1
|
Korade Z, Anderson AC, Sharma K, Tallman KA, Kim HYH, Porter NA, Gripp KW, Mirnics K. Inhibition of post-lanosterol biosynthesis by fentanyl: potential implications for Fetal Fentanyl Syndrome (FFS). Mol Psychiatry 2024; 29:3942-3949. [PMID: 38844533 DOI: 10.1038/s41380-024-02622-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 12/05/2024]
Abstract
A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7+/+ and DHCR7+/- genotype. Our results revealed that in vitro exposure to fentanyl disrupted sterol biosynthesis across all four in vitro models. The sterol biosynthesis disruption by fentanyl was complex, and encompassed the majority of post-lanosterol intermediates, including elevated 7-DHC and decreased desmosterol (DES) levels across all investigated models. The overall findings suggested that maternal fentanyl use in the context of an opioid use disorder leads to FFS in the developing fetus through a strong disruption of the whole post-lanosterol pathway that is more complex than a simple DHCR7 inhibition. In follow-up experiments we found that heterozygous DHCR7+/- HDFs were significantly more susceptible to the sterol biosynthesis inhibitory effects of fentanyl than wild-type DHCR7+/+ fibroblasts. These data suggest that DHCR7+/- heterozygosity of mother and/or developing child (and potentially other sterol biosynthesis genes), when combined with maternal fentanyl use disorder, might be a significant contributory factor to the emergence of FFS in the exposed offspring. In a broader context, we believe that evaluation of new and existing medications for their effects on sterol biosynthesis should be an essential consideration during drug safety determinations, especially in pregnancy.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Allison C Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kanika Sharma
- Mass Spectrometry Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37240, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, 19803, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
Sfogliarini C, Tran LH, Cesta CM, Allegretti M, Locati M, Vegeto E. AEBS inhibition in macrophages: Augmenting reality for SERMs repurposing against infections. Biochem Pharmacol 2024; 229:116544. [PMID: 39293500 DOI: 10.1016/j.bcp.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Beyond their clinical use as selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen have attracted recent attention for their favorable activity against a broad range of dangerous human pathogens. While consistently demonstrated to occur independently on classic estrogen receptors, the mechanisms underlying SERMs antimicrobial efficacy remain still poorly elucidated, but fundamental to benefit from repurposing strategies of these drugs. Macrophages are innate immune cells that protect from infections by rapidly reprogramming their metabolic state, particularly cholesterol disposal, which is at the center of an appropriate macrophage immune response as well as of the anabolic requirements of both the pathogen and the host cells. The microsomal antiestrogen binding site (AEBS) comprises enzymes involved in the last stages of cholesterol biosynthesis and is a high affinity off-target site for SERMs. We review here recent findings from our laboratory and other research groups in support of the hypothesis that AEBS multiprotein complex represents the candidate pre-genomic target of SERMs immunomodulatory activity. The cholesterol restriction resulting from SERMs-mediated AEBS inhibition may be responsible for boosting inflammatory and antimicrobial pathways that include inflammasome activation, modulation of Toll-like receptors (TLRs) responses, induction of interferon regulatory factor (IRF3) and nuclear factor erythroid 2-related factor 2 (NRF2)-mediated transcriptional programs and, noteworthy, the mitigation of excessive inflammatory and proliferative responses, leading to the overall potentiation of the macrophage response to infections.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lien Hong Tran
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Genaro-Mattos TC, Korade Z, Sahar NE, Angeli JPF, Mirnics K, Peeples ES. Enhancing 7-dehydrocholesterol suppresses brain ferroptosis and tissue injury after neonatal hypoxia-ischemia. Sci Rep 2024; 14:7924. [PMID: 38575644 PMCID: PMC10994918 DOI: 10.1038/s41598-024-58579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Namood-E Sahar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Jose Pedro Friedmann Angeli
- Rudolf Virchow Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68106, USA
- Child Health Research Institute, Omaha, NE, 68198, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Child Health Research Institute, Omaha, NE, 68198, USA.
- Department of Pediatrics, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
4
|
Peeples ES, Mirnics K, Korade Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024; 14:410. [PMID: 38672427 PMCID: PMC11048061 DOI: 10.3390/biom14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.
Collapse
Affiliation(s)
- Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Division of Neonatology, Children’s Nebraska, Omaha, NE 68114, USA
| | - Karoly Mirnics
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Freitas FP, Alborzinia H, Dos Santos AF, Nepachalovich P, Pedrera L, Zilka O, Inague A, Klein C, Aroua N, Kaushal K, Kast B, Lorenz SM, Kunz V, Nehring H, Xavier da Silva TN, Chen Z, Atici S, Doll SG, Schaefer EL, Ekpo I, Schmitz W, Horling A, Imming P, Miyamoto S, Wehman AM, Genaro-Mattos TC, Mirnics K, Kumar L, Klein-Seetharaman J, Meierjohann S, Weigand I, Kroiss M, Bornkamm GW, Gomes F, Netto LES, Sathian MB, Konrad DB, Covey DF, Michalke B, Bommert K, Bargou RC, Garcia-Saez A, Pratt DA, Fedorova M, Trumpp A, Conrad M, Friedmann Angeli JP. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature 2024; 626:401-410. [PMID: 38297129 DOI: 10.1038/s41586-023-06878-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.
Collapse
Affiliation(s)
- Florencio Porto Freitas
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ancély Ferreira Dos Santos
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Palina Nepachalovich
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Lohans Pedrera
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Omkar Zilka
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Inague
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nesrine Aroua
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kamini Kaushal
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bettina Kast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktoria Kunz
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Helene Nehring
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Thamara N Xavier da Silva
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Zhiyi Chen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sena Atici
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sebastian G Doll
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emily L Schaefer
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ifedapo Ekpo
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aline Horling
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Peter Imming
- Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Sayuri Miyamoto
- Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lokender Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Judith Klein-Seetharaman
- Department of Physics, Colorado School of Mines, Golden, CO, USA
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | | | - Isabel Weigand
- Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany
| | - Matthias Kroiss
- Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany
| | - Georg W Bornkamm
- Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Fernando Gomes
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Manjima B Sathian
- Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - David B Konrad
- Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, MO, USA
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center München (HMGU), Neuherberg, Germany
| | - Kurt Bommert
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ana Garcia-Saez
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Wadman E, Fernandes E, Muss C, Powell-Hamilton N, Wojcik MH, Madden JA, Carreon CK, Clark RD, Stenftenagel A, Chikalard K, Kimonis V, Brucker W, Alves C, Gripp KW. A novel syndrome associated with prenatal fentanyl exposure. GENETICS IN MEDICINE OPEN 2023; 1:100834. [PMID: 39669238 PMCID: PMC11613603 DOI: 10.1016/j.gimo.2023.100834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/14/2024]
Abstract
A novel syndrome was suspected in individuals sharing short stature, microcephaly, distinctive facial features, and congenital anomalies. We enrolled 6 patients in an institutional review board approved study and evaluated medical history, findings, facial photographs, and test results across this original cohort. Four additional cases with similar findings were contributed by clinicians from outside institutions, bringing the number of reported cases to 10 and supporting the existence of this novel syndrome. The 6 individuals enrolled into the institutional review board approved study shared microcephaly, short stature, and distinctive facial features. Congenital malformations included cleft palate, talipes equinovarus or rocker bottom feet, and chordee or hypospadias. Short, broad thumbs, single palmar crease, and mild 2,3 toe syndactyly were present. A hypoplastic corpus callosum was noted in 3 of 5 with appropriate evaluation. Their growth and physical findings were suggestive of Smith-Lemli-Opitz syndrome. Biochemical studies shortly after delivery indicated abnormalities in the cholesterol metabolism pathway that subsequently resolved. No shared genomic or genetic cause was identified. All individuals were born after a pregnancy complicated by prenatal exposure to nonprescription opioids, particularly fentanyl, suggesting fentanyl as a teratogen. Prenatal fentanyl exposure possibly interfered with cholesterol metabolism, giving rise to findings resembling Smith-Lemli-Opitz syndrome. This novel syndrome is clinically recognizable. Four additional cases contributed clinically shared similar findings, increasing the number of cases to 10 and supporting a novel syndrome associated with prenatal fentanyl exposure. Assessment of Shepard and Bradford Hill criteria could be consistent with fentanyl as teratogen, though caution is necessary before assigning causality and data replication is needed.
Collapse
Affiliation(s)
- Erin Wadman
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE
| | - Erica Fernandes
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE
| | - Candace Muss
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE
| | | | - Monica H. Wojcik
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- The Manton Center for Orphan Disease Research and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Jill A. Madden
- The Manton Center for Orphan Disease Research and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | | | - Robin D. Clark
- Division of Pediatric Genetics, Loma Linda University Children's Hospital, Loma Linda, CA
| | - Annie Stenftenagel
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine Medical Center, Irvine, CA
| | - Kamal Chikalard
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine Medical Center, Irvine, CA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California-Irvine Medical Center, Irvine, CA
| | - William Brucker
- Division of Medical Genetics, Hasbro Children’s Hospital, Providence, RI
| | | | - Karen W. Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE
| |
Collapse
|
7
|
Korade Z, Tallman KA, Kim HYH, Balog M, Genaro-Mattos TC, Pattnaik A, Mirnics K, Pattnaik AK, Porter NA. Dose-Response Effects of 7-Dehydrocholesterol Reductase Inhibitors on Sterol Profiles and Vesicular Stomatitis Virus Replication. ACS Pharmacol Transl Sci 2022; 5:1086-1096. [PMID: 36407960 PMCID: PMC9667548 DOI: 10.1021/acsptsci.2c00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.
Collapse
Affiliation(s)
- Zeljka Korade
- Department
of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Keri A. Tallman
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hye-Young H. Kim
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marta Balog
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Aryamav Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Asit K. Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Ned A. Porter
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Balog M, Anderson AC, Heffer M, Korade Z, Mirnics K. Effects of Psychotropic Medication on Somatic Sterol Biosynthesis of Adult Mice. Biomolecules 2022; 12:biom12101535. [PMID: 36291744 PMCID: PMC9599595 DOI: 10.3390/biom12101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Polypharmacy is commonly used to treat psychiatric disorders. These combinations often include drugs with sterol biosynthesis inhibiting side effects, including the antipsychotic aripiprazole (ARI), and antidepressant trazodone (TRZ). As the effects of psychotropic medications are poorly understood across the various tissue types to date, we investigated the effects of ARI, TRZ, and ARI + TRZ polypharmacy on the post-lanosterol biosynthesis in three cell lines (Neuro2a, HepG2, and human dermal fibroblasts) and seven peripheral tissues of an adult mouse model. We found that both ARI and TRZ strongly interfere with the function of 7-dehydrocholesterol reductase enzyme (DHCR7) and lead to robust elevation in 7-dehydrocholesterol levels (7-DHC) and reduction in desmosterol (DES) across all cell lines and somatic tissues. ARI + TRZ co-administration resulted in summative or synergistic effects across the utilized in vitro and in vivo models. These findings suggest that at least some of the side effects of ARI and TRZ are not receptor mediated but arise from inhibiting DHCR7 enzyme activity. We propose that interference with sterol biosynthesis, particularly in the case of simultaneous utilization of medications with such side effects, can potentially interfere with functioning or development of multiple organ systems, warranting further investigation.
Collapse
Affiliation(s)
- Marta Balog
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Allison C Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (Z.K.); (K.M.)
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Psychiatry, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (Z.K.); (K.M.)
| |
Collapse
|
9
|
Allen LB, Mirnics K. Metoprolol Inhibits Developmental Brain Sterol Biosynthesis in Mice. Biomolecules 2022; 12:1211. [PMID: 36139049 PMCID: PMC9496459 DOI: 10.3390/biom12091211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/29/2022] Open
Abstract
De novo sterol synthesis is a critical homeostatic mechanism in the brain that begins during early embryonic development and continues throughout life. Multiple medications have sterol-biosynthesis-inhibiting side effects, with potentially detrimental effects on brain health. Using LC-MS/MS, we investigated the effects of six commonly used beta-blockers on brain sterol biosynthesis in vitro using cell lines. Two beta-blockers, metoprolol (MTP) and nebivolol, showed extreme elevations of the highly oxidizable cholesterol precursor 7-dehydrocholesterol (7-DHC) in vitro across multiple cell lines. We followed up on the MTP findings using a maternal exposure model in mice. We found that 7-DHC was significantly elevated in all maternal brain regions analyzed as well as in the heart, liver and brain of the maternally exposed offspring. Since DHCR7-inhibiting/7-DHC elevating compounds can be considered teratogens, these findings suggest that MTP utilization during pregnancy might be detrimental for the development of offspring, and alternative beta-blockers should be considered.
Collapse
Affiliation(s)
- Luke B. Allen
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Psychiatry, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Sax JL, Hershman SN, Hubler Z, Allimuthu D, Elitt MS, Bederman I, Adams DJ. Enhancers of Human and Rodent Oligodendrocyte Formation Predominantly Induce Cholesterol Precursor Accumulation. ACS Chem Biol 2022; 17:2188-2200. [PMID: 35833657 PMCID: PMC9773236 DOI: 10.1021/acschembio.2c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regeneration of myelin in the central nervous system is being pursued as a potential therapeutic approach for multiple sclerosis. Several labs have reported small molecules that promote oligodendrocyte formation and remyelination in vivo. Recently, we reported that many such molecules function by inhibiting a narrow window of enzymes in the cholesterol biosynthesis pathway. Here we describe a new high-throughput screen of 1,836 bioactive molecules and a thorough re-analysis of more than 60 molecules previously identified as promoting oligodendrocyte formation from human, rat, or mouse oligodendrocyte progenitor cells. These studies highlight that an overwhelming fraction of validated screening hits, including several molecules being evaluated clinically for remyelination, inhibit cholesterol pathway enzymes like emopamil-binding protein (EBP). To rationalize these findings, we suggest a model that relies on the high druggability of sterol-metabolizing enzymes and the ability of cationic amphiphiles to mimic the transition state of EBP. These studies further establish cholesterol pathway inhibition as a dominant mechanism among screening hits that enhance human, rat, or mouse oligodendrocyte formation.
Collapse
Affiliation(s)
- Joel L Sax
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Samantha N Hershman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zita Hubler
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Matthew S Elitt
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Drew J Adams
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis. Mol Psychiatry 2022; 27:490-501. [PMID: 33820938 PMCID: PMC8490477 DOI: 10.1038/s41380-021-01074-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/01/2023]
Abstract
Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198.,Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Marija Heffer
- J. J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Department of Medical Biology and Genetics, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Károly Mirnics
- Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
12
|
Ghersi D, Genaro-Mattos TC. Identifying Molecular Fragments That Drive 7-Dehydrocholesterol Elevation. ACS Pharmacol Transl Sci 2021; 5:3-7. [PMID: 35059566 PMCID: PMC8762746 DOI: 10.1021/acsptsci.1c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Medications having the unwanted side effect of inhibiting 7-dehydrocholesterol reductase (DHCR7), one of the last enzymes in the cholesterol biosynthesis pathway, account for about 300 million yearly prescriptions in the United States. Many of these drugs are currently prescribed to pregnant women. Many DHCR7-inhibiting medications share chemical similarities, which can be the active substructure responsible for the medication affinity to the enzyme. This work highlights a computational strategy to identify enriched fragments in a set of DHCR7-inhibiting medications. The computational approach used here involves systematic fragmentation of molecules using the molBLOCKS tool, followed by enrichment analysis. The results of this approach highlight putative pharmacophores that might be responsible for the DHCR7-inhibiting activity of some of these medications. The identification of DHCR7-inhibiting substructures is an important step toward knowledge-based drug development and can improve the neurodevelopmental safety of medications.
Collapse
Affiliation(s)
- Dario Ghersi
- School
of Interdisciplinary Informatics, University
of Nebraska at Omaha, Omaha, Nebraska 68182, United States,
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States,
| |
Collapse
|
13
|
Sterol and lipid analyses identifies hypolipidemia and apolipoprotein disorders in autism associated with adaptive functioning deficits. Transl Psychiatry 2021; 11:471. [PMID: 34504056 PMCID: PMC8429516 DOI: 10.1038/s41398-021-01580-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
An improved understanding of sterol and lipid abnormalities in individuals with autism spectrum disorder (ASD) could lead to personalized treatment approaches. Toward this end, in blood, we identified reduced synthesis of cholesterol in families with ≥2 children with ASD participating with the Autism Genetic Resource Exchange (AGRE), as well as reduced amounts of high-density lipoprotein cholesterol (HDL), apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB), with 19.9% of the subjects presenting with apolipoprotein patterns similar to hypolipidemic clinical syndromes and 30% with either or both ApoA1 and ApoB less than the fifth centile. Subjects with levels less than the fifth centile of HDL or ApoA1 or ApoA1 + ApoB had lower adaptive functioning than other individuals with ASD, and hypocholesterolemic subjects had apolipoprotein deficits significantly divergent from either typically developing individuals participating in National Institutes of Health or the National Health and Nutrition Examination Survey III.
Collapse
|
14
|
Žigman T, Petković Ramadža D, Šimić G, Barić I. Inborn Errors of Metabolism Associated With Autism Spectrum Disorders: Approaches to Intervention. Front Neurosci 2021; 15:673600. [PMID: 34121999 PMCID: PMC8193223 DOI: 10.3389/fnins.2021.673600] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that the autism spectrum disorder (ASD) may be associated with inborn errors of metabolism, such as disorders of amino acid metabolism and transport [phenylketonuria, homocystinuria, S-adenosylhomocysteine hydrolase deficiency, branched-chain α-keto acid dehydrogenase kinase deficiency, urea cycle disorders (UCD), Hartnup disease], organic acidurias (propionic aciduria, L-2 hydroxyglutaric aciduria), cholesterol biosynthesis defects (Smith-Lemli-Opitz syndrome), mitochondrial disorders (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes-MELAS syndrome), neurotransmitter disorders (succinic semialdehyde dehydrogenase deficiency), disorders of purine metabolism [adenylosuccinate lyase (ADSL) deficiency, Lesch-Nyhan syndrome], cerebral creatine deficiency syndromes (CCDSs), disorders of folate transport and metabolism (cerebral folate deficiency, methylenetetrahydrofolate reductase deficiency), lysosomal storage disorders [Sanfilippo syndrome, neuronal ceroid lipofuscinoses (NCL), Niemann-Pick disease type C], cerebrotendinous xanthomatosis (CTX), disorders of copper metabolism (Wilson disease), disorders of haem biosynthesis [acute intermittent porphyria (AIP)] and brain iron accumulation diseases. In this review, we briefly describe etiology, clinical presentation, and therapeutic principles, if they exist, for these conditions. Additionally, we suggest the primary and elective laboratory work-up for their successful early diagnosis.
Collapse
Affiliation(s)
- Tamara Žigman
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danijela Petković Ramadža
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivo Barić
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
15
|
Genaro-Mattos TC, Klingelsmith KB, Allen LB, Anderson A, Tallman KA, Porter NA, Korade Z, Mirnics K. Sterol Biosynthesis Inhibition in Pregnant Women Taking Prescription Medications. ACS Pharmacol Transl Sci 2021; 4:848-857. [PMID: 33860207 DOI: 10.1021/acsptsci.1c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.
Collapse
Affiliation(s)
- Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Korinne B Klingelsmith
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Luke B Allen
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37221, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37221, United States
| | - Zeljka Korade
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
16
|
Genaro-Mattos T, Anderson A, Allen LB, Korade Z, Mirnics K. Altered Cholesterol Biosynthesis Affects Drug Metabolism. ACS OMEGA 2021; 6:5490-5498. [PMID: 33681590 PMCID: PMC7931400 DOI: 10.1021/acsomega.0c05817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The last step of cholesterol biosynthesis is the conversion of 7-dehydrocholesterol (7-DHC) into cholesterol, a reaction catalyzed by dehydrocholesterol reductase 7 (DHCR7). Investigation of the effect of Dhcr7 single-allele mutations on the metabolism of aripiprazole (ARI) and cariprazine (CAR) in maternally exposed transgenic pups revealed that ARI, CAR, and their active metabolites were decreased in the liver and brain of Dhcr7 +/- . This difference in the drug and metabolite levels resulted in an increased turnover of ARI and CAR in tissues from Dhcr7 +/- animals, indicating an enhanced metabolism, which was at least partially due to increased levels of Cyp2d6 in the liver of Dhcr7 +/- mice. Finally, experiments with both WT and DHCR7 +/- human fibroblasts revealed lower drug levels in DHCR7 +/- heterozygous cells. Our findings have potential clinical implications, as DHCR7 heterozygosity is present in 1-3% in the human population, and these individuals might have reduced therapeutic levels of Cyp2d6-metabolized medications and are putatively more susceptible to unwanted side effects.
Collapse
Affiliation(s)
- Thiago
C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Luke B. Allen
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zeljka Korade
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pediatrics, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
17
|
Tallman KA, Allen LB, Klingelsmith KB, Anderson A, Genaro-Mattos TC, Mirnics K, Porter NA, Korade Z. Prescription Medications Alter Neuronal and Glial Cholesterol Synthesis. ACS Chem Neurosci 2021; 12:735-745. [PMID: 33528983 PMCID: PMC7977035 DOI: 10.1021/acschemneuro.0c00765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mouse brain contains over 100 million neuronal, glial, and other support cells. Developing neurons and astrocytes synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. In this study we have exposed cultured murine neurons and astrocytes to six different prescription medications that cross the placenta and blood-brain barriers and analyzed the effects of these drugs on cholesterol biosynthesis by an LC-MS/MS protocol that assays 14 sterols and 7 oxysterols in a single run. Three antipsychotics (haloperidol, cariprazine, aripiprazole), two antidepressants (trazodone and sertraline), and an antiarhythmic (amiodarone) inhibited one or more sterol synthesis enzymes. The result of the exposures was a dose-dependent increase in levels of various sterol intermediates and a decreased level of cholesterol in the cultured cells. Four prescription medications (haloperidol, aripiprazole, cariprazine, and trazodone) acted primarily on the DHCR7 enzyme. The result of this exposure was an increase in 7-dehydrocholesterol in neurons and astrocytes to levels that were comparable to those found in cultured neurons and astrocytes from transgenic mice that carried a Dhcr7 pathogenic mutation modeling the neurodevelopmental disorder Smith-Lemli-Opitz syndrome.
Collapse
Affiliation(s)
- Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Luke B Allen
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Korinne B Klingelsmith
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Thiago C Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | |
Collapse
|
18
|
Abstract
Trazodone (TRZ) is a commonly prescribed antidepressant with significant off-label use for insomnia. A recent drug screening revealed that TRZ interferes with sterol biosynthesis, causing elevated levels of sterol precursor 7-dehydrocholesterol (7-DHC). Recognizing the well-documented, disruptive effect of 7-DHC on brain development, we designed a study to analyze TRZ effects during pregnancy. Utilizing an in vivo model and human biomaterial, our studies were designed to also account for drug interactions with maternal or offspring Dhcr7 genotype. In a maternal exposure model, we found that TRZ treatment increased 7-DHC and decreased desmosterol levels in brain tissue in newborn pups. We also observed interactions between Dhcr7 mutations and maternal TRZ exposure, giving rise to the most elevated toxic oxysterols in brains of Dhcr7+/- pups with maternal TRZ exposure, independently of the maternal Dhcr7 genotype. Therefore, TRZ use during pregnancy might be a risk factor for in utero development of a neurodevelopmental disorder, especially when the unborn child is of DHCR7+/- genotype. The effects of TRZ on 7-DHC was corroborated in human serum samples. We analyzed sterols and TRZ levels in individuals with TRZ prescriptions and found that circulating TRZ levels correlated highly with 7-DHC. The abundance of off-label use and high prescription rates of TRZ might represent a risk for the development of DHCR7 heterozygous fetuses. Thus, TRZ use during pregnancy is potentially a serious public health concern.
Collapse
|
19
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Lapetina DL, Yang EH, Henriques BC, Aitchison KJ. Pharmacogenomics and Psychopharmacology. SEMINARS IN CLINICAL PSYCHOPHARMACOLOGY 2020:151-202. [DOI: 10.1017/9781911623465.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Allen LB, Genaro-Mattos TC, Anderson A, Porter NA, Mirnics K, Korade Z. Amiodarone Alters Cholesterol Biosynthesis through Tissue-Dependent Inhibition of Emopamil Binding Protein and Dehydrocholesterol Reductase 24. ACS Chem Neurosci 2020; 11:1413-1423. [PMID: 32286791 DOI: 10.1021/acschemneuro.0c00042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amiodarone is prescribed for the treatment and prevention of irregular heartbeats. Although effective in clinical practice, the long-term use of amiodarone has many unwanted side effects, including cardiac, pulmonary, hepatic, and neurological toxicities. Our objective was to elucidate effects of amiodarone exposure on the cholesterol metabolism in cultured neuronal and non-neuronal cells and in individuals taking amiodarone. We observed that amiodarone increases distinct cholesterol precursors in different cell types in a dose-dependent manner. In liver and kidney cell lines, amiodarone causes increase in desmosterol levels, and in primary cortical neurons and astrocytes, amiodarone increases zymosterol, zymostenol, and 8-dehydrocholesterol (8-DHC). We conclude that amiodarone inhibits two enzymes in the pathway, emopamil binding protein (EBP) and dehydrocholesterol reductase 24 (DHCR24). Cortical neurons and astrocytes are more sensitive to amiodarone than liver and kidney cell lines. We confirmed the inhibition of EBP enzyme by analyzing the sterol intermediates in EBP-deficient Neuro2a cells versus amiodarone-treated control Neuro2a cells. To determine if the cell culture experiments have clinical relevance, we analyzed serum samples from amiodarone users. We found that in patient serum samples containing detectable amount of amiodarone there are elevated levels of the sterol precursors zymosterol, 8-DHC, and desmosterol. This study illustrates the need for close monitoring of blood biochemistry during prolonged amiodarone use to minimize the risk of side effects.
Collapse
Affiliation(s)
- Luke B. Allen
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
22
|
Wages PA, Joshi P, Tallman KA, Kim HYH, Bowman AB, Porter NA. Screening ToxCast™ for Chemicals That Affect Cholesterol Biosynthesis: Studies in Cell Culture and Human Induced Pluripotent Stem Cell-Derived Neuroprogenitors. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17014. [PMID: 31985273 PMCID: PMC7015578 DOI: 10.1289/ehp5053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Changes in cholesterol metabolism are common hallmarks of neurodevelopmental pathologies. A diverse array of genetic disorders of cholesterol metabolism support this claim as do multiple lines of research that demonstrate chemical inhibition of cholesterol biosynthesis compromises neurodevelopment. Recent work has revealed that a number of commonly used pharmaceuticals induce changes in cholesterol metabolism that are similar to changes induced by genetic disorders with devastating neurodevelopmental deficiencies. OBJECTIVES We tested the hypothesis that common environmental toxicants may also impair cholesterol metabolism and thereby possibly contribute to neurodevelopmental toxicity. METHODS Using high-throughput screening with a targeted lipidomic analysis and the mouse neuroblastoma cell line, Neuro-2a, the ToxCast™ chemical library was screened for compounds that impact sterol metabolism. Validation of chemical effects was conducted by assessing cholesterol biosynthesis in human induced pluripotent stem cell (hiPSC)-derived neuroprogenitors using an isotopically labeled cholesterol precursor and by monitoring product formation with UPLC-MS/MS. RESULTS Twenty-nine compounds were identified as validated lead-hits, and four were prioritized for further study (endosulfan sulfate, tributyltin chloride, fenpropimorph, and spiroxamine). All four compounds were validated to cause hypocholesterolemia in Neuro-2a cells. The morpholine-like fungicides, fenpropimorph and spiroxamine, mirrored their Neuro-2a activity in four immortalized human cell lines and in a human neuroprogenitor model derived from hiPSCs, but endosulfan sulfate and tributyltin chloride did not. CONCLUSIONS These data reveal the existence of environmental compounds that interrupt cholesterol biosynthesis and that methodologically hiPSC neuroprogenitor cells provide a particularly sensitive system to monitor the effect of small molecules on de novo cholesterol formation. https://doi.org/10.1289/EHP5053.
Collapse
Affiliation(s)
- Phillip A. Wages
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Piyush Joshi
- Departments of Pediatrics, Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keri A. Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Hye-Young H. Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron B. Bowman
- Departments of Pediatrics, Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ned A. Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Genaro-Mattos TC, Anderson A, Allen LB, Tallman KA, Porter NA, Korade Z, Mirnics K. Maternal cariprazine exposure inhibits embryonic and postnatal brain cholesterol biosynthesis. Mol Psychiatry 2020; 25:2685-2694. [PMID: 32504050 PMCID: PMC7577905 DOI: 10.1038/s41380-020-0801-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/15/2022]
Abstract
Cariprazine (CAR) is a strong inhibitor of the Dhcr7 enzyme, the last enzyme in the cholesterol biosynthesis pathway. We assessed the effects of CAR on maternally exposed Dhcr7+/- and wild-type mouse offspring, and tested the biochemical effects of CAR in human serum samples. Dhcr7+/- and wild-type time-pregnant mice were exposed to vehicle or 0.2 mg/kg CAR from E12 to E19. Levels of CAR, CAR metabolites, sterols, and oxysterols were measured in the brain of maternally exposed offspring at various time points using LC-MS/MS. Embryonic exposure to CAR significantly increased levels of 7-DHC in all organs of exposed embryos, with a particularly strong effect in the brain. Detectable levels of CAR and elevated 7-DHC were observed in the brain of newborn pups 14 days after drug exposure. In addition, CAR altered sterol metabolism in all animals analyzed, with the strongest effect on the brain of Dhcr7+/- pups born to Dhcr7+/- dams. Furthermore, CAR elevated toxic oxysterols in the brain of maternally exposed Dhcr7+/- offspring to levels approaching those seen in a mouse model of Smith-Lemli-Opitz syndrome. Finally, we observed that patients taking CAR have elevated 7-DHC in their serum. In summary, maternal DHCR7 heterozygosity, combined with offspring DHCR7 heterozygosity might represent a vulnerability factor to medications that interfere with sterol biosynthesis. Due to the conserved sterol biosynthesis between mice and humans, we suggest that the 1-3% of patient population with single-allele DHCR7 mutations might not be ideal candidates for CAR use, especially if they are nursing, pregnant or plan to become pregnant.
Collapse
Affiliation(s)
- Thiago C. Genaro-Mattos
- grid.266813.80000 0001 0666 4105Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105 USA
| | - Allison Anderson
- grid.266813.80000 0001 0666 4105Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105 USA
| | - Luke B. Allen
- grid.266813.80000 0001 0666 4105Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Keri A. Tallman
- grid.152326.10000 0001 2264 7217Department of Chemistry, Vanderbilt University, Nashville, TN 37235 USA
| | - Ned A. Porter
- grid.152326.10000 0001 2264 7217Department of Chemistry, Vanderbilt University, Nashville, TN 37235 USA
| | - Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| |
Collapse
|
24
|
Speen AM, Hoffman JR, Kim HYH, Escobar YN, Nipp GE, Rebuli ME, Porter NA, Jaspers I. Small Molecule Antipsychotic Aripiprazole Potentiates Ozone-Induced Inflammation in Airway Epithelium. Chem Res Toxicol 2019; 32:1997-2005. [PMID: 31476115 DOI: 10.1021/acs.chemrestox.9b00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inhaled ground level ozone (O3) has well described adverse health effects, which may be augmented in susceptible populations. While conditions, such as pre-existing respiratory disease, have been identified as factors enhancing susceptibility to O3-induced health effects, the potential for chemical interactions in the lung to sensitize populations to pollutant-induced responses has not yet been studied. In the airways, inhaled O3 reacts with lipids, such as cholesterol, to generate reactive and electrophilic oxysterol species, capable of causing cellular dysfunction and inflammation. The enzyme regulating the final step of cholesterol biosynthesis, 7-dehydrocholesterol reductase (DHCR7), converts 7-dehydrocholesterol (7-DHC) to cholesterol. Inhibition of DHCR7 increases the levels of 7-DHC, which is much more susceptible to oxidation than cholesterol. Chemical analysis established the capacity for a variety of small molecule antipsychotic drugs, like Aripiprazole (APZ), to inhibit DHCR7 and elevate circulating 7-DHC. Our results show that APZ and the known DHCR7 inhibitor, AY9944, increase 7-DHC levels in airway epithelial cells and potentiate O3-induced IL-6 and IL-8 expression and cytokine release. Targeted immune-related gene array analysis demonstrates that APZ significantly modified O3-induced expression of 16 genes, causing dysregulation in expression of genes associated with leukocyte recruitment and inflammatory response. Additionally, we find that APZ increases O3-induced IL-6 and IL-8 expression in human nasal epithelial cells from male but not female donors. Overall, the evidence we provide describes a novel molecular mechanism by which chemicals, such as APZ, that perturb cholesterol biosynthesis affect O3-induced biological responses.
Collapse
Affiliation(s)
| | | | - Hye-Young H Kim
- Department of Chemistry and Center for Molecular Toxicology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | | | | | | | - Ned A Porter
- Department of Chemistry and Center for Molecular Toxicology , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | | |
Collapse
|
25
|
Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K. Cholesterol Biosynthesis and Uptake in Developing Neurons. ACS Chem Neurosci 2019; 10:3671-3681. [PMID: 31244054 PMCID: PMC7184320 DOI: 10.1021/acschemneuro.9b00248] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain cholesterol biosynthesis, a separate and distinct process from whole-body cholesterol homeostasis, starts during embryonic development. To gain a better understanding of the neuronal and glial contributions to the brain cholesterol pool, we studied this process in control, Dhcr7-/-, and Dhcr24-/- cell cultures. Our LC-MS/MS method allowed us to measure several different sterol intermediates and cholesterol during neuronal differentiation. We found that developing cortical neurons rely on endogenous cholesterol synthesis and utilize ApoE-complexed cholesterol and sterol precursors from their surroundings. Both developing neurons and astrocytes release cholesterol into their local environment. Our studies also uncovered that developing neurons produced significantly higher amounts of cholesterol per cell than the astrocytes. Finally, we established that both neurons and astroglia preferentially use the Bloch sterol biosynthesis pathway, where desmosterol is the immediate precursor to cholesterol. Overall, our studies suggest that endogenous sterol synthesis in developing neurons is a critical and complexly regulated homeostatic process during brain development.
Collapse
Affiliation(s)
- Thiago C. Genaro-Mattos
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Luke B. Allen
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States,Corresponding Authors:.
| | - Károly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States,Corresponding Authors:.
| |
Collapse
|
26
|
A gas chromatography–mass spectrometry-based whole-cell screening assay for target identification in distal cholesterol biosynthesis. Nat Protoc 2019; 14:2546-2570. [DOI: 10.1038/s41596-019-0193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
|
27
|
Genaro-Mattos TC, Allen LB, Anderson A, Tallman KA, Porter NA, Korade Z, Mirnics K. Maternal aripiprazole exposure interacts with 7-dehydrocholesterol reductase mutations and alters embryonic neurodevelopment. Mol Psychiatry 2019; 24:491-500. [PMID: 30742019 PMCID: PMC6477890 DOI: 10.1038/s41380-019-0368-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
Mutations in both copies in the gene encoding 7-dehydrocholesterol reductase (DHCR7) cause Smith-Lemli-Opitz Syndrome (SLOS), which is characterized by a toxic elevation in 7-dehydrocholesterol (7-DHC). Aripiprazole (ARI) exposure, independent of genetic mutations, also leads to elevation of 7-DHC. We investigated the combined effect of a single-copy Dhcr7+/- mutation and maternal ARI exposure on the developing offspring brain. We generated a time-pregnant mouse model where WT and Dhcr7+/- embryos were maternally exposed to ARI or vehicle (VEH) from E12 to E19 (5 mg/kg). Levels of cholesterol, its precursors, ARI and its metabolites were measured at P0. We found that ARI and its metabolites were transported across the placenta and reached the brain of offspring. Maternal ARI exposure led to decreased viability of embryos and increased 7-DHC levels, regardless of maternal or offspring Dhcr7 genotype. In addition, Dhcr7+/- pups were more vulnerable to maternal ARI exposure than their WT littermates, and maternal Dhcr7+/- genotype also exacerbated offspring response to ARI treatment. Finally, both 7-DHC levels and 7-DHC/cholesterol ratio is the highest in Dhcr7+/- pups from Dhcr7+/- mothers exposed to ARI, underscoring a potentially dangerous interaction between maternal genotype×embryonic genotype×treatment. Our findings have important clinical implications. SLOS patients should avoid drugs that increase 7-DHC levels such as ARI, trazodone and haloperidol. In addition, treatment with 7-DHC elevating substances might be potentially unsafe for the 1-1.5% of population with single-allele disruptions of the DHCR7 gene. Finally, prenatal and parental genetic testing for DHCR7 should be considered before prescribing sterol-interfering medications during pregnancy.
Collapse
Affiliation(s)
- Thiago C. Genaro-Mattos
- 0000 0001 0666 4105grid.266813.8Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Luke B. Allen
- 0000 0001 0666 4105grid.266813.8Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE USA
| | - Allison Anderson
- 0000 0001 0666 4105grid.266813.8Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Keri A. Tallman
- 0000 0001 2264 7217grid.152326.1Department of Chemistry, Vanderbilt University, Nashville, TN USA
| | - Ned A. Porter
- 0000 0001 2264 7217grid.152326.1Department of Chemistry, Vanderbilt University, Nashville, TN USA
| | - Zeljka Korade
- 0000 0001 0666 4105grid.266813.8Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE USA
| | - Károly Mirnics
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Zhen H, Ekman DR, Collette TW, Glassmeyer ST, Mills MA, Furlong ET, Kolpin DW, Teng Q. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio Rerio) liver cell-based metabolomics approach. WATER RESEARCH 2018; 145:198-209. [PMID: 30142518 PMCID: PMC7017645 DOI: 10.1016/j.watres.2018.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 08/11/2018] [Indexed: 05/18/2023]
Abstract
Cell-based metabolomics was used in a proof-of-concept fashion to investigate the biological effects of contaminants as they traveled from a wastewater treatment plant (WWTP) discharge to a drinking water treatment plant (DWTP) intake in a surface-water usage cycle. Zebrafish liver (ZFL) cells were exposed to water samples collected along a surface-water flowpath, where a WWTP was located ∼14.5 km upstream of a DWTP. The sampling sites included: 1) upstream of the WWTP, 2) the WWTP effluent discharging point, 3) a proximal location downstream of the WWTP outfall, 4) a distal location downstream of the WWTP outfall, 5) the drinking water intake, and 6) the treated drinking water collected prior to discharge to the distribution system. After a 48-h laboratory exposure, the hydrophilic and lipophilic metabolites in ZFL cell extracts were analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS), respectively. Multivariate statistical analysis revealed distinct changes in metabolite profiles in response to WWTP effluent exposure. These effects on the hydrophilic metabolome gradually diminished downstream of the WWTP, becoming non-significant at the drinking water intake (comparable to upstream of the WWTP, p = 0.98). However, effects on the lipophilic metabolome increased significantly as the river flowed from the distal location downstream of the WWTP to the drinking water intake (p < 0.001), suggesting a source of bioactive compounds in this watershed other than the WWTP. ZFL cells exposed to treated drinking water did not exhibit significant changes in either the hydrophilic (p = 0.15) or lipophilic metabolome (p = 0.83) compared to the upstream site, suggesting that constituents in the WWTP effluent were efficiently removed by the drinking water treatment process. Impacts on ZFL cells from the WWTP effluent included disrupted energy metabolism, a global decrease in amino acids, and altered lipid metabolism pathways. Overall, this study demonstrated the utility of cell-based metabolomics as an effective tool for assessing the biological effects of complex pollutant mixtures, particularly when used as a complement to conventional chemical monitoring.
Collapse
Affiliation(s)
- Huajun Zhen
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States.
| | - Drew R Ekman
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States
| | - Timothy W Collette
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States
| | - Susan T Glassmeyer
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, United States
| | - Marc A Mills
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45268, United States
| | - Edward T Furlong
- U.S. Geological Survey, National Water Quality Laboratory, Denver Federal Center, Bldg 95, Denver, CO 80225, United States
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S. Clinton St, Rm 269 Federal Building, Iowa City, IA 52240, United States
| | - Quincy Teng
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA 30605, United States.
| |
Collapse
|
29
|
Herron J, Hines KM, Xu L. Assessment of Altered Cholesterol Homeostasis by Xenobiotics Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. ACTA ACUST UNITED AC 2018; 78:e65. [PMID: 30320450 DOI: 10.1002/cptx.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cholesterol and cholesterol-derived oxysterols are critical for embryonic development, synapse formation and function, and myelination, among other biological functions. Indeed, alterations in levels of cholesterol, sterol precursors, and oxysterols result in a variety of developmental disorders, emphasizing the importance of cholesterol homeostasis. The ability of xenobiotics to reproduce similar phenotypes by altering cholesterol homeostasis has increasingly become of interest. Therefore, the ability to quantitatively assess alterations in cholesterol homeostasis resulting from exposure to xenobiotics is of value. This unit describes methods for the quantitative assessment of altered post-squalene cholesterol biosynthesis and subsequent oxysterol formation in various sample types using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Understanding alterations in cholesterol homeostasis resulting from xenobiotic exposure can provide key insight into the toxicant's mechanism of action and resulting phenotype. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Josi Herron
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Kelly M Hines
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Libin Xu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington.,Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Wages PA, Kim HYH, Korade Z, Porter NA. Identification and characterization of prescription drugs that change levels of 7-dehydrocholesterol and desmosterol. J Lipid Res 2018; 59:1916-1926. [PMID: 30087204 PMCID: PMC6168312 DOI: 10.1194/jlr.m086991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Regulating blood cholesterol (Chol) levels by pharmacotherapy has successfully improved cardiovascular health. There is growing interest in the role of Chol precursors in the treatment of diseases. One sterol precursor, desmosterol (Des), is a potential pharmacological target for inflammatory and neurodegenerative disorders. However, elevating levels of the precursor 7-dehydrocholesterol (7-DHC) by inhibiting the enzyme 7-dehydrocholesterol reductase is linked to teratogenic outcomes. Thus, altering the sterol profile may either increase risk toward an adverse outcome or confer therapeutic benefit depending on the metabolite affected by the pharmacophore. In order to characterize any unknown activity of drugs on Chol biosynthesis, a chemical library of Food and Drug Administration-approved drugs was screened for the potential to modulate 7-DHC or Des levels in a neural cell line. Over 20% of the collection was shown to impact Chol biosynthesis, including 75 compounds that alter 7-DHC levels and 49 that modulate Des levels. Evidence is provided that three tyrosine kinase inhibitors, imatinib, ponatinib, and masitinib, elevate Des levels as well as other substrates of 24-dehydrocholesterol reductase, the enzyme responsible for converting Des to Chol. Additionally, the mechanism of action for ponatinib and masitinib was explored, demonstrating that protein levels are decreased as a result of treatment with these drugs.
Collapse
Affiliation(s)
- Phillip A Wages
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Zeljka Korade
- Department of Pediatrics, Biochemistry, and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
31
|
Genaro-Mattos TC, Tallman KA, Allen LB, Anderson A, Mirnics K, Korade Z, Porter NA. Dichlorophenyl piperazines, including a recently-approved atypical antipsychotic, are potent inhibitors of DHCR7, the last enzyme in cholesterol biosynthesis. Toxicol Appl Pharmacol 2018; 349:21-28. [PMID: 29698737 DOI: 10.1016/j.taap.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/21/2022]
Abstract
While antipsychotic medications provide important relief from debilitating psychotic symptoms, they also have significant adverse side effects, which might have relevant impact on human health. Several research studies, including ours, have shown that commonly used antipsychotics such as haloperidol and aripiprazole affect cholesterol biosynthesis at the conversion of 7-dehydrocholesterol (7-DHC) to cholesterol. This transformation is promoted by the enzyme DHCR7 and its inhibition causes increases in plasma and tissue levels of 7-DHC. The inhibition of this enzymatic step by mutations in the Dhcr7 gene leads to Smith-Lemli-Opitz syndrome, a devastating human condition that can be replicated in rats by small molecule inhibitors of DHCR7. The fact that two compounds, brexpiprazole and cariprazine, that were recently approved by the FDA have substructural elements in common with the DHCR7 inhibitor aripiprazole, prompted us to evaluate the effect of brexpiprazole and cariprazine on cholesterol biosynthesis. We report that cariprazine affects levels of 7-DHC and cholesterol in cell culture incubations at concentrations as low as 5 nM. Furthermore, a common metabolite of cariprazine and aripiprazole, 2,3-(dichlorophenyl) piperazine, inhibits DHCR7 activity at concentrations comparable to those of the potent teratogen AY9944. The cell culture experiments were corroborated in mice in studies showing that treatment with cariprazine elevated 7-DHC in brain and serum. The consequences of sterol inhibition by antipsychotics in the developing nervous system and the safety of their use during pregnancy remains to be established.
Collapse
Affiliation(s)
- Thiago C Genaro-Mattos
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, United States
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, United States
| | - Luke B Allen
- Department of Pediatrics and Biochemistry, Molecular Biology, UNMC, Omaha, NE 68198, United States
| | - Allison Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE 68198, United States
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, Omaha, NE 68198, United States
| | - Zeljka Korade
- Department of Pediatrics and Biochemistry, Molecular Biology, UNMC, Omaha, NE 68198, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN, United States.
| |
Collapse
|
32
|
Leignadier J, Dalenc F, Poirot M, Silvente-Poirot S. Improving the efficacy of hormone therapy in breast cancer: The role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death. Biochem Pharmacol 2017. [DOI: 10.1016/j.bcp.2017.06.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Korade Z, Genaro-Mattos TC, Tallman KA, Liu W, Garbett KA, Koczok K, Balogh I, Mirnics K, Porter NA. Vulnerability of DHCR7+/- mutation carriers to aripiprazole and trazodone exposure. J Lipid Res 2017; 58:2139-2146. [PMID: 28972118 DOI: 10.1194/jlr.m079475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Smith-Lemli-Opitz syndrome is a recessive disorder caused by mutations in 7-dehydrocholesterol reductase (DHCR)7 with a heterozygous (HET) carrier frequency of 1-3%. A defective DHCR7 causes accumulation of 7-dehydrocholesterol (DHC), which is a highly oxidizable and toxic compound. Recent studies suggest that several antipsychotics, including the highly prescribed pharmaceuticals, aripiprazole (ARI) and trazodone (TRZ), increase 7-DHC levels in vitro and in humans. Our investigation was designed to compare the effects of ARI and TRZ on cholesterol (Chol) synthesis in fibroblasts from DHCR7+/- human carriers and controls (CTRs). Six matched pairs of fibroblasts were treated and their sterol profile analyzed by LC-MS. Significantly, upon treatment with ARI and TRZ, the total accumulation of 7-DHC was higher in DHCR7-HET cells than in CTR fibroblasts. The same set of experiments was repeated in the presence of 13C-lanosterol to determine residual Chol synthesis, revealing that ARI and TRZ strongly inhibit de novo Chol biosynthesis. The results suggest that DHCR7 carriers have increased vulnerability to both ARI and TRZ exposure compared with CTRs. Thus, the 1-3% of the population who are DHCR7 carriers may be more likely to sustain deleterious health consequences on exposure to compounds like ARI and TRZ that increase levels of 7-DHC, especially during brain development.
Collapse
Affiliation(s)
- Zeljka Korade
- Departments of Pediatrics and Biochemistry and Molecular Biology University of Nebraska Medical Center, Omaha, NE 68198
| | - Thiago C Genaro-Mattos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| | | | - Katalin Koczok
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen, Debrecen 4032, Hungary
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
34
|
Korade Ž, Liu W, Warren EB, Armstrong K, Porter NA, Konradi C. Effect of psychotropic drug treatment on sterol metabolism. Schizophr Res 2017; 187:74-81. [PMID: 28202290 PMCID: PMC5554466 DOI: 10.1016/j.schres.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
Cholesterol metabolism is vital for brain function. Previous work in cultured cells has shown that a number of psychotropic drugs inhibit the activity of 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the final steps in cholesterol biosynthesis. This leads to the accumulation of 7-dehydrocholesterol (7DHC), a molecule that gives rise to oxysterols, vitamin D, and atypical neurosteroids. We examined levels of cholesterol and the cholesterol precursors desmosterol, lanosterol, 7DHC and its isomer 8-dehydrocholesterol (8DHC), in blood samples of 123 psychiatric patients on various antipsychotic and antidepressant drugs, and 85 healthy controls, to see if the observations in cell lines hold true for patients as well. Three drugs, aripiprazole, haloperidol and trazodone increased circulating 7DHC and 8DHC levels, while five other drugs, clozapine, escitalopram/citalopram, lamotrigine, olanzapine, and risperidone, did not. Studies in rat brain verified that haloperidol dose-dependently increased 7DHC and 8DHC levels, while clozapine had no effect. We conclude that further studies should investigate the role of 7DHC and 8DHC metabolites, such as oxysterols, vitamin D, and atypical neurosteroids, in the deleterious and therapeutic effects of psychotropic drugs. Finally, we recommend that drugs that increase 7DHC levels should not be prescribed during pregnancy, as children born with DHCR7 deficiency have multiple congenital malformations.
Collapse
Affiliation(s)
- Željka Korade
- Department of Pediatrics and Department of Biochemistry and Molecular Biology, UNMC, Omaha, NE 68198, United States
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States
| | - Emily B Warren
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, United States
| | - Kristan Armstrong
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, United States
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, United States
| | - Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, United States; Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, United States.
| |
Collapse
|
35
|
Tallman KA, Kim HYH, Korade Z, Genaro-Mattos TC, Wages PA, Liu W, Porter NA. Probes for protein adduction in cholesterol biosynthesis disorders: Alkynyl lanosterol as a viable sterol precursor. Redox Biol 2017; 12:182-190. [PMID: 28258022 PMCID: PMC5333532 DOI: 10.1016/j.redox.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Indexed: 01/13/2023] Open
Abstract
The formation of lipid electrophile-protein adducts is associated with many disorders that involve perturbations of cellular redox status. The identities of adducted proteins and the effects of adduction on protein function are mostly unknown and an increased understanding of these factors may help to define the pathogenesis of various human disorders involving oxidative stress. 7-Dehydrocholesterol (7-DHC), the immediate biosynthetic precursor to cholesterol, is highly oxidizable and gives electrophilic oxysterols that adduct proteins readily, a sequence of events proposed to occur in Smith-Lemli-Opitz syndrome (SLOS), a human disorder resulting from an error in cholesterol biosynthesis. Alkynyl lanosterol (a-Lan) was synthesized and studied in Neuro2a cells, Dhcr7-deficient Neuro2a cells and human fibroblasts. When incubated in control Neuro2a cells and control human fibroblasts, a-Lan completed the sequence of steps involved in cholesterol biosynthesis and alkynyl-cholesterol (a-Chol) was the major product formed. In Dhcr7-deficient Neuro2a cells or fibroblasts from SLOS patients, the biosynthetic transformation was interrupted at the penultimate step and alkynyl-7-DHC (a-7-DHC) was the major product formed. When a-Lan was incubated in Dhcr7-deficient Neuro2a cells and the alkynyl tag was used to ligate a biotin group to alkyne-containing products, protein-sterol adducts were isolated and identified. In parallel experiments with a-Lan and a-7-DHC in Dhcr7-deficient Neuro2a cells, a-7-DHC was found to adduct to a larger set of proteins (799) than a-Lan (457) with most of the a-Lan protein adducts (423) being common to the larger a-7-DHC set. Of the 423 proteins found common to both experiments, those formed from a-7-DHC were more highly enriched compared to a DMSO control than were those derived from a-Lan. The 423 common proteins were ranked according to the enrichment determined for each protein in the a-Lan and a-7-DHC experiments and there was a very strong correlation of protein ranks for the adducts formed in the parallel experiments.
Collapse
Affiliation(s)
- Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Hye-Young H Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Zeljka Korade
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, United States; Department of Psychiatry, Vanderbilt University, Nashville, TN 37235, United States
| | - Thiago C Genaro-Mattos
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Phillip A Wages
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Wei Liu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
36
|
Lamberson CR, Muchalski H, McDuffee KB, Tallman KA, Xu L, Porter NA. Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol. Chem Phys Lipids 2017; 207:51-58. [PMID: 28174017 DOI: 10.1016/j.chemphyslip.2017.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
The free radical chain autoxidation of cholesterol and the oxidation products formed, i.e. oxysterols, have been the focus of intensive study for decades. The peroxidation of sterol precursors to cholesterol such as 7-dehydrocholesterol (7-DHC) and desmosterol as well as their oxysterols has received less attention. The peroxidation of these sterol precursors can become important under circumstances in which genetic conditions or exposures to small molecules leads to an increase of these biosynthetic intermediates in tissues and fluids. 7-DHC, for example, has a propagation rate constant for peroxidation some 200 times that of cholesterol and this sterol is found at elevated levels in a devastating human genetic condition, Smith-Lemli-Opitz syndrome (SLOS). The propagation rate constants for peroxidation of sterol intermediates on the biosynthetic pathway to cholesterol were determined by a competition kinetic method, i.e. a peroxyl radical clock. In this work, propagation rate constants for lathosterol, zymostenol, desmosterol, 7-dehydrodesmosterol and other sterols in the Bloch and Kandutsch-Russell pathways are assigned and these rate constants are related to sterol structural features. Furthermore, potential oxysterols products are proposed for sterols whose oxysterol products have not been determined.
Collapse
Affiliation(s)
- Connor R Lamberson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Hubert Muchalski
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Kari B McDuffee
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Libin Xu
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|