechanics to direct human lymphatic endothelial cells (LECs) to form lymphatic cord-like structures (CLS). Specifically, cells cultured on viscoelastic supramolecular hydrogels have enhanced formation of CLS, arising from increased expression of key lymphatic markers, such as LYVE-1, Podoplanin, and Prox1, compared to static elastic hydrogels prepared from fully covalent cross-linking. Viscoelastic hydrogels promote lymphatic CLS formation through the expression of Nrp2, VEGFR2, and VEGFR3 to enhance the VEGF-C stimulation. Overall, viscoelastic supramolecular hydrogels offer a facile route to spatially control lymphatic CLS formation, providing a tool for future studies of basic lymphatic biology and tissue engineering applications.
Collapse
Affiliation(s)
- Fei Fan
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bo Su
- Chemical
and Biomolecular Engineering, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alexander Kolodychak
- Chemical
and Biomolecular Engineering, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ephraim Ekwueme
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Laura Alderfer
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sanjoy Saha
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J. Webber
- Chemical
and Biomolecular Engineering, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Donny Hanjaya-Putra
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Crowell AD, FitzSimons TM, Anslyn EV, Schultz KM, Rosales AM. Shear Thickening Behavior in Injectable Tetra-PEG Hydrogels Cross-Linked via Dynamic Thia-Michael Addition Bonds. Macromolecules 2023; 56:7795-7807. [PMID: 38798752 PMCID: PMC11126233 DOI: 10.1021/acs.macromol.3c00780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Injectable poly(ethylene glycol) (PEG)-based hydrogels were reversibly cross-linked through thia-conjugate addition bonds and demonstrated to shear thicken at low shear rates. Cross-linking bond exchange kinetics and dilute polymer concentrations were leveraged to tune hydrogel plateau moduli (from 60 to 650 Pa) and relaxation times (from 2 to 8 s). Under continuous flow shear rheometry, these properties affected the onset of shear thickening and the degree of shear thickening achieved before a flow instability occurred. The changes in viscosity were reversible whether the shear rate increased or decreased, suggesting that chain stretching drives this behavior. Given the relevance of dynamic PEG hydrogels under shear to biomedical applications, their injectability was investigated. Injection forces were found to increase with higher polymer concentrations and slower bond exchange kinetics. Altogether, these results characterize the nonlinear rheology of dilute, dynamic covalent tetra-PEG hydrogels and offer insight into the mechanism driving their shear thickening behavior.
Collapse
Affiliation(s)
- Anne D Crowell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, United States
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin 78712, United States
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem 18015, United States
| | - Adrianne M Rosales
- Department of Chemical Engineering, The University of Texas at Austin, Austin 78712, United States
| |
Collapse
|
15
|
Desai S, Carberry BJ, Anseth KS, Schultz KM. Characterizing rheological properties and microstructure of thioester networks during degradation. SOFT MATTER 2023; 19:7429-7442. [PMID: 37743747 PMCID: PMC10714141 DOI: 10.1039/d3sm00864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covalent adaptable networks are designed for applications including cell and drug delivery and tissue regeneration. These applications require network degradation at physiological conditions and on a physiological timescale with microstructures that can: (1) support, protect and deliver encapsulated cells or molecules and (2) provide structure to surrounding tissue. Due to this, the evolving microstructure and rheological properties during scaffold degradation must be characterized. In this work, we characterize degradation of covalent adaptable poly(ethylene glycol) (PEG)-thioester networks with different amounts of excess thiol. Networks are formed between PEG-thiol and PEG-thioester norbornene using photopolymerization. These networks are adaptable because of a thioester exchange reaction that takes place in the presence of excess thiol. We measure degradation of PEG-thioester networks with L-cysteine using multiple particle tracking microrheology (MPT). MPT measures the Brownian motion of fluorescent probe particles embedded in a material and relates this motion to rheological properties. Using time-cure superposition (TCS), we characterize the microstructure of these networks at the gel-sol phase transition by calculating the critical relaxation exponent, n, for each network with different amounts of excess thiol. Based on the measured n values, networks formed with 0% and 50% excess thiol are tightly cross-linked and elastic in nature. While networks formed with 100% excess are similar to ideal, percolated networks, which have equal viscous and elastic components. MPT measurements during degradation of these networks also measure a non-monotonic increase in probe motility. We hypothesize that this is network rearrangement near the phase transition. We then measure macroscopic material properties including the equilibrium modulus and stress relaxation. We measure a trend in bulk network properties that agrees with the values of n. Elastic modulus and stress relaxation measurements show that networks with 50% excess thiol are more elastic compared to the other two networks. As the amount of excess thiol is increased from 0% to 50%, the networks become more elastic. Further increasing excess thiol to 100% reduces the elastically effective cross-links. We hypothesize that these properties are due to network non-idealities, resulting in networks with 50% excess thiol that are more elastic. This work characterizes dynamic rheological properties during degradation, which mimics processes that could occur during implantation. This work provides information that can be used in the future design of implantable materials enabling both the rheological properties and timescale of degradation to be specified.
Collapse
Affiliation(s)
- Shivani Desai
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Bethlehem, PA, 18015, USA.
| | - Benjamin J Carberry
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Kelly M Schultz
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Bethlehem, PA, 18015, USA.
| |
Collapse
|
16
|
Lee HP, Davis R, Wang TC, Deo KA, Cai KX, Alge DL, Lele TP, Gaharwar AK. Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery. ACS APPLIED BIO MATERIALS 2023; 6:3683-3695. [PMID: 37584641 PMCID: PMC10863386 DOI: 10.1021/acsabm.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Granular hydrogels have recently emerged as promising biomaterials for tissue engineering and 3D-printing applications, addressing the limitations of bulk hydrogels while exhibiting desirable properties such as injectability and high porosity. However, their structural stability can be improved with post-injection interparticle cross-linking. In this study, we developed granular hydrogels with interparticle cross-linking through reversible and dynamic covalent bonds. We fragmented photo-cross-linked bulk hydrogels to produce aldehyde or hydrazide-functionalized microgels using chondroitin sulfate. Mixing these microgels facilitated interparticle cross-linking through reversible hydrazone bonds, providing shear-thinning and self-healing properties for injectability and 3D printing. The resulting granular hydrogels displayed high mechanical stability without the need for secondary cross-linking. Furthermore, the porosity and sustained release of growth factors from these hydrogels synergistically enhanced cell recruitment. Our study highlights the potential of reversible interparticle cross-linking for designing injectable and 3D printable therapeutic delivery scaffolds using granular hydrogels. Overall, our study highlights the potential of reversible interparticle cross-linking to improve the structural stability of granular hydrogels, making them an effective biomaterial for use in tissue engineering and 3D-printing applications.
Collapse
Affiliation(s)
- Hung-Pang Lee
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ryan Davis
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ting-Ching Wang
- Chemical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Kaivalya A. Deo
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Kathy Xiao Cai
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Daniel L. Alge
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Material
Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tanmay P. Lele
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Chemical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Akhilesh K. Gaharwar
- Biomedical
Engineering, College of Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Material
Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas 77843, United States
- Center
for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Peng YY, Cheng Q, Wu M, Wang W, Zhao J, Diaz-Dussan D, McKay M, Zeng H, Ummartyotin S, Narain R. Highly Stretchable, Self-Healing, Injectable and pH Responsive Hydrogel from Multiple Hydrogen Bonding and Boron-Carbohydrate Interactions. Gels 2023; 9:709. [PMID: 37754389 PMCID: PMC10530767 DOI: 10.3390/gels9090709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
A simple and cost-effective method for the fabrication of a safe, dual-responsive, highly stretchable, self-healing and injectable hydrogel is reported based on a combination of dynamic boronate ester bonds and hydrogen bonding interactions. The mechanical properties of the hydrogel are tunable by adjusting the molar ratios between sugar moieties on the polymer and borax. It was remarkable to note that the 2:1 ratio of sugar and borate ion significantly improves the mechanical strength of the hydrogel. The injectability, self-healing and stretchability properties of the hydrogel were also examined. In addition, the impact of the variation of the pH and the addition of free sugar responsiveness of the hydrogel was studied. High MRC-5 cell viability was noticed by the 3D live/dead assay after 24 h cell culture within the hydrogel scaffold. Hence, the developed hydrogels have desirable features that warrant their applications for drug delivery, scaffolds for cell and tissue engineering.
Collapse
Affiliation(s)
- Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Jianyang Zhao
- School of Biomedical Sciences and Engineering Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China;
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Michelle McKay
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| |
Collapse
|
18
|
Peng PY, Zhang GS, Gong ML, Zhang JW, Liu XL, Gao D, Lin GQ, Li QH, Tian P. A practical preparation of bicyclic boronates via metal-free heteroatom-directed alkenyl sp 2-C‒H borylation. Commun Chem 2023; 6:176. [PMID: 37612464 PMCID: PMC10447525 DOI: 10.1038/s42004-023-00976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Bicyclic boronates play critical roles in the discovery of functional materials and antibacterial agents, especially against deadly bacterial pathogens. Their practical and convenient preparation is in high demand but with great challenge. Herein, we report an efficient strategy for the preparation of bicyclic boronates through metal-free heteroatom-directed alkenyl sp2-C‒H borylation. This synthetic approach exhibits good functional group compatibility, and the corresponding boronates bearing halides, aryls, acyclic and cyclic frameworks are obtained with high yields (43 examples, up to 95% yield). Furthermore, a gram-scale experiment is conducted, and downstream transformations of the bicyclic boronates are pursued to afford natural products, drug scaffolds, and chiral hemiboronic acid catalysts.
Collapse
Affiliation(s)
- Pei-Ying Peng
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Gui-Shan Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mei-Ling Gong
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Xi-Liang Liu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- China-Thailand Joint Research Institute of Natural Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
19
|
Miao G, Xu L, Li F, Miao X, Hou Z, Xu T, Ren G, Yang X, Qiu J, Zhu X. Simple and Rapid Way to a Multifunctionally Conductive Hydrogel for Wearable Strain Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10530-10541. [PMID: 37460098 DOI: 10.1021/acs.langmuir.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Conductive hydrogels have gained increasing attention in the field of wearable smart devices. However, it remains a big challenge to develop a multifunctionally conductive hydrogel in a rapid and facile way. Herein, a conductive tannic acid-iron/poly (acrylic acid) hydrogel was synthesized within 30 s at ambient temperature by the tannic acid-iron (TA@Fe3+)-mediated dynamic catalytic system. The TA@Fe3+ dynamic redox autocatalytic pair could efficiently activate the ammonium persulfate to initiate the free-radical polymerization, allowing the gelation to occur easily and rapidly. The resulting hydrogel exhibited enhanced stretchability (3560%), conductivity (33.58 S/m), and strain sensitivity (gauge factor = 2.11). When damaged, it could be self-healed through the dynamic and reversible coordination bonds between the Fe3+ and COO- groups in the hydrogel network. Interestingly, the resulting hydrogel could act as a strain sensor to monitor various human motions including the huge movement of deformations (knuckle, wrist) and subtle motions (smiling, breathing) in real time due to its enhanced self-adhesion, good conductivity, and improved strain sensitivity. Also, the obtained hydrogel exhibited efficient electromagnetic interference (EMI) shielding performance with an EMI shielding effectiveness value of 24.5 dB in the X-band (8.2-12.4 GHz). Additionally, it displayed antibacterial properties, with the help of the activity of TA.
Collapse
Affiliation(s)
- Gan Miao
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Lide Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Fangchao Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Zhiqiang Hou
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Ting Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaoyang Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Jianxun Qiu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
| | - Xiaotao Zhu
- School of Environmental and Material Engineering, Yantai University, Yantai 264405, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, China
| |
Collapse
|
20
|
Zhou Q, Nan X, Zhang S, Zhang L, Chen J, Li J, Wang H, Ruan Z. Effect of 3D Food Printing Processing on Polyphenol System of Loaded Aronia melanocarpa and Post-Processing Evaluation of 3D Printing Products. Foods 2023; 12:foods12102068. [PMID: 37238886 DOI: 10.3390/foods12102068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Aronia melanocarpa polyphenols (AMP) have good nutritional values and functions. This study aimed to explore the printability and storage properties of AM gels in 3D food printing (3DFP). Therefore, 3DFP was performed on a loaded AMP gel system to determine its textural properties, rheological properties, microstructure, swelling degree and storage performance. The results revealed that the best loading AMP gel system to meet the printability requirements of 3DFP processing was AM fruit pulp:methylcellulose:pea albumin: hyaluronic acid = 100:14:1:1. Compared with other ratios and before 3DFP processing, the best loading AMP gel system processed by 3DFP exhibited the lowest deviation of 4.19%, the highest hardness, the highest elasticity, the least adhesion, a compact structure, uniform porosity, difficulty in collapsing, good support, a high degree of crosslinking, and good water retention. Additionally, they could be stored for 14 d at 4 °C. After post-processing, the AMP gel had a favorable AMP release rate and good sustained release effect in gastrointestinal digestion, which conformed to the Ritger-Peppas equation model. The results revealed that the gel system had good printability and applicability for 3D printing; as well, 3DFP products had good storage properties. These conclusions provide a theoretical basis for the application of 3D printing using fruit pulp as a raw material.
Collapse
Affiliation(s)
- Quancheng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xijun Nan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | | | - Liang Zhang
- Arkhum Health Technology Co., Ltd., Zibo 255035, China
| | - Jian Chen
- Shandong Jiucifang Biotechnology Co., Ltd., Zibo 256102, China
| | - Jiayi Li
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Honglei Wang
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
21
|
Kikani T, Dave S, Thakore S. Functionalization of hyaluronic acid for development of self-healing hydrogels for biomedical applications: A review. Int J Biol Macromol 2023; 242:124950. [PMID: 37207760 DOI: 10.1016/j.ijbiomac.2023.124950] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Materials that are capable of undergoing self-repair following any physical damage or rupture due to external stimuli are identified as self-healing materials. Such materials are engineered by crosslinking the polymer backbone chains typically through reversible linkages. These reversible linkages include imines, metal-ligand coordination, polyelectrolyte interaction, disulfide, etc. These bonds are reversibly responsive to changes in various stimuli. Newer self-healing materials are now being developed in the field of biomedicine. Chitosan, cellulose, starch etc. are a few examples of polysaccharides that are generally used to synthesize such materials. Hyaluronic acid has been a very recent addition to the list of polysaccharides that are being investigated for construction of self-healing materials. It is non-toxic, non-immunogenic, has good gelation property and good injectability. Hyaluronic acid based self-healing materials are particularly employed for targeted drug delivery, protein and cell delivery, electronics, biosensors and many such biomedical applications. This review critically focuses on the functionalization of hyaluronic acid to fabricate self-healing hydrogels for biomedical applications. It also explores and sums up the mechanical data as well as self-healing efficiency of the hydrogels across wide range of interactions as discussed in the review below.
Collapse
Affiliation(s)
- Twara Kikani
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Sanskruti Dave
- Department of Pharmacy, Babaria Institute of Pharmacy, Gujarat Technological University, Vadodara 391240, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India.
| |
Collapse
|
22
|
Said M, Tavakoli C, Dumot C, Toupet K, Dong YC, Collomb N, Auxenfans C, Moisan A, Favier B, Chovelon B, Barbier EL, Jorgensen C, Cormode DP, Noël D, Brun E, Elleaume H, Wiart M, Detante O, Rome C, Auzély-Velty R. A novel injectable radiopaque hydrogel with potent properties for multicolor CT imaging in the context of brain and cartilage regenerative therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537520. [PMID: 37131613 PMCID: PMC10153246 DOI: 10.1101/2023.04.20.537520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell therapy is promising to treat many conditions, including neurological and osteoarticular diseases. Encapsulation of cells within hydrogels facilitates cell delivery and can improve therapeutic effects. However, much work remains to be done to align treatment strategies with specific diseases. The development of imaging tools that enable monitoring cells and hydrogel independently is key to achieving this goal. Our objective herein is to longitudinally study an iodine-labeled hydrogel, incorporating gold-labeled stem cells, by bicolor CT imaging after in vivo injection in rodent brains or knees. To this aim, an injectable self-healing hyaluronic acid (HA) hydrogel with long-persistent radiopacity was formed by the covalent grafting of a clinical contrast agent on HA. The labeling conditions were tuned to achieve sufficient X-ray signal and to maintain the mechanical and self-healing properties as well as injectability of the original HA scaffold. The efficient delivery of both cells and hydrogel at the targeted sites was demonstrated by synchrotron K-edge subtraction-CT. The iodine labeling enabled to monitor the hydrogel biodistribution in vivo up to 3 days post-administration, which represents a technological first in the field of molecular CT imaging agents. This tool may foster the translation of combined cell-hydrogel therapies into the clinics.
Collapse
Affiliation(s)
- Moustoifa Said
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Clément Tavakoli
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France; Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Chloé Dumot
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Karine Toupet
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Yuxi Clara Dong
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nora Collomb
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - Anaïck Moisan
- Cell Therapy and Engineering Unit, EFS Rhone Alpes, 38330 Saint Ismier, France
| | - Bertrand Favier
- Univ. Grenoble Alpes, Translational Innovation in Medicine & Complexity, UMR552, 38700 La Tronche, France
| | - Benoit Chovelon
- Univ. Grenoble-Alpes, Departement de Pharmacochimie Moleculaire UMR 5063, 38400 Grenoble, France; Institut de Biologie et Pathologie, CHU de Grenoble-Alpes, 38700 La Tronche, France
| | - Emmanuel Luc Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | - David Peter Cormode
- Department of Radiology and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Danièle Noël
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emmanuel Brun
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, Inserm, UA7 Strobe, 38000 Grenoble, France
| | - Marlène Wiart
- Univ. Lyon 1, Inserm U1060, CarMeN Laboratory, 69600 Oullins, France
| | - Olivier Detante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; CHU Grenoble Alpes, Stroke Unit, Department of Neurology, 38043 Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France
| |
Collapse
|
23
|
Cadamuro F, Ardenti V, Nicotra F, Russo L. Alginate-Gelatin Self-Healing Hydrogel Produced via Static-Dynamic Crosslinking. Molecules 2023; 28:2851. [PMID: 36985823 PMCID: PMC10053920 DOI: 10.3390/molecules28062851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Alginate-gelatin hydrogels mimicking extracellular matrix (ECM) of soft tissues have been generated by static-dynamic double crosslinking, allowing fine control over the physical and chemical properties. Dynamic crosslinking provides self-healing and injectability attributes to the hydrogel and promotes cell migration and proliferation, while the static network improves stability. The static crosslinking was performed by enzymatic coupling of the tyrosine residues of gelatin with tyramine residues inserted in the alginate backbone, catalyzed by horseradish peroxidase (HRP). The dynamic crosslinking was obtained by functionalizing alginate with 3-aminophenylboronic acid which generates a reversible bond with the vicinal hydroxyl groups of the alginate chains. Varying the ratio of alginate and gelatin, hydrogels with different properties were obtained, and the most suitable for 3D soft tissue model development with a 2.5:1 alginate:gelatin molar ratio was selected. The selected hydrogel was characterized with a swelling test, rheology test, self-healing test and by cytotoxicity, and the formulation resulted in transparent, reproducible, varying biomaterial batch, with a fast gelation time and cell biocompatibility. It is able to modulate the loss of the inner structure stability for a longer time with respect to the formulation made with only covalent enzymatic crosslinking, and shows self-healing properties.
Collapse
Affiliation(s)
- Francesca Cadamuro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Valeria Ardenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
24
|
An C, Li H, Zhao Y, Zhang S, Zhao Y, Zhang Y, Yang J, Zhang L, Ren C, Zhang Y, Liu J, Wang H. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int J Biol Macromol 2023; 231:123307. [PMID: 36652984 DOI: 10.1016/j.ijbiomac.2023.123307] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is an important type of naturally derived carbohydrate polymer with specific polysaccharide macromolecular structures and multifaceted biological functions, including biocompatibility, low immunogenicity, biodegradability, and bioactivity. Specifically, HA hydrogels in a microscopic scale have been widely used for biomedical applications, such as drug delivery, tissue engineering, and medical cosmetology, considering their superior properties outperforming the more conventional monolithic hydrogels in network homogeneity, degradation profile, permeability, and injectability. Herein, we reviewed the recent progress in the preparation and applications of HA microgels in biomedical fields. We first summarized the fabrication of HA microgels by focusing on the different crosslinking/polymerization schemes for HA gelation and the miniaturized fabrication techniques for producing HA-based microparticles. We then highlighted the use of HA-based microgels for different applications in regenerative medicine, including cartilage repair, bioactive delivery, diagnostic imaging, modular tissue engineering. Finally, we discussed the challenges and future perspectives in bridging the translational gap in the utilization of HA-based microgels in regenerative medicine.
Collapse
Affiliation(s)
- Chuanfeng An
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518060, PR China; State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China; Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Hanting Li
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yanqiu Zhao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuan Zhao
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yujie Zhang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jianhua Yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China
| | - Yang Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Huanan Wang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
25
|
Lagneau N, Terriac L, Tournier P, Helesbeux JJ, Viault G, Séraphin D, Halgand B, Loll F, Garnier C, Jonchère C, Rivière M, Tessier A, Lebreton J, Maugars Y, Guicheux J, Le Visage C, Delplace V. A new boronate ester-based crosslinking strategy allows the design of nonswelling and long-term stable dynamic covalent hydrogels. Biomater Sci 2023; 11:2033-2045. [PMID: 36752615 DOI: 10.1039/d2bm01690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dynamic hydrogels are viscoelastic materials that can be designed to be self-healing, malleable, and injectable, making them particularly interesting for a variety of biomedical applications. To design dynamic hydrogels, dynamic covalent crosslinking reactions are attracting increasing attention. However, dynamic covalent hydrogels tend to swell, and often lack stability. Boronate ester-based hydrogels, which result from the dynamic covalent reaction between a phenylboronic acid (PBA) derivative and a diol, are based on stable precursors, and can therefore address these limitations. Yet, boronate ester formation hardly occurs at physiological pH. To produce dynamic covalent hydrogels at physiological pH, we performed a molecular screening of PBA derivatives in association with a variety of diols, using hyaluronic acid as a polymer of interest. The combination of Wulff-type PBA (wPBA) and glucamine stood out as a unique couple to obtain the desired hydrogels. We showed that optimized wPBA/glucamine hydrogels are minimally- to non-swelling, stable long term (over months), tunable in terms of mechanical properties, and cytocompatible. We further characterized their viscoelastic and self-healing properties, highlighting their potential for biomedical applications.
Collapse
Affiliation(s)
- N Lagneau
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - L Terriac
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - P Tournier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - J-J Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - G Viault
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - D Séraphin
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - B Halgand
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - F Loll
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - C Garnier
- INRAE, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France
| | - C Jonchère
- INRAE, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France
| | - M Rivière
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - A Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - J Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Y Maugars
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - J Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - C Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| | - V Delplace
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.
| |
Collapse
|
26
|
Hu Y, Jia Y, Wang S, Ma Y, Huang G, Ding T, Feng D, Genin GM, Wei Z, Xu F. An ECM-Mimicking, Injectable, Viscoelastic Hydrogel for Treatment of Brain Lesions. Adv Healthc Mater 2023; 12:e2201594. [PMID: 36398536 DOI: 10.1002/adhm.202201594] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Indexed: 11/19/2022]
Abstract
Brain lesions can arise from traumatic brain injury, infection, and craniotomy. Although injectable hydrogels show promise for promoting healing of lesions and health of surrounding tissue, enabling cellular ingrowth and restoring neural tissue continue to be challenging. It is hypothesized that these challenges arise in part from the mismatch of composition, stiffness, and viscoelasticity between the hydrogel and the brain parenchyma, and this hypothesis is tested by developing and evaluating a self-healing hydrogel that not only mimics the composition, but also the stiffness and viscoelasticity of native brain parenchyma. The hydrogel is crosslinked by dynamic boronate ester bonds between phenylboronic acid grafted hyaluronic acid (HA-PBA) and dopamine grafted gelatin (Gel-Dopa). This HA-PBA/Gel-Dopa hydrogel could be injected into a lesion cavity in a shear-thinning manner with rapid hemostasis, high tissue adhesion, and efficient self-healing. In an in vivo mouse model of brain lesions, the multi-functional injectable hydrogel is found to support neural cell infiltration, decrease astrogliosis and glial scars, and close the lesions. The results suggest a role for extracellular matrix-mimicking viscoelasticity in brain lesion healing, and motivate additional experimentation in larger animals as the technology progresses toward potential application in humans.
Collapse
Affiliation(s)
- Yan Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siwei Wang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Tan Ding
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, P. R. China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
27
|
Zhao C, Liu L, Guo M, Sun Z, Chen Y, Wu Y, Li Y, Xiang D, Li H, Li Z. Double-network hydrogel-based stretchable, adhesive, and conductive e-skin sensor coupled human skin-like biocompatible and protective properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Leprince M, Mailley P, Choisnard L, Auzély-Velty R, Texier I. Design of hyaluronan-based dopant for conductive and resorbable PEDOT ink. Carbohydr Polym 2022; 301:120345. [DOI: 10.1016/j.carbpol.2022.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
29
|
Three-in-one customized bioink for islet organoid: GelMA/ECM/PRP orchestrate pro-angiogenic and immunoregulatory function. Colloids Surf B Biointerfaces 2022; 221:113017. [DOI: 10.1016/j.colsurfb.2022.113017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
|
30
|
Yang X, Wang B, Peng D, Nie X, Wang J, Yu CY, Wei H. Hyaluronic Acid‐Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xu Yang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Bin Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Dongdong Peng
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Xiaobo Nie
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Jun Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| |
Collapse
|
31
|
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 2022; 6:726-744. [PMID: 37117490 DOI: 10.1038/s41570-022-00420-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.
Collapse
|
32
|
Lepcha G, Singha T, Majumdar S, Pradhan AK, Das KS, Datta PK, Dey B. Adipic acid directed self-healable supramolecular metallogels of Co(II) and Ni(II): intriguing scaffolds for comparative optical-phenomenon in terms of third-order optical non-linearity. Dalton Trans 2022; 51:13435-13443. [PMID: 35993453 DOI: 10.1039/d2dt01983c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two brilliant outcomes of supramolecular self-assembly directed, low molecular weight organic gelator based self-healable Co(II) and Ni(II) metallogels were achieved. Adipic acid as the low molecular weight organic gelator and dimethylformamide (DMF) solvent are employed for the metallogelation process. Rheological analyses of both gel-scaffolds reveal mechanical toughness as well as visco-elasticity. Thixotropic behaviours of both the gels were scrutinized. Morphological variations due to the presence of two different metal ions with diverse metal-ligand coordinating interactions were established. The mechanistic pathways for forming stable metallogels of Co(II)-adipic acid (Co-AA) and Ni(II)-adipic acid (Ni-AA) were judiciously developed through infrared absorption spectral analysis. The nonlinear optical properties, such as the third-order process, of these synthesized metallogels were scrutinized by means of the Z-scan method at a beam excitation wavelength of 750 nm by a femtosecond laser with different excitation intensities ranging from 64 to 140 GW cm-2. The third-order nonlinear optical susceptibility (χ(3)) of the order of 10-14 esu was obtained from the measured Z-scan data. Both the metallogels exhibit positive nonlinear refraction and reverse saturable (RSA) absorption at high-intensity excitation. Co(II) and Ni(II) metallogels show nonlinear refractive indices (n2I) of (3.619 ± 0.146) × 10-6 cm2 GW-1 and (3.472 ± 0.102) × 10-6 cm2 GW-1, respectively, and two photon absorption coefficients (β) of (1.503 ± 0.045) × 10-1 cm GW-1 and (1.381 ± 0.029) × 10-1 cm GW-1 at an excitation intensity of 140 GW cm-2. We also studied the optical limiting properties with a limiting threshold of 9.57 mJ cm-2. Therefore, both metallogels can be considered promising materials for photonic devices: for instance, for optical switching and optical limiting.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Amit Kumar Pradhan
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
33
|
Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym 2022; 283:119161. [DOI: 10.1016/j.carbpol.2022.119161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
34
|
Development of an injectable self-healing hydrogel based on N-succinyl chitosan/ oxidized pectin for biomedical applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02983-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Zhang M, Yang Q, Hu T, Tang L, Ni Y, Chen L, Wu H, Huang L, Ding C. Adhesive, Antibacterial, Conductive, Anti-UV, Self-Healing, and Tough Collagen-Based Hydrogels from a Pyrogallol-Ag Self-Catalysis System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8728-8742. [PMID: 35143167 DOI: 10.1021/acsami.1c21200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, versatile hydrogels with multifunctionality have been widely developed with emerging applications as wearable and implantable devices. In this work, we reported novel versatile hydrogels by self-catalyzing the gelation of an interpenetrating polymer network consisting of acrylic acid (AA) monomers and GA-modified collagen (GCOL) in situ decorated silver nanoparticles (AgNPs). The resultant hydrogel, namely AgNP@GCOL/PAA, has many desirable features, including good mechanical properties (such as 123 kPa, 916%, and 1961 J m-2 for the fracture stress, strain and tearing energy) that match with those of animal skin, excellent self-healing performance, favorable conductivity and strain sensitivity as a flexible biosensor, and excellent antibacterial and anti-UV properties, as well as the strong adhesiveness on skin. Moreover, AgNP@GCOL/PAA showed excellent biocompatibility via in vitro cell culture. Remarkably, AgNP@GCOL/PAA displayed superior hemostatic properties with sharply decreasing blood loss for a mouse liver incision, closely related to its strong self-adhesion which produced anchoring strength to the bleeding site and thus formed a network barrier with liver tissue. This study provides new opportunities for the facile preparation of widely used multifunctional collagen-based hydrogels based on a simple pyrogallol-Ag system.
Collapse
Affiliation(s)
- Min Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, PR China
| | - Qili Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tianshuo Hu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lele Tang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yonghao Ni
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- Department of Chemical Engineering and Limerick Pulp & Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hui Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liulian Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| |
Collapse
|
36
|
Thermo-responsive hydrogels from hyaluronic acid functionalized with poly(2-alkyl-2-oxazoline) copolymers with tuneable transition temperature. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:619-640. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The emergence of 3D bioprinting has allowed a variety of hydrogel-based "bioinks" to be printed in the presence of cells to create precisely defined cell-loaded 3D scaffolds in a single step for advancing tissue engineering and/or regenerative medicine. While existing bioinks based primarily on ionic cross-linking, photo-cross-linking, or thermogelation have significantly advanced the field, they offer technical limitations in terms of the mechanics, degradation rates, and the cell viabilities achievable with the printed scaffolds, particularly in terms of aiming to match the wide range of mechanics and cellular microenvironments. Click chemistry offers an appealing solution to this challenge given that proper selection of the chemistry can enable precise tuning of both the gelation rate and the degradation rate, both key to successful tissue regeneration; simultaneously, the often bio-orthogonal nature of click chemistry is beneficial to maintain high cell viabilities within the scaffolds. However, to date, relatively few examples of 3D-printed click chemistry hydrogels have been reported, mostly due to the technical challenges of controlling mixing during the printing process to generate high-fidelity prints without clogging the printer. This review aims to showcase existing cross-linking modalities, characterize the advantages and disadvantages of different click chemistries reported, highlight current examples of click chemistry hydrogel bioinks, and discuss the design of mixing strategies to enable effective 3D extrusion bioprinting of click hydrogels.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Isabelle Poulin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - William James Bodnaryk
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
38
|
Han GS, Domaille DW. Connecting the Dynamics and Reactivity of Arylboronic Acids to Emergent and Stimuli-Responsive Material Properties. J Mater Chem B 2022; 10:6263-6278. [DOI: 10.1039/d2tb00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past two decades, arylboronic acid-functionalized biomaterials have been used in a variety of sensing and stimuli-responsive scaffolds. Their diverse applications result from the diverse reactivity of arylboronic acids,...
Collapse
|
39
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
Fu H, Yu C, Li X, Bao H, Zhang B, Chen Z, Zhang Z. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility. J Mater Chem B 2021; 9:10003-10014. [PMID: 34874044 DOI: 10.1039/d1tb01914g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have aroused ever-increasing interest for their cell/biomaterial delivery ability through minimally invasive procedures. Nevertheless, it is still a challenge to simply fabricate natural biopolymer-based injectable hydrogels possessing satisfactory mechanical properties, bioadhesion, and cell delivery ability. Herein, we describe a facile dual crosslinking (DC) strategy for preparing extracellular matrix (ECM) mimetic hydrogels with desirable comprehensive performance. The chondroitin sulfate (CS)- and gelatin (Gel)-based single crosslinked (SC) hydrogels were first developed via reversible borate ester bonds, and further strengthened through the Michael-addition crosslinking reaction or visible-light initiated photopolymerization with thiol-containing polyethylene glycol (PEG) crosslinkers. The dynamic SC hydrogels showed good injectability, pH-sensitive gel-sol transformation, and self-adhesion ability to various biological tissues such as skin, liver, and intervertebral disc. The mechanically tough DC hydrogels displayed tunable stiffness, and resilience to compression load (up to 90% strain) owing to the effective energy dissipation mechanism. The formed DC hydrogels after subcutaneous injection well integrated with surrounding tissues and exhibited fast self-recovery properties. Moreover, the photoencapsulation of human mesenchymal stem cells (hMSCs) within the developed DC hydrogels was achieved and has been proved to be biocompatible, highlighting the great potential of the photopolymerized DC hydrogels in cell delivery and three-dimensional (3D) cell culture. This biomimetic, mechanically resilient, adhesive, and cytocompatible injectable DC hydrogel could serve as a promising candidate for tissue engineering.
Collapse
Affiliation(s)
- Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China. .,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Beijing 100049, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Bo Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
41
|
Gilpin A, Zeng Y, Hoque J, Ryu JH, Yang Y, Zauscher S, Eward W, Varghese S. Self-Healing of Hyaluronic Acid to Improve In Vivo Retention and Function. Adv Healthc Mater 2021; 10:e2100777. [PMID: 34601809 PMCID: PMC8666142 DOI: 10.1002/adhm.202100777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied. The in vitro findings showed that self-healing HA designed to undergo self-repair improves lubrication, enhances free radical scavenging, and attenuates enzymatic degradation compared to unmodified HA. Longitudinal imaging following intraarticular injection of self-healing HA shows improved in vivo retention despite its low molecular weight. Concomitant with these functions, intraarticular injection of self-healing HA mitigates anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties such as self-healing can be used to surpass the existing capabilities of biolubricants.
Collapse
Affiliation(s)
- Anna Gilpin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yong Yang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - William Eward
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Shyni Varghese
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| |
Collapse
|
42
|
Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines 2021; 9:1113. [PMID: 34572298 PMCID: PMC8466770 DOI: 10.3390/biomedicines9091113] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Hyaluronic acid (HA) hydrogels display a wide variety of biomedical applications ranging from tissue engineering to drug vehiculization and controlled release. To date, most of the commercially available hyaluronic acid hydrogel formulations are produced under conditions that are not compatible with physiological ones. This review compiles the currently used approaches for the development of hyaluronic acid hydrogels under physiological/mild conditions. These methods include dynamic covalent processes such as boronic ester and Schiff-base formation and click chemistry mediated reactions such as thiol chemistry processes, azide-alkyne, or Diels Alder cycloaddition. Thermoreversible gelation of HA hydrogels at physiological temperature is also discussed. Finally, the most outstanding biomedical applications are indicated for each of the HA hydrogel generation approaches.
Collapse
Affiliation(s)
- Luis Andrés Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain;
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain;
| | - José María Alonso
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Raúl Pérez-González
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Virginia Sáez-Martínez
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| |
Collapse
|
43
|
Kim MH, Nguyen H, Chang CY, Lin CC. Dual Functionalization of Gelatin for Orthogonal and Dynamic Hydrogel Cross-Linking. ACS Biomater Sci Eng 2021; 7:4196-4208. [PMID: 34370445 DOI: 10.1021/acsbiomaterials.1c00709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gelatin-based hydrogels are widely used in biomedical fields because of their abundance of bioactive motifs that support cell adhesion and matrix remodeling. Although inherently bioactive, unmodified gelatin exhibits temperature-dependent rheology and solubilizes at body temperature, making it unstable for three-dimensional (3D) cell culture. Therefore, the addition of chemically reactive motifs is required to render gelatin-based hydrogels with highly controllable cross-linking kinetics and tunable mechanical properties that are critical for 3D cell culture. This article provides a series of methods toward establishing orthogonally cross-linked gelatin-based hydrogels for dynamic 3D cell culture. In particular, we prepared dually functionalized gelatin macromers amenable for sequential, orthogonal covalent cross-linking. Central to this material platform is the synthesis of norbornene-functionalized gelatin (GelNB), which forms covalently cross-linked hydrogels via orthogonal thiol-norbornene click cross-linking. Using GelNB as the starting material, we further detail the methods for synthesizing gelatin macromers susceptible to hydroxyphenylacetic acid (HPA) dimerization (i.e., GelNB-HPA) and hydrazone bonding (i.e., GelNB-CH) for on-demand matrix stiffening. Finally, we outline the protocol for synthesizing a gelatin macromer capable of adjusting hydrogel stress relaxation via boronate ester bonding (i.e., GelNB-BA). The combination of these orthogonal chemistries affords a wide range of gelatin-based hydrogels as biomimetic matrices in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Han Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
44
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
45
|
Suo H, Hussain M, Wang H, Zhou N, Tao J, Jiang H, Zhu J. Injectable and pH-Sensitive Hyaluronic Acid-Based Hydrogels with On-Demand Release of Antimicrobial Peptides for Infected Wound Healing. Biomacromolecules 2021; 22:3049-3059. [PMID: 34128646 DOI: 10.1021/acs.biomac.1c00502] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibiotics' abuse in bacteria-infected wounds has threatened patients' lives and burdened medical systems. Hence, antibiotic-free hydrogel-based biomaterials, which exhibit biostability, on-demand release of antibacterial agents, and long-lasting antimicrobial activity, are highly desired for the treatment of chronic bacteria-infected wounds. Herein, we developed a hyaluronic acid (HA)-based composite hydrogel, with an antimicrobial peptide [AMP, KK(SLKL)3KK] as a cross-linking agent through Schiff's base formation, which exhibited an acidity-triggered release of AMP (pathological environment in bacteria-infected wounds, pH ∼ 5.5-5.6). During the self-assembly process, AMP adopted an antiparallel β-sheet secondary structure due to the alternate arrangement of hydrophobic and hydrophilic residues of amino acids. Owing to Schiff's base formation between the primary amines derived from lysine residues and the aldehydes in oxidized HA, the AMP-HA composite hydrogel exhibited injectability, high biostability, and enhanced mechanical strength. Importantly, both AMP and the AMP-HA composite showed excellent broad-spectrum antibacterial activity in vitro and in vivo. Specifically, the AMP-HA composite hydrogel exhibited on-demand full thickness wound healing in an infected mice model. Therefore, this work provides an efficient strategy to fabricate antibiotic-free hydrogel-based biomaterials for the management of chronic bacteria-infected wounds.
Collapse
Affiliation(s)
- Huinan Suo
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Mubashir Hussain
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Hua Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Nuoya Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| |
Collapse
|
46
|
Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021; 10:e2100234. [PMID: 33987970 DOI: 10.1002/adhm.202100234] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Designing simple biomaterials to replicate the biochemical and mechanical properties of tissues is an ongoing challenge in tissue engineering. For several decades, new biomaterials have been engineered using cytocompatible chemical reactions and spontaneous ligations via click chemistries to generate scaffolds and water swollen polymer networks, known as hydrogels, with tunable properties. However, most of these materials are static in nature, providing only macroscopic tunability of the scaffold mechanics, and do not reflect the dynamic environment of natural extracellular microenvironment. For more complex applications such as organoids or co-culture systems, there remain opportunities to investigate cells that locally remodel and change the physicochemical properties within the matrices. In this review, advanced biomaterials where dynamic covalent chemistry is used to produce stable 3D cell culture models and high-resolution constructs for both in vitro and in vivo applications, are discussed. The implications of dynamic covalent chemistry on viscoelastic properties of in vitro models are summarized, case studies in 3D cell culture are critically analyzed, and opportunities to further improve the performance of biomaterials for 3D tissue engineering are discussed.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Alexander E. G. Baker
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario M5S 3E5 Canada
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto Ontario M5S 3E1 Canada
| |
Collapse
|
47
|
Drozdov AD, deClaville Christiansen J. Thermo-Viscoelastic Response of Protein-Based Hydrogels. Bioengineering (Basel) 2021; 8:73. [PMID: 34072950 PMCID: PMC8228610 DOI: 10.3390/bioengineering8060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Because of the bioactivity and biocompatibility of protein-based gels and the reversible nature of bonds between associating coiled coils, these materials demonstrate a wide spectrum of potential applications in targeted drug delivery, tissue engineering, and regenerative medicine. The kinetics of rearrangement (association and dissociation) of the physical bonds between chains has been traditionally studied in shear relaxation tests and small-amplitude oscillatory tests. A characteristic feature of recombinant protein gels is that chains in the polymer network are connected by temporary bonds between the coiled coil complexes and permanent cross-links between functional groups of amino acids. A simple model is developed for the linear viscoelastic behavior of protein-based gels. Its advantage is that, on the one hand, the model only involves five material parameters with transparent physical meaning and, on the other, it correctly reproduces experimental data in shear relaxation and oscillatory tests. The model is applied to study the effects of temperature, the concentration of proteins, and their structure on the viscoelastic response of hydrogels.
Collapse
Affiliation(s)
- Aleksey D. Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark;
| | | |
Collapse
|
48
|
Kumar A, Nutan B, Jewrajka SK. Modulation of Properties through Covalent Bond Induced Formation of Strong Ion Pairing between Polyelectrolytes in Injectable Conetwork Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:3374-3387. [PMID: 35014422 DOI: 10.1021/acsabm.0c01673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In situ simultaneous formation of both covalent linkages and ion pair is challenging yet necessary to control the biological properties of a hydrogel. We report that the generation of covalent linkages (+N-C) facilitates the simultaneous formation of ion pairs between polyelectrolytes (PEs) in a hydrogel network. Co-injection of tertiary amine functional macromolecules and reactive poly(ethylene glycol) (PEG) containing negatively charged PE leads to the formation of hydrogel conetworks consisting of covalent junctions and ion pairs. Our design is based on the gradual appearance of +N-C junctions followed by formation of ion pairs. This strategy provides an easy access to hydrogel networks bearing a predetermined proportion of ion pair and covalent cross-linking junction. The proportion of ion pair could be varied by introducing a precalculated proportion of mono- and difunctional reactive PEG in the hydrogel system. The topology of the prepolymer and the hydrogel could be modulated (graft) during hydrogel formation. This approach is applicable to obtain covalent/ionic, covalent bond induced purely ionic, and purely covalent hydrogels of several macromolecular entities. The effect of ion pairing in the hydrogels is strongly reflected in the modulus, strain bearing, degradation, free volume, swelling, and drug release properties. The hydrogels exhibit microscopic recovery of modulus after application of high amplitude strain depending on the prepolymer concentration (chain entanglement) and nature of hydrogel network. The hydrogels are hemocompatible, and the covalent/ionic hydrogels show a slower release of methotrexate than that of the purely covalent hydrogel. This work provides an understanding for the in situ construction and manipulation of biological properties of hydrogels through the covalent bond induced formation of a strong ion pair.
Collapse
Affiliation(s)
- Avinash Kumar
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
49
|
Lyu H, Kevlishvili I, Yu X, Liu P, Dong G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 2021; 372:175-182. [PMID: 33833121 DOI: 10.1126/science.abg5526] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Mild methods to cleave the carbon-oxygen (C-O) bond in alkyl ethers could simplify chemical syntheses through the elaboration of these robust, readily available precursors. Here we report that dibromoboranes react with alkyl ethers in the presence of a nickel catalyst and zinc reductant to insert boron into the C-O bond. Subsequent reactivity can effect oxygen-to-nitrogen substitution or one-carbon homologation of cyclic ethers and more broadly streamline preparation of bioactive compounds. Mechanistic studies reveal a cleavage-then-rebound pathway via zinc/nickel tandem catalysis.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ilia Kevlishvili
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xuan Yu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Su T, Zhang M, Zeng Q, Pan W, Huang Y, Qian Y, Dong W, Qi X, Shen J. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering. Bioact Mater 2021; 6:579-588. [PMID: 33005823 PMCID: PMC7509181 DOI: 10.1016/j.bioactmat.2020.09.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide hydrogels are widely used in tissue engineering because of their superior biocompatibility and low immunogenicity. However, many of these hydrogels are unrealistic for practical applications as the cost of raw materials is high, and the fabrication steps are tedious. This study focuses on the facile fabrication and optimization of agarose-polydopamine hydrogel (APG) scaffolds for skin wound healing. The first study objective was to evaluate the effects of polydopamine (PDA) on the mechanical properties, water holding capacity and cell adhesiveness of APG. We observed that APG showed decreased rigidity and increased water content with the addition of PDA. Most importantly, decreased rigidity translated into significant increase in cell adhesiveness. Next, the slow biodegradability and high biocompatibility of APG with the highest PDA content (APG3) was confirmed. In addition, APG3 promoted full-thickness skin defect healing by accelerating collagen deposition and promoting angiogenesis. Altogether, we have developed a straightforward and efficient strategy to construct functional APG scaffold for skin tissue engineering, which has translation potentials in clinical practice.
Collapse
Affiliation(s)
- Ting Su
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- School of Chemistry & Materials Engineering, Fuyang Normal University, Fuyang, 236037, China
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Mengying Zhang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Qiankun Zeng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenhao Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yijing Huang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yuna Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|