1
|
Fardel O, Moreau A, Carteret J, Denizot C, Le Vée M, Parmentier Y. The Competitive Counterflow Assay for Identifying Drugs Transported by Solute Carriers: Principle, Applications, Challenges/Limits, and Perspectives. Eur J Drug Metab Pharmacokinet 2024; 49:527-539. [PMID: 38958896 DOI: 10.1007/s13318-024-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives. The CCF assay is based on the decrease of the steady-state accumulation of a tracer substrate in SLC-positive cells, caused by candidate substrates. Reviewed data highlight the fact that the CCF assay has been used to identify substrates and non-substrates for organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs). The performance values of the CCF assay, calculated from available CCF study data compared with reference functional uptake assay data, are, however, rather mitigated, indicating that the predictability of the CCF method for assessing SLC-mediated transportability of drugs is currently not optimal. Further studies, notably aimed at standardizing the CCF assay and developing CCF-based high-throughput approaches, are therefore required in order to fully precise the interest and relevance of the CCF assay for identifying substrates and non-substrates of SLCs.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35043, Rennes, France.
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Yannick Parmentier
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Zhang X, Geng Q, Lin L, Zhang L, Shi C, Liu B, Yan L, Cao Z, Li L, Lu P, Tan Y, He X, Zhao N, Li L, Lu C. Insights gained into the injury mechanism of drug and herb induced liver injury in the hepatic microenvironment. Toxicology 2024; 507:153900. [PMID: 39079402 DOI: 10.1016/j.tox.2024.153900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Drug-Induced Liver Injury (DILI) and herb Induced Liver Injury (HILI) continues to pose a substantial challenge in both clinical practice and drug development, representing a grave threat to patient well-being. This comprehensive review introduces a novel perspective on DILI and HILI by thoroughly exploring the intricate microenvironment of the liver. The dynamic interplay among hepatocytes, sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, cholangiocytes, and the intricate vascular network assumes a central role in drug metabolism and detoxification. Significantly, this microenvironment is emerging as a critical determinant of susceptibility to DILI and HILI. The review delves into the multifaceted interactions within the liver microenvironment, providing valuable insights into the complex mechanisms that underlie DILI and HILI. Furthermore, we discuss potential strategies for mitigating drug-induced liver injury by targeting these influential factors, emphasizing their clinical relevance. By highlighting recent advances and future prospects, our aim is to shed light on the promising avenue of leveraging the liver microenvironment for the prevention and mitigation of DILI and HILI. This deeper understanding is crucial for advancing clinical practices and ensuring patient safety in the realm of DILI and HILI.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Hussaini SA, Waziri B, Dickens C, Duarte R. Pharmacogenetics of Calcineurin inhibitors in kidney transplant recipients: the African gap. A narrative review. Pharmacogenomics 2024; 25:329-341. [PMID: 39109483 PMCID: PMC11404701 DOI: 10.1080/14622416.2024.2370761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Calcineurin inhibitors (CNIs) are the mainstay of immunosuppression in kidney transplantation. Interpatient variability in the disposition of calcineurin inhibitors is a well-researched phenomenon and has a well-established genetic contribution. There is great diversity in the makeup of African genomes, but very little is known about the pharmacogenetics of CNIs and transplant outcomes. This review focuses on genetic variants of calcineurin inhibitors' metabolizing enzymes (CYP3A4, CYP3A5), related molecules (POR, PPARA) and membrane transporters involved in the metabolism of calcineurin inhibitors. Given the genetic diversity across the African continent, it is imperative to generate pharmacogenetic data, especially in the era of personalized medicine and emphasizes the need for studies specific to African populations. The study of allelic variants in populations where they have greater frequencies will help answer questions regarding their impact. We aim to fill the knowledge gaps by reviewing existing research and highlighting areas where African research can contribute.
Collapse
Affiliation(s)
- Sadiq Aliyu Hussaini
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
- Department of Pharmacology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Bala Waziri
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Peng J, Yi J, Yang G, Huang Z, Cao D. ISTransbase: an online database for inhibitor and substrate of drug transporters. Database (Oxford) 2024; 2024:baae053. [PMID: 38943608 PMCID: PMC11214160 DOI: 10.1093/database/baae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Drug transporters, integral membrane proteins found throughout the human body, play critical roles in physiological and biochemical processes through interactions with ligands, such as substrates and inhibitors. The extensive and disparate data on drug transporters complicate understanding their complex relationships with ligands. To address this challenge, it is essential to gather and summarize information on drug transporters, inhibitors and substrates, and simultaneously develop a comprehensive and user-friendly database. Current online resources often provide fragmented information and have limited coverage of drug transporter substrates and inhibitors, highlighting the need for a specialized, comprehensive and openly accessible database. ISTransbase addresses this gap by amassing a substantial amount of data from literature, government documents and open databases. It includes 16 528 inhibitors and 4465 substrates of 163 drug transporters from 18 different species, resulting in a total of 93 841 inhibitor records and 51 053 substrate records. ISTransbase provides detailed insights into drug transporters and their inhibitors/substrates, encompassing transporter and molecule structure, transporter function and distribution, as well as experimental methods and results from transport or inhibition experiments. Furthermore, ISTransbase offers three search strategies that allow users to retrieve drugs and transporters based on multiple selectable constraints, as well as perform checks for drug-drug interactions. Users can also browse and download data. In summary, ISTransbase (https://istransbase.scbdd.com/) serves as a valuable resource for accurately and efficiently accessing information on drug transporter inhibitors and substrates, aiding researchers in exploring drug transporter mechanisms and assisting clinicians in mitigating adverse drug reactions Database URL: https://istransbase.scbdd.com/.
Collapse
Affiliation(s)
- Jinfu Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
| | - Jiacai Yi
- School of Computer Science, National University of Defense Technology, No.869 Furong Middle Road, Changsha, Hunan 410073, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
- XiangYa School of Medicine, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
| |
Collapse
|
5
|
Chothe PP, Arya V, Prasad B, Ramsden D, Taskar K. Innovations, Opportunities, and Challenges for Predicting Alteration in Drug-Metabolizing Enzyme and Transporter Activity in Specific Populations. Drug Metab Dispos 2023; 51:1547-1550. [PMID: 37775331 PMCID: PMC10658904 DOI: 10.1124/dmd.123.001453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Drug-metabolizing enzymes and transporters (DMETs) are key regulators of the pharmacokinetics, efficacy, and toxicity of therapeutics. Over the past two decades, significant advancements in in vitro methodologies, targeted proteomics, in vitro to in vivo extrapolation methods, and integrated computational approaches such as physiologically based pharmacokinetic modeling have unequivocally contributed to improving our ability to quantitatively predict the role of DMETs in absorption, distribution, metabolism, and excretion and drug-drug interactions. However, the paucity of data regarding alterations in DMET activity in specific populations such as pregnant individuals, lactation, pediatrics, geriatrics, organ impairment, and disease states such as, cancer, kidney, and liver diseases and inflammation has restricted our ability to realize the full potential of these recent advancements. We envision that a series of carefully curated articles in a special supplementary issue of Drug Metabolism and Disposition will summarize the latest progress in in silico, in vitro, and in vivo approaches to characterize alteration in DMET activity and quantitatively predict drug disposition in specific populations. In addition, the supplementary issue will underscore the current scientific knowledge gaps that present formidable barriers to fully understand the clinical implications of altered DMET activity in specific populations and highlight opportunities for multistakeholder collaboration to advance our collective understanding of this rapidly emerging area. SIGNIFICANCE STATEMENT: This commentary highlights current knowledge and identifies gaps and key challenges in understanding the role of drug-metabolizing enzymes and transporters (DMETs) in drug disposition in specific populations. With this commentary for the special issue in Drug Metabolism and Disposition, the authors intend to increase interest and invite potential contributors whose research is focused or has aided in expanding the understanding around the role and impact of DMETs in drug disposition in specific populations.
Collapse
Affiliation(s)
- Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, Massachusetts (P.P.C., D.R.); Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland (V.A.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, United Kingdom (K.T.)
| | - Vikram Arya
- Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, Massachusetts (P.P.C., D.R.); Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland (V.A.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, United Kingdom (K.T.)
| | - Bhagwat Prasad
- Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, Massachusetts (P.P.C., D.R.); Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland (V.A.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, United Kingdom (K.T.)
| | - Diane Ramsden
- Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, Massachusetts (P.P.C., D.R.); Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland (V.A.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, United Kingdom (K.T.)
| | - Kunal Taskar
- Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, Massachusetts (P.P.C., D.R.); Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland (V.A.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, United Kingdom (K.T.)
| |
Collapse
|
6
|
Lane TR, Urbina F, Zhang X, Fye M, Gerlach J, Wright SH, Ekins S. Machine Learning Models Identify New Inhibitors for Human OATP1B1. Mol Pharm 2022; 19:4320-4332. [PMID: 36269563 PMCID: PMC9873312 DOI: 10.1021/acs.molpharmaceut.2c00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The uptake transporter OATP1B1 (SLC01B1) is largely localized to the sinusoidal membrane of hepatocytes and is a known victim of unwanted drug-drug interactions. Computational models are useful for identifying potential substrates and/or inhibitors of clinically relevant transporters. Our goal was to generate OATP1B1 in vitro inhibition data for [3H] estrone-3-sulfate (E3S) transport in CHO cells and use it to build machine learning models to facilitate a comparison of seven different classification models (Deep learning, Adaboosted decision trees, Bernoulli naïve bayes, k-nearest neighbors (knn), random forest, support vector classifier (SVC), logistic regression (lreg), and XGBoost (xgb)] using ECFP6 fingerprints to perform 5-fold, nested cross validation. In addition, we compared models using 3D pharmacophores, simple chemical descriptors alone or plus ECFP6, as well as ECFP4 and ECFP8 fingerprints. Several machine learning algorithms (SVC, lreg, xgb, and knn) had excellent nested cross validation statistics, particularly for accuracy, AUC, and specificity. An external test set containing 207 unique compounds not in the training set demonstrated that at every threshold SVC outperformed the other algorithms based on a rank normalized score. A prospective validation test set was chosen using prediction scores from the SVC models with ECFP fingerprints and were tested in vitro with 15 of 19 compounds (84% accuracy) predicted as active (≥20% inhibition) showed inhibition. Of these compounds, six (abamectin, asiaticoside, berbamine, doramectin, mobocertinib, and umbralisib) appear to be novel inhibitors of OATP1B1 not previously reported. These validated machine learning models can now be used to make predictions for drug-drug interactions for human OATP1B1 alongside other machine learning models for important drug transporters in our MegaTrans software.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Xiaohong Zhang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Margret Fye
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Stephen H. Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| |
Collapse
|
7
|
Volpe DA, Joshi A, Arya V. Do differences in cell lines and methods used for calculation of IC 50 values influence categorisation of drugs as P-glycoprotein substrates and inhibitors? Xenobiotica 2022; 52:751-757. [PMID: 36218364 DOI: 10.1080/00498254.2022.2135040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro bidirectional assays are employed to determine whether a drug is a substrate and/or inhibitor of P-glycoprotein (P-gp) transport. Differences between cell lines and calculation methods can lead to variations in the determination of efflux ratios (ER) and IC50 values used to classify a drug as a P-gp substrate and inhibitor, respectively.Information was collected from the literature on ER and IC50 values with digoxin as the probe substrate using different cell lines and inhibition calculation methods. Predictive performance was evaluated by comparing [Igut]/IC50 ratios versus reported in vivo results.For known P-gp substrates, 50% of the drugs had their highest ER value in MDCK-MDR1 cells while 81% had their lowest ER value in Caco-2 cells. For 30 drugs with inhibition data, lower mean IC50 values were often observed with the Caco-2 cells and calculations based on ER. Based on the cut-off criteria of [Igut]/IC50 ≥ 10, there were no significant differences in positive or negative predictive values based on either cell line or calculation method for the drugs.Within this limited dataset, differences between cell lines or IC50 calculation methods do not seem to impact the prediction of in vivo P-gp inhibitor classification.
Collapse
Affiliation(s)
- Donna A Volpe
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Abhay Joshi
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
8
|
Kidney Transporters Drug Discovery, Development, and Safety. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Miller SR, Lane TR, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Multiple Computational Approaches for Predicting Drug Interactions with Human Equilibrative Nucleoside Transporter 1. DRUG METABOLISM AND DISPOSITION: THE BIOLOGICAL FATE OF CHEMICALS 2021; 49:479-489. [PMID: 33980604 DOI: 10.1124/dmd.121.000423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
Equilibrativenucleoside transporters (ENTs) participate in the pharmacokinetics and disposition of nucleoside analog drugs. Understanding drug interactions with the ENTs may inform and facilitate the development of new drugs, including chemotherapeutics and antivirals that require access to sanctuary sites such as the male genital tract. This study created three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors using Kt and IC50 data curated from the literature. Substrate pharmacophores for ENT1 and ENT2 are distinct, with partial overlap of hydrogen bond donors, whereas the inhibitor pharmacophores predominantly feature hydrogen bond acceptors. Mizoribine and ribavirin mapped to the ENT1 substrate pharmacophore and proved to be substrates of the ENTs. The presence of the ENT-specific inhibitor 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) decreased mizoribine accumulation in ENT1 and ENT2 cells (ENT1, ∼70% decrease, P = 0.0046; ENT2, ∼50% decrease, P = 0.0012). NBMPR also decreased ribavirin accumulation in ENT1 and ENT2 cells (ENT1: ∼50% decrease, P = 0.0498; ENT2: ∼30% decrease, P = 0.0125). Darunavir mapped to the ENT1 inhibitor pharmacophore and NBMPR did not significantly influence darunavir accumulation in either ENT1 or ENT2 cells (ENT1: P = 0.28; ENT2: P = 0.53), indicating that darunavir's interaction with the ENTs is limited to inhibition. These computational and in vitro models can inform compound selection in the drug discovery and development process, thereby reducing time and expense of identification and optimization of ENT-interacting compounds. SIGNIFICANCE STATEMENT: This study developed computational models of human equilibrative nucleoside transporters (ENTs) to predict drug interactions and validated these models with two compounds in vitro. Identification and prediction of ENT1 and ENT2 substrates allows for the determination of drugs that can penetrate tissues expressing these transporters.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Thomas R Lane
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Kimberley M Zorn
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Sean Ekins
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| |
Collapse
|
10
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
11
|
Kermanizadeh A, Powell LG, Stone V, Møller P. Nanodelivery systems and stabilized solid-drug nanoparticles for orally administered medicine: current landscape. Int J Nanomedicine 2018; 13:7575-7605. [PMID: 30510419 PMCID: PMC6248225 DOI: 10.2147/ijn.s177418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of nanoparticles as a means of targeted delivery of therapeutics and imaging agents could greatly enhance the transport of biologically active contents to specific target tissues, while avoiding or reducing potentially undesired side effects. Generally speaking, the oral route of administration is associated with good patient compliance, as it is convenient, economical, noninvasive, and does not require special training. Here, we review the progress of the utilization of nanodelivery-system carriers or stabilized solid-drug nanoparticles following oral administration, with particular attention on toxicological data. Mechanisms of cytotoxicity are discussed and the problem of extrapolating knowledge to human scenarios highlighted. Additionally, issues associated with administration of drugs via the oral route are underlined, while strategies utilized to overcome these are highlighted. This review aims to offer a balanced overview of strategies currently being used in the application of nanosize constructs for oral medical applications.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- NanoSafety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK, .,Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark,
| | - Leagh G Powell
- NanoSafety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK,
| | - Vicki Stone
- NanoSafety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK,
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark,
| |
Collapse
|
12
|
Abstract
Transporters play important roles in absorption, distribution, metabolism, and elimination (ADME) processes, as well as drug pharmacokinetics (PK) and pharmacodynamics (PD). They are also important in maintaining the homeostasis of endogenous compounds and nutrients in the body. Increasing evidences also suggest that they are important in mediating drug-drug interactions (DDIs). While the significance of transporters in drug pharmacodynamics and DDIs are beyond the scope of this overview, the basic concepts of transporters, their contributions in membrane permeation processes, and their roles in influencing drug ADME pathway and PK will be discussed. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte Corporation, Wilmington, Delaware
| |
Collapse
|
13
|
Fedecostante M, Westphal KGC, Buono MF, Sanchez Romero N, Wilmer MJ, Kerkering J, Baptista PM, Hoenderop JG, Masereeuw R. Recellularized Native Kidney Scaffolds as a Novel Tool in Nephrotoxicity Screening. Drug Metab Dispos 2018; 46:1338-1350. [PMID: 29980578 DOI: 10.1124/dmd.118.080721] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Drug-induced kidney injury in medicinal compound development accounts for over 20% of clinical trial failures and involves damage to different nephron segments, mostly the proximal tubule. Yet, currently applied cell models fail to reliably predict nephrotoxicity; neither are such models easy to establish. Here, we developed a novel three-dimensional (3D) nephrotoxicity platform on the basis of decellularized rat kidney scaffolds (DS) recellularized with conditionally immortalized human renal proximal tubule epithelial cells overexpressing the organic anion transporter 1 (ciPTEC-OAT1). A 5-day SDS-based decellularization protocol was used to generate DS, of which 100-μm slices were cut and used for cell seeding. After 8 days of culturing, recellularized scaffolds (RS) demonstrated 3D-tubule formation along with tubular epithelial characteristics, including drug transporter function. Exposure of RS to cisplatin (CDDP), tenofovir (TFV), or cyclosporin A (CsA) as prototypical nephrotoxic drugs revealed concentration-dependent reduction in cell viability, as assessed by PrestoBlue and Live/Dead staining assays. This was most probably attributable to specific uptake of CDDP by the organic cation transporter 2 (OCT2), TFV through organic anion transporter 1 (OAT1), and CsA competing for P-glycoprotein-mediated efflux. Compared with 2D cultures, RS showed an increased sensitivity to cisplatin and tenofovir toxicity after 24-hour exposure (9 and 2.2 fold, respectively). In conclusion, we developed a physiologically relevant 3D nephrotoxicity screening platform that could be a novel tool in drug development.
Collapse
Affiliation(s)
- Michele Fedecostante
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Koen G C Westphal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Michele F Buono
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Natalia Sanchez Romero
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Martijn J Wilmer
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Janis Kerkering
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Pedro Miguel Baptista
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Joost G Hoenderop
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands (M.F., K.G.C.W., M.F.B., N.S.R., R.M.); Aragon's Health Science Institutes (IACS), Zaragoza, Spain (N.S.M.); Departments of Pharmacology and Toxicology (M.J.W., J.K.) and Physiology (J.G.H.), Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain (P.M.B.); Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain (P.M.B.); Jiménez Díaz Foundation Health Research Institute, Madrid, Spain (P.M.B.); and Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Spain (P.M.B.)
| |
Collapse
|
14
|
Affiliation(s)
- Vikram Arya
- Division of Clinical Pharmacology 4, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
| |
Collapse
|
15
|
Zhao PF, Liu ZQ. 2-Isocyano glucose used in Ugi four-component reaction: An approach to enhance inhibitory effect against DNA oxidation. Eur J Med Chem 2017; 135:458-466. [DOI: 10.1016/j.ejmech.2017.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 12/28/2022]
|
16
|
Cheng Y, Chen S, Freeden C, Chen W, Zhang Y, Abraham P, Nelson DM, Humphreys WG, Gan J, Lai Y. Bile Salt Homeostasis in Normal and Bsep Gene Knockout Rats with Single and Repeated Doses of Troglitazone. J Pharmacol Exp Ther 2017. [PMID: 28645914 DOI: 10.1124/jpet.117.242370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Shenjue Chen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Weiqi Chen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Pamela Abraham
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - David M Nelson
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Jinping Gan
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| |
Collapse
|
17
|
Kigen G, Edwards G. Drug-transporter mediated interactions between anthelminthic and antiretroviral drugs across the Caco-2 cell monolayers. BMC Pharmacol Toxicol 2017; 18:20. [PMID: 28468637 PMCID: PMC5415745 DOI: 10.1186/s40360-017-0129-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug interactions between antiretroviral drugs (ARVs) and anthelminthic drugs, ivermectin (IVM) and praziquantel (PZQ) were assessed by investigating their permeation through the Caco-2 cell monolayers in a transwell. The impact of anthelminthics on the transport of ARVs was determined by assessing the apical to basolateral (AP → BL) [passive] and basolateral to apical (BL → AP) [efflux] directions alone, and in presence of an anthelminthic. The reverse was conducted for the assessment of the influence of ARVs on anthelminthics. METHODS Samples from the AP and BL compartments were taken at 60, 120, 180 and 240 min and quantified either by HPLC or radiolabeled assay using a liquid scintillating counter for the respective drugs. Transepithelial resistance (TEER) was used to assess the integrity of the monolayers. The amount of compound transported per second (apparent permeability, Papp) was calculated for both AP to BL (PappAtoB), and BL to AP (PappBtoA) movements. Samples collected after 60 min were used to determine the efflux ratio (ER), quotient of secretory permeability and absorptive permeability (PappBL-AP/PappAP-BL). The reverse, (PappAP-BL/PappBL-AP) constituted the uptake ratio. The impact of SQV, EFV and NVP on the transport of both IVM and PZQ were investigated. The effect of LPV on the transport of IVM was also determined. The influence of IVM on the transport of SQV, NVP, LPV and EFV; as well as the effect PZQ on the transport of SQV of was also investigated, and a two-tailed p value of <0.05 was considered significant. RESULTS IVM significantly inhibited the efflux transport (BL → AP movement) of LPV (ER; 6.7 vs. 0.8, p = 0.0038) and SQV (ER; 3.1 vs. 1.2 p = 0.00328); and increased the efflux transport of EFV (ER; 0.7 vs. 0.9, p = 0.031) suggesting the possibility of drug transporter mediated interactions between the two drugs. NVP increased the efflux transport of IVM (ER; 0.8 vs. 1.8, p = 0.0094). CONCLUSIONS The study provides in vitro evidence of potential interactions between IVM, an anthelminthic drug with antiretroviral drugs; LPV, SQV, NVP and EFV. Further investigations should be conducted to investigate the possibility of in vivo interactions.
Collapse
Affiliation(s)
- Gabriel Kigen
- Department of Pharmacology and Toxicology, Moi University School of Medicine, P.O. Box 4606, 30100 Eldoret, Kenya
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE UK
| | - Geoffrey Edwards
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE UK
| |
Collapse
|
18
|
Cho T, Uetrecht J. How Reactive Metabolites Induce an Immune Response That Sometimes Leads to an Idiosyncratic Drug Reaction. Chem Res Toxicol 2016; 30:295-314. [DOI: 10.1021/acs.chemrestox.6b00357] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tiffany Cho
- Faculty
of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Jack Uetrecht
- Faculty
of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|