1
|
Turky MA, Youssef I, El Amir A. Identifying behavior regulatory leverage over mental disorders transcriptomic network hubs toward lifestyle-dependent psychiatric drugs repurposing. Hum Genomics 2025; 19:29. [PMID: 40102990 PMCID: PMC11921594 DOI: 10.1186/s40246-025-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND There is a vast prevalence of mental disorders, but patient responses to psychiatric medication fluctuate. As food choices and daily habits play a fundamental role in this fluctuation, integrating machine learning with network medicine can provide valuable insights into disease systems and the regulatory leverage of lifestyle in mental health. METHODS This study analyzed coexpression network modules of MDD and PTSD blood transcriptomic profile using modularity optimization method, the first runner-up of Disease Module Identification DREAM challenge. The top disease genes of both MDD and PTSD modules were detected using random forest model. Afterward, the regulatory signature of two predominant habitual phenotypes, diet-induced obesity and smoking, were identified. These transcription/translation regulating factors (TRFs) signals were transduced toward the two disorders' disease genes. A bipartite network of drugs that target the TRFS together with PTSD or MDD hubs was constructed. RESULTS The research revealed one MDD hub, the CENPJ, which is known to influence intellectual ability. This observation paves the way for additional investigations into the potential of CENPJ as a novel target for MDD therapeutic agents development. Additionally, most of the predicted PTSD hubs were associated with multiple carcinomas, of which the most notable was SHCBP1. SHCBP1 is a known risk factor for glioma, suggesting the importance of continuous monitoring of patients with PTSD to mitigate potential cancer comorbidities. The signaling network illustrated that two PTSD and three MDD biomarkers were co-regulated by habitual phenotype TRFs. 6-Prenylnaringenin and Aflibercept were identified as potential candidates for targeting the MDD and PTSD hubs: ATP6V0A1 and PIGF. However, habitual phenotype TRFs have no leverage over ATP6V0A1 and PIGF. CONCLUSION Combining machine learning and network biology succeeded in revealing biomarkers for two notoriously spreading disorders, MDD and PTSD. This approach offers a non-invasive diagnostic pipeline and identifies potential drug targets that could be repurposed under further investigation. These findings contribute to our understanding of the complex interplay between mental disorders, daily habits, and psychiatric interventions, thereby facilitating more targeted and personalized treatment strategies.
Collapse
Affiliation(s)
| | - Ibrahim Youssef
- Faculty of Engineering, Biomedical Engineering Department, Cairo University, Giza, 12613, Egypt
| | - Azza El Amir
- Faculty of Science, Biotechnology Department, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Kim W, Kim Y, Jeong DH, Yi S, Lee HS, Kim JH. Evaluation of agonistic and antagonistic effects of unprenylated and prenylated flavonoids on estrogen receptor-α. Chem Biol Interact 2025; 406:111346. [PMID: 39667420 DOI: 10.1016/j.cbi.2024.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Prenylation, which involves the addition of hydrophobic molecules, is considered to enhance the bioavailability and biological activity of flavonoids. However, the effect of prenylation on the estrogenic activity of flavonoids with different structures remains unclear. This study evaluated the estrogen receptor-α (ER-α) agonistic and antagonistic activities of estrogenic flavonoids in both unprenylated and prenylated forms using OECD standardized in vitro ER-α transactivation assay and in vivo uterine hypertrophy assay. A luciferase reporter assay using ER-α-HeLa-9903 cells revealed that twelve flavonoid compounds exhibited ER-α agonistic activity, and among them, only 6-prenylnaringenin (6-PN) exhibited ER-α antagonistic activity. Interestingly, except for 6-PN, prenylated flavonoids showed reduced or similar ER-α agonistic activity compared to their parent compounds. 6-PN, but not 8-prenylnaringenin, demonstrated both enhanced ER-α agonistic and antagonistic activity compared to its parent compound, naringenin. Among the tested compounds, coumestrol exhibited the most potent ER-α agonistic activity in both transactivation and uterotrophic assays. The uterotrophic effect of coumestrol at a dose of 25 mg/kg was stronger than that of 17β-estradiol at 200 μg/kg, as evidenced by changes in uterine weight and estrogen-responsive protein expression. These findings provide important insights into the relative estrogenic potency of flavonoids and the impact of prenylation on their activity.
Collapse
Affiliation(s)
- Wonhee Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 36729, Republic of Korea
| | - Yujeong Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 36729, Republic of Korea
| | - Da-Hyun Jeong
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Somin Yi
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Jun Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
3
|
Hitzman R, Malca-Garcia GR, Howell C, Park HY, Friesen JB, Dong H, Dunlap T, McAlpine JB, Vollmer G, Bosland MC, Nikolić D, Lankin DC, Chen SN, Bolton JL, Pauli GF, Dietz BM. DESIGNER fraction concept unmasks minor bioactive constituents in red clover (Trifolium pratense L.). PHYTOCHEMISTRY 2023; 214:113789. [PMID: 37482264 PMCID: PMC10528883 DOI: 10.1016/j.phytochem.2023.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.
Collapse
Affiliation(s)
- Ryan Hitzman
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Gonzalo R Malca-Garcia
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Caitlin Howell
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Hyun-Young Park
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - J Brent Friesen
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 Division Street, River Forest, IL, 60305, USA
| | - Huali Dong
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Tareisha Dunlap
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - James B McAlpine
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Guenter Vollmer
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Technische Universität Dresden, Faculty of Biology, Chair for Molecular Cell Physiology & Endocrinology, D-01062, Dresden, Germany
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois Chicago, 840 S. Wood Street, Chicago, IL, 60612, USA
| | - Dejan Nikolić
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - David C Lankin
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Shao-Nong Chen
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Judy L Bolton
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Guido F Pauli
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA.
| | - Birgit M Dietz
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
González-Salitre L, Guillermo González-Olivares L, Antobelli Basilio-Cortes U. Humulus lupulus L. a potential precursor to human health: High hops craft beer. Food Chem 2023; 405:134959. [PMID: 36435101 DOI: 10.1016/j.foodchem.2022.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Lourdes González-Salitre
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C.P. 42183, Mineral de la Reforma, Hidalgo, Mexico
| | - Luis Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C.P. 42183, Mineral de la Reforma, Hidalgo, Mexico.
| | - Ulin Antobelli Basilio-Cortes
- Área Académica de Biotecnología Agropecuaria, Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Carretera a Delta, Ejido Nuevo León s/n, C.P. 21705 Mexicali, Baja California, Mexico.
| |
Collapse
|
5
|
Mao X, Li H, Zheng J. Effects of xenobiotics on CYP1 enzyme-mediated biotransformation and bioactivation of estradiol. Drug Metab Rev 2023; 55:1-49. [PMID: 36823774 DOI: 10.1080/03602532.2023.2177671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Endogenous estradiol (E2) exerts diverse physiological and pharmacological activities, commonly used for hormone replacement therapy. However, prolonged and excessive exposure to E2 potentially increases estrogenic cancer risk. Reportedly, CYP1 enzyme-mediated biotransformation of E2 is largely concerned with its balance between detoxification and carcinogenic pathways. Among the three key CYP1 enzymes (CYP1A1, CYP1A2, and CYP1B1), CYP1A1 and CYP1A2 mainly catalyze the formation of nontoxic 2-hydroxyestradiol (2-OH-E2), while CYP1B1 specifically catalyzes the formation of genotoxic 4-hydroxyestradiol (4-OH-E2). 4-OH-E2 can be further metabolized to electrophilic quinone intermediates accompanied by the generation of reactive oxygen species (ROS), triggering DNA damage. Since abnormal alterations in CYP1 activities can greatly affect the bioactivation process of E2, regulatory effects of xenobiotics on CYP1s are essential for E2-associated cancer development. To date, thousands of natural and synthetic compounds have been found to show potential inhibition and/or induction actions on the three CYP1 members. Generally, these chemicals share similar planar polycyclic skeletons, the structural motifs and substituent groups of which are important for their inhibitory/inductive efficiency and selectivity toward CYP1 enzymes. This review comprehensively summarizes these known inhibitors and/or inductors of E2-metabolizing CYP1s based on chemical categories and discusses their structure-activity relationships, which would contribute to better understanding of the correlation between xenobiotic-regulated CYP1 activities and estrogenic cancer susceptibility.
Collapse
Affiliation(s)
- Xu Mao
- Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Carbone K, Gervasi F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. PLANTS (BASEL, SWITZERLAND) 2022; 11:3434. [PMID: 36559547 PMCID: PMC9782902 DOI: 10.3390/plants11243434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of phytoconstituents (e.g., bitter acids, polyphenols, prenyl flavonoids) present in the female inflorescences, commonly known as cones or strobili, endowed with anti-inflammatory, antioxidant, antimicrobial, and phytoestrogen activities. Hop has recently attracted the interest of the scientific community due to the presence of xanthohumol, whose strong anti-cancer activity against various types of cancer cells has been well documented, and for the presence of 8-prenyl naringenin, the most potent known phytoestrogen. Studies in the literature have also shown that hop compounds can hinder numerous signalling pathways, including ERK1/2 phosphorylation, regulation of AP-1 activity, PI3K-Akt, and nuclear factor NF-κB, which are the main targets of the antiproliferative action of bitter acids and prenylflavonoids. In light of these considerations, the aim of this review was to provide an up-to-date overview of the main biologically active compounds found in hops, as well as their in vitro and in vivo applications for human health and disease prevention. To this end, a quantitative literature analysis approach was used, using VOSviewer software to extract and process Scopus bibliometric data. In addition, data on the pharmacokinetics of bioactive hop compounds and clinical studies in the literature were analysed. To make the information more complete, studies on the beneficial properties of the other two species belonging to the genus Humulus, H. japonicus and H. yunnanensis, were also reviewed for the first time.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | | |
Collapse
|
7
|
Zanardi MV, Gastiazoro MP, Kretzschmar G, Wober J, Vollmer G, Varayoud J, Durando M, Zierau O. AHR agonistic effects of 6-PN contribute to potential beneficial effects of Hops extract. Mol Cell Endocrinol 2022; 543:111540. [PMID: 34965452 DOI: 10.1016/j.mce.2021.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Hops (Humulus lupulus) is used as an alternative to hormone replacement therapy due to the phytoestrogen, 8-prenylnaringenin (8-PN). To examine the potential risks/benefits of hops extract and its compounds (8-PN and 6-prenylnaringenin, 6-PN), we aimed to evaluate the estrogen receptor α (ERα) and aryl hydrocarbon receptor (AHR) signaling pathways in human endometrial cancer cells. Hops extract, 8-PN and 6-PN showed estrogenic activity. Hops extract and 6-PN activated both ERα and AHR pathways. 6-PN increased the expression of the tumor suppressor gene (AHRR), and that of genes involved in the estrogen metabolism (CYP1A1, CYP1B1). Although 6-PN might activate the detoxification and genotoxic pathways of estrogen metabolism, hops extract as a whole only modulated the genotoxic pathway by an up-regulation of CYP1B1 mRNA expression. These data demonstrate the relevant role of 6-PN contained in the hops extract as potential modulator of estrogen metabolism due to its ERα and AHR agonist activity.
Collapse
Affiliation(s)
- María Victoria Zanardi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany.
| | - María Paula Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Georg Kretzschmar
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Jannette Wober
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Günter Vollmer
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| |
Collapse
|
8
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
9
|
Hernandez-Trejo A, Rodríguez-Herrera R, Sáenz-Galindo A, López-Badillo CM, Flores-Gallegos AC, Ascacio-Valdez JA, Estrada-Drouaillet B, Osorio-Hernández E. Insecticidal capacity of polyphenolic seed compounds from neem ( Azadirachta indica) on Spodoptera frugiperda (J. E. Smith) larvae. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:1023-1030. [PMID: 34783634 DOI: 10.1080/03601234.2021.2004853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The objective of this study was to evaluate the insecticidal activity of the polyphenolic compounds found in neem on S. frugiperda larvae. Three neem extracts (1:12 (m/v) with 70% ethanol, 1:12 (m/v) with 0% ethanol (only water), and 1:4 (m/v) with 0% ethanol) were employed. Subsequently, the extraction of phytochemical compounds of each extract was performed using ultrasound and microwave technologies simultaneously. The compound characterization was performed by HPLC-mass. In addition, the insecticidal evaluation of the neem extract was performed against S. frugiperda of the second-stage larvae. The extracts were applied by spraying the larvae according to each bioassay. Results showed that the extract obtained with a 1:12 (m/v) relationship and 70% ethanol was effective for the control of S. frugiperda larvae. In this extract, the predominant organic compound families were: methoxyflavones, flavonols, hydroxycoumarins, anthocyanins, methoxycinnamic acid, and alkylflavones. Phytochemical compounds obtained from neem seeds with environmentally friendly solvents and alternative technologies (ultrasound and microwave) have potent insecticidal activity against S. frugiperda larvae.
Collapse
Affiliation(s)
- Antonia Hernandez-Trejo
- Division of Postgraduate Studies and Research, Autonomous University of Tamaulipas, Faculty of Engineering and Sciences, University Center Adolfo López Mateos, Cd. Victoria, Tamaulipas, México
| | | | - Aidé Sáenz-Galindo
- School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, México
| | | | | | | | - Benigno Estrada-Drouaillet
- Division of Postgraduate Studies and Research, Autonomous University of Tamaulipas, Faculty of Engineering and Sciences, University Center Adolfo López Mateos, Cd. Victoria, Tamaulipas, México
| | - Eduardo Osorio-Hernández
- Division of Postgraduate Studies and Research, Autonomous University of Tamaulipas, Faculty of Engineering and Sciences, University Center Adolfo López Mateos, Cd. Victoria, Tamaulipas, México
| |
Collapse
|
10
|
Kim HI, Kim MK, Lee I, Yun J, Kim EH, Seo SK. Efficacy and Safety of a Standardized Soy and Hop Extract on Menopausal Symptoms: A 12-Week, Multicenter, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Altern Complement Med 2021; 27:959-967. [PMID: 34399063 DOI: 10.1089/acm.2021.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objectives: Soy and hop extracts have been investigated as alternatives for hormone replacement therapy. However, their combined efficacy is not known. We investigated the efficacy and safety of a combined soy and hop extract on postmenopausal symptoms. Design: Double-blinded, randomized controlled trial. Settings/Location: Gynecological outpatient clinic of tertiary hospital. Subjects: Seventy-eight women with moderate or severe menopausal symptoms assessed as modified Kupperman Menopoausal Index (KMI) scores >20. Interventions: They received either a combined soy and hop extract (n = 38) or placebo (n = 40). Outcome measures: Menopausal symptoms were evaluated through self-reporting of modified Kupperman Menopausal Index (KMI) scores at baseline and after 6 and 12 weeks. We assessed serum levels of bone metabolism biomarkers, ultrasonographic parameters, hormone profiles, compliance, and safety. Results: After 12 weeks of the treatment, treatment group scores decreased by 20.61 points compared with 14.80 points in the placebo group (p < 0.05). Fatigue, paresthesia, arthralgia, and myalgia, palpitation and vaginal dryness significantly improved more in the treatment group compared with the placebo group after 12 weeks (p < 0.05). Urine N-telopeptide in participants ≥50 years in the treatment group showed a reduced increase. Endometrial thickness and hormonal profiles did not show significant changes in either group. No serious adverse events were reported. Conclusion: The results suggest that 190 mg of combined soy and hop extract is safe and effective for improvement of menopausal symptoms. CRIS No.: KCT0006019.
Collapse
Affiliation(s)
- Hye In Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyoung Kim
- Institute of Women's Life Medical Science, CHA University School of Medicine, Seoul, Republic of Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jisun Yun
- Department of Obstetrics and Gynecology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Eui Hyeok Kim
- Department of Obstetrics and Gynecology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Yan YF, Wu TL, Du SS, Wu ZR, Hu YM, Zhang ZJ, Zhao WB, Yang CJ, Liu YQ. The Antifungal Mechanism of Isoxanthohumol from Humulus lupulus Linn. Int J Mol Sci 2021; 22:ijms221910853. [PMID: 34639194 PMCID: PMC8509189 DOI: 10.3390/ijms221910853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Humulus lupulus Linn. is a traditional medicinal and edible plant with several biological properties. The aims of this work were: (1) to evaluate the in vitro antifungal activity of H. lupulus ethanolic extract; (2) to study the in vitro and in vivo antifungal activity of isoxanthohumol, an isoprene flavonoid from H. lupulus, against Botrytis cinerea; and (3) to explore the antifungal mechanism of isoxanthohumol on B. cinerea. The present data revealed that the ethanolic extract of H. lupulus exhibited moderate antifungal activity against the five tested phytopathogenic fungi in vitro, and isoxanthohumol showed highly significant antifungal activity against B. cinerea, with an EC50 value of 4.32 µg/mL. Meanwhile, it exhibited moderate to excellent protective and curative efficacies in vivo. The results of morphologic observation, RNA-seq, and physiological indicators revealed that the antifungal mechanism of isoxanthohumol is mainly related to metabolism; it affected the carbohydrate metabolic process, destroyed the tricarboxylic acid (TCA) cycle, and hindered the generation of ATP by inhibiting respiration. Further studies indicated that isoxanthohumol caused membrane lipid peroxidation, thus accelerating the death of B. cinerea. This study demonstrates that isoxanthohumol can be used as a potential botanical fungicide for the management of phytopathogenic fungi.
Collapse
Affiliation(s)
- Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- Correspondence: (Z.-J.Z.); (Y.-Q.L.)
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
- Correspondence: (Z.-J.Z.); (Y.-Q.L.)
| |
Collapse
|
12
|
Isogai S, Okahashi N, Asama R, Nakamura T, Hasunuma T, Matsuda F, Ishii J, Kondo A. Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases. Metab Eng Commun 2021; 12:e00169. [PMID: 33868922 PMCID: PMC8040282 DOI: 10.1016/j.mec.2021.e00169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes. A stable yeast strain that produced naringenin from l-phenylalanine was constructed. A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin. AnaPT catalyzed the first microbial production of 3′-prenylnaringenin. Microbial prenyltransferases permit the production of various prenylated compounds.
Collapse
Affiliation(s)
- Shota Isogai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ririka Asama
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomomi Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
13
|
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules 2021; 26:molecules26082315. [PMID: 33923487 PMCID: PMC8073824 DOI: 10.3390/molecules26082315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids.
Collapse
|
14
|
Hitzman RT, Dunlap TL, Howell CE, Chen SN, Vollmer G, Pauli GF, Bolton JL, Dietz BM. 6-Prenylnaringenin from Hops Disrupts ERα-Mediated Downregulation of CYP1A1 to Facilitate Estrogen Detoxification. Chem Res Toxicol 2020; 33:2793-2803. [PMID: 32986415 DOI: 10.1021/acs.chemrestox.0c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Botanical dietary supplements (BDS) containing hops are sold as women's health supplements due to the potent hop phytoestrogen, 8-prenylnaringenin (8-PN), and the cytoprotective chalcone, xanthohumol. Previous studies have shown a standardized hop extract to beneficially influence chemical estrogen carcinogenesis in vitro by fostering detoxified 2-hydroxylation over genotoxic 4-hydroxylation estrogen metabolism. In this study, hop extract and its bioactive compounds were investigated for its mechanism of action within the chemical estrogen carcinogenesis pathway, which is mainly mediated through the 4-hydroxylation pathway catalyzed by CYP1B1 that can form gentoxic quinones. Aryl hydrocarbon receptor (AhR) agonists induce CYP1A1 and CYP1B1, while estrogen receptor alpha (ERα) inhibits transcription of CYP1A1, the enzyme responsible for 2-hydroxylated estrogens and the estrogen detoxification pathway. An In-Cell Western MCF-7 cell assay revealed hop extract and 6-prenylnaringenin (6-PN) degraded ERα via an AhR-dependent mechanism. Reverse transcription PCR and xenobiotic response element luciferase assays showed hop extract and 6-PN-mediated activation of AhR and induction of CYP1A1. A reduction in estrogen-mediated DNA (cytosine-5)-methyltransferase 1 (DNMT1) downregulation of CYP1A1 accompanied this activity in a chromatin immunoprecipitation assay. Ultimately, hop extract and 6-PN induced preferential metabolism of estrogens to their detoxified form in vitro. These results suggest that the standardized hop extract and 6-PN activate AhR to attenuate epigenetic inhibition of CYP1A1 through degradation of ERα, ultimately increasing 2-hydroxylated estrogens. A new mechanism of action rationalizes the positive influence of hop BDS and 6-PN on oxidative estrogen metabolism in vitro and, thus, potentially on chemical estrogen carcinogenesis. The findings underscore the importance of elucidating various biological mechanisms of action and standardizing BDS to multiple phytoconstituents for optimal resilience promoting properties.
Collapse
Affiliation(s)
- Ryan T Hitzman
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha L Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Caitlin E Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Günter Vollmer
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States.,Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
15
|
Tronina T, Popłoński J, Bartmańska A. Flavonoids as Phytoestrogenic Components of Hops and Beer. Molecules 2020; 25:molecules25184201. [PMID: 32937790 PMCID: PMC7570471 DOI: 10.3390/molecules25184201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
The value of hops (Humulus lupulus L.) in beer production has been undisputed for centuries. Hops is rich in humulones and lupulones which gives the characteristic aroma and bitter taste, and preserves this golden drink against growing bacteria and molds. Besides α- and β-acids, the lupulin glands of hop cones excrete prenylated flavonoids, which exhibit a broad spectrum of biological activities and therefore has therapeutic potential in humans. Recently, interest in hops was raised due to hop prenylated flavanones which show extraordinary estrogen activities. The strongest known phytoestrogen so far is 8-prenylnaringenin (8-PN), which along with 6-prenylanaringenin (6-PN), 6,8-diprenylnaringenin (6,8-DPN) and 8-geranylnaringenin (8-GN) are fundamental for the potent estrogen activity of hops. This review provides insight into the unusual hop phytoestrogens and shows numerous health benefits associated with their wide spectrum of biological activities including estrogenic, anticancer, neuropreventive, antinflamatory, and antimicrobial properties, which were intensively studied, and potential applications of these compounds such as, as an alternative to hormone replacement therapy (HRT).
Collapse
|
16
|
Li S, Chen Y, Xie L, Meng Y, Zhu L, Chu H, Gu D, Zhang Z, Du M, Wang M. Sex hormones and genetic variants in hormone metabolic pathways associated with the risk of colorectal cancer. ENVIRONMENT INTERNATIONAL 2020; 137:105543. [PMID: 32059146 DOI: 10.1016/j.envint.2020.105543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The different incidence of colorectal cancer between the sexes suggests that sex hormones may be involved in the susceptibility to colorectal cancer. The association between sex hormones and genetic variants in hormone metabolic pathways and the colorectal cancer risk remains unclear. METHODS We detected sex hormone levels in plasma from colorectal cancer patients and controls in males by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). We evaluated the clinical significance of sex hormones on colorectal cancer diagnosis with the area under the receiver operating characteristic curve (AUC). The role of genetic variants in hormone metabolic pathways in the colorectal cancer risk was assessed by a logistic regression model. The biological functions were detected by luciferase reporter assays and cell behavior experiments. RESULTS We found that 2-methoxyestrone (2-MeO-E1) was highly expressed in cases (PFDR = 3.48 × 10-19). The expression of 2-MeO-E1 in plasma showed improved accuracy for predicting colorectal cancer (AUC = 0.88). In the 2-MeO-E1 metabolic pathway, rs165599 in COMT was significantly associated with an increased risk of colorectal cancer (P = 0.009). Mechanistically, we found that the rs165599 G allele could decrease the binding ability of miR-22-3p to the COMT 3'-UTR. Furthermore, knockdown of COMT inhibited cell proliferation, induced cell apoptosis and arrested the cell cycle in the G1 phase. CONCLUSION This is the first study to show that 2-MeO-E1 and a genetic variant in COMT contribute to the susceptibility to colorectal cancer. These results shed light on the different incidence of colorectal cancer between the sexes.
Collapse
Affiliation(s)
- Shuwei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yehua Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lisheng Xie
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Infection Control, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Yixuan Meng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Chukicheva IY, Fedorova IV, Kolegova ТА, Kutchin A. Prenylation of 4-Methylphenol. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
ZHOU QH, ZHU YD, ZHANG F, SONG YQ, JIA SN, ZHU L, FANG SQ, GE GB. Interactions of drug-metabolizing enzymes with the Chinese herb Psoraleae Fructus. Chin J Nat Med 2019; 17:858-870. [DOI: 10.1016/s1875-5364(19)30103-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/13/2022]
|
19
|
Nguyen HD, Okada T, Sekiguchi F, Tsubota M, Nishikawa H, Kawabata A, Toyooka N. Prenylflavanones as Novel T-Type Calcium Channel Blockers Useful for Pain Therapy. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19873441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Prenylated flavonoids have attracted much attention due to their promising and diverse bioactivities on multitarget tissues. To the best of our knowledge, our recent studies demonstrated first that (2 S)-6-prenylnaringenin (6-PNG), a hop component, blocks Cav3.2 T-type calcium channels (T-channels) and alleviates neuropathic and visceral pain with little side effects; it also indicated first that other natural prenylflavanones (PFVNs), such as sophoraflavanone G and (2 S)-8-PNG, or synthetic 6-PFVNs including (2 R/S)-6-PNG and its derivatives are capable of blocking T-channels and useful for pain therapy. Through the structure-activity relationship studies on the synthetic 6-PFVNs, we identified 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(2-hydroxyphenyl)chroman-4-one (8j or KTt-45) as the most potent blocker of Cav3.2 T-channels. It is interesting to recognize a prenylated flavonoid, belonging to other sub-classes, as a novel T-channel blocker. Therefore, this article will review some of our recent studies to introduce a new branch to researchers studying on prenylated flavonoids.
Collapse
Affiliation(s)
- Huy Du Nguyen
- Graduate School of Innovative Life Science, University of Toyama, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Hiroyuki Nishikawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Japan
- Graduate School of Science and Engineering, University of Toyama, Japan
| |
Collapse
|
20
|
Yang T, Feng YL, Chen L, Vaziri ND, Zhao YY. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit Rev Toxicol 2019; 49:445-460. [PMID: 31433724 DOI: 10.1080/10408444.2019.1635987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of cancer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell proliferation and apoptosis, immune metabolism and other processes, which further affected tumor growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the largest source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands increases, it seems sensible to summarize current research on these ligands. In this review, we highlight the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research. This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramatically pave the way for targeted cancer treatment.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| |
Collapse
|
21
|
Mao X, Wang J, Wang Q, Yang L, Li Y, Lin H, Peng Y, Zheng J. Nitidine Chloride-Induced CYP1 Enzyme Inhibition and Alteration of Estradiol Metabolism. Drug Metab Dispos 2019; 47:919-927. [PMID: 31147316 DOI: 10.1124/dmd.119.086892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/24/2019] [Indexed: 02/13/2025] Open
Abstract
The cytochrome P450 (P450) 1 family is an important phase I enzyme involved in carcinogen activation. Nitidine chloride (NC) is a pharmacologically active alkaloid with polyaromatic hydrocarbon found in the roots of Zanthoxylum nitidum (Roxb.) DC, a traditional medicinal herb widely used in China. We examined the inhibitory effects of NC on CYP1A1, 1B1, and 1A2. NC significantly inhibited CYP1A1- and 1B1-catalyzed ethoxyresorufin O-deethylation activity (IC50 = 0.28 ± 0.06 and 0.32 ± 0.02 μM, respectively) in a concentration-dependent manner, but only showed slight inhibition of CYP1A2 activity (IC50 > 50 μM). Kinetic analysis revealed that NC competitively inhibited CYP1B1 with a K i value of 0.47 ± 0.05 μM, whereas NC caused a mixed type of inhibition on CYP1A1 with K i and K I values of 0.14 ± 0.04 and 0.19 ± 0.09 μM, respectively. The observed enzyme inhibition neither required NADPH nor revealed time dependency. Molecular docking manifested the generation of strong hydrogen-bonding interactions of Ser116 in CYP1A1 and Ser127 in CYP1B1 with methoxy moiety of NC. Additionally, NC-induced alteration of estradiol (E2) metabolism was also investigated in the present study. Hydroxyestradiols, including 2-hydroxyestradiol [(2-OHE2) nontoxic] and 4-hydroxyestradiol [(4-OHE2) genotoxic] generated in recombinant enzyme incubation systems and cultured MCF-7 cells were analyzed, and NC was found to preferentially inhibit the nontoxic 2-hydroxylation activity of E2 mediated by CYP1A1. In conclusion, NC was a mixed type inhibitor of CYP1A1 and a competitive inhibitor of CYP1B1. The remarkable inhibition on E2 2-hydroxylation might increase the risk of 4-OHE2-induced genotoxicity. SIGNIFICANCE STATEMENT: CYP1 enzymes catalyze oxidative metabolism of a variety of compounds and are known to play a crucial role in the development of cancer. CYP1A1 and CYP1A2 are responsible for hydroxylation of estradiol (E2) at the C-2 position, resulting in the formation of 2-OHE2, which is proposed to be a detoxification pathway. However, CYP1B1-mediated hydroxylation of E2 at the C-4 position has been suggested to be a tumor initiator. The present study found that nitidine chloride is a mixed type inhibitor of CYP1A1 and a competitive inhibitor of CYP1B1. NC preferentially inhibited the nontoxic E2 2-hydroxylation pathway mediated by CYP1A1, which might increase the risk of 4-OHE2-induced genotoxicity and cause severe drug-drug interactions.
Collapse
Affiliation(s)
- Xu Mao
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Jian Wang
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Qian Wang
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Lan Yang
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Yilin Li
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Hao Lin
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Ying Peng
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| | - Jiang Zheng
- Wuya College of Innovation (X.M., Q.W., L.Y., Y.L., H.L., Y.P., J.Z.) and School of Pharmaceutical Engineering (J.W.), Shenyang Pharmaceutical University, Shenyang, Liaoning, People's Republic of China; and School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou, People's Republic of China (J.Z.)
| |
Collapse
|
22
|
Kobus-Cisowska J, Szymanowska-Powałowska D, Szczepaniak O, Kmiecik D, Przeor M, Gramza-Michałowska A, Cielecka-Piontek J, Smuga-Kogut M, Szulc P. Composition and In Vitro Effects of Cultivars of Humulus lupulus L. Hops on Cholinesterase Activity and Microbial Growth. Nutrients 2019; 11:nu11061377. [PMID: 31248112 PMCID: PMC6627407 DOI: 10.3390/nu11061377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Common hop (Humulus lupulus L.) has significant health-promoting properties. Hop cones contain resins, essential oils, proteins, polyphenols, lipids, waxes, and cellulose. Hop extracts include bioactive compounds such as polyphenolic compounds (phenolic acids, and flavonols), and chlorophylls. The aim of this study was to compare the pro-health potential of hop cone extracts obtained from three cultivars (Magnum, Lubelski, and Marynka). The results showed that the cones of Magnum cultivar demonstrated the highest biological activity. The sum of phenolic acids and flavonols in ethanol extract was the highest for this variety and was equal 4903.5 µg/g dw. Ethanol extracts of Magnum cultivars showed the highest degree of iron ion chelation (55.43-88.76%) as well as the activity against 1,1-diphenyl-2-picrylhydrazyl radical (4.75 mmol Tx/g dw). Hop cone extracts as cholinesterase inhibitors showed high potential for aqueous variants. In terms of antimicrobial activity, all investigated extracts demonstrated strong inhibition against Staphylococcus aureus and Staphylococcus epidermidis, with the Magnum cultivar showing the strongest inhibition. Owing to the biofunctional features of hop cone, it can be concluded that it is an attractive raw material with pro-health potential that can be used much more widely in food technology. However, it should be noted that toxicological tests and in vitro tests must be carried out before the raw material is used in food production.
Collapse
Affiliation(s)
- Joanna Kobus-Cisowska
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | | | - Oskar Szczepaniak
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | - Dominik Kmiecik
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | - Monika Przeor
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | - Anna Gramza-Michałowska
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | | | - Małgorzata Smuga-Kogut
- Department of Agrobiotechnology, Koszalin University of Technology, 75-453 Koszalin, Poland.
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, 60-621 Poznan, Poland.
| |
Collapse
|
23
|
Lang D, Radtke M, Bairlein M. Highly Variable Expression of CYP1A1 in Human Liver and Impact on Pharmacokinetics of Riociguat and Granisetron in Humans. Chem Res Toxicol 2019; 32:1115-1122. [DOI: 10.1021/acs.chemrestox.8b00413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dieter Lang
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - Martin Radtke
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, Aprather Weg 18a, 42096 Wuppertal, Germany
| |
Collapse
|
24
|
Bolton JL, Dunlap TL, Hajirahimkhan A, Mbachu O, Chen SN, Chadwick L, Nikolic D, van Breemen RB, Pauli GF, Dietz BM. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem Res Toxicol 2019; 32:222-233. [PMID: 30608650 PMCID: PMC6643004 DOI: 10.1021/acs.chemrestox.8b00345] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Botanical dietary supplements for women's health are increasingly popular. Older women tend to take botanical supplements such as hops as natural alternatives to traditional hormone therapy to relieve menopausal symptoms. Especially extracts from spent hops, the plant material remaining after beer brewing, are enriched in bioactive prenylated flavonoids that correlate with the health benefits of the plant. The chalcone xanthohumol (XH) is the major prenylated flavonoid in spent hops. Other less abundant but important bioactive prenylated flavonoids are isoxanthohumol (IX), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN). Pharmacokinetic studies revealed that these flavonoids are conjugated rapidly with glucuronic acid. XH also undergoes phase I metabolism in vivo to form IX, 8-PN, and 6-PN. Several hop constituents are responsible for distinct effects linked to multiple biological targets, including hormonal, metabolic, inflammatory, and epigenetic pathways. 8-PN is one of the most potent phytoestrogens and is responsible for hops' estrogenic activities. Hops also inhibit aromatase activity, which is linked to 8-PN. The weak electrophile, XH, can activate the Keap1-Nrf2 pathway and turn on the synthesis of detoxification enzymes such as NAD(P)H-quinone oxidoreductase 1 and glutathione S-transferase. XH also alkylates IKK and NF-κB, resulting in anti-inflammatory activity. Antiobesity activities have been described for XH and XH-rich hop extracts likely through activation of AMP-activated protein kinase signaling pathways. Hop extracts modulate the estrogen chemical carcinogenesis pathway by enhancing P450 1A1 detoxification. The mechanism appears to involve activation of the aryl hydrocarbon receptor (AhR) by the AhR agonist, 6-PN, leading to degradation of the estrogen receptor. Finally, prenylated phenols from hops are known inhibitors of P450 1A1/2; P450 1B1; and P450 2C8, 2C9, and 2C19. Understanding the biological targets of hop dietary supplements and their phytoconstituents will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha L. Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Obinna Mbachu
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Luke Chadwick
- Bell’s Brewery, 8938 Krum Avenue, Galesburg, Michigan 49053, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Richard B. van Breemen
- Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, Corvallis, Oregon 97331, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M. Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
25
|
Chemical Diversity and Biological Activity of African Propolis. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:415-450. [PMID: 31637531 DOI: 10.1007/978-3-030-12858-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural remedies have for centuries played a significant role in traditional medicine and continue to be a unique reservoir of new chemical entities in drug discovery and development research. Propolis is a natural substance, collected by bees mainly from plant resins, which has a long history of use as a folk remedy to treat a variety of ailments. The highly variable phytochemical composition of propolis is attributed to differences in plant diversity within the geographic regions from which it is collected. Despite the fact that the last five decades has seen significant advancements in the understanding of the chemistry and biological activity of propolis, a search of the literature has revealed that studies on African propolis to date are rather limited. The aim of this contribution is to report on the current body of knowledge of African propolis, with a particular emphasis on its chemistry and biological activity. As Africa is a continent with a rich flora and a vast diversity of ecosystems, there is a wide range of propolis phytochemicals that may be exploited in the development of new drug scaffolds.
Collapse
|
26
|
Li X, Yao Z, Jiang X, Sun J, Ran G, Yang X, Zhao Y, Yan Y, Chen Z, Tian L, Bai W. Bioactive compounds from Cudrania tricuspidata: A natural anticancer source. Crit Rev Food Sci Nutr 2018; 60:494-514. [PMID: 30582344 DOI: 10.1080/10408398.2018.1541866] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor is becoming a critical threat to our lives in these years. Searching for antitumor substances from natural products is a great interest of scientists. Cudrania tricuspidata (C. tricuspidata) is a regional plant containing 158 flavonoids and 99 xanthones, and others ingredients with favorable bioactivity. This review comprehensively analyzes the antitumor compounds from C. tricuspidata against different tumors, and 78 flavonoids plus xanthones are considered as underlying antineoplastic. Importantly, the structure of preylation groups is the primary source of antitumor activity among 45 flavonoids plus xanthones, which could be a direction of structural modification for a better antitumor ability. Additionally, the fruits are also preferable sources of antitumor compounds compared to the roots and barks due to the abundant isoflavones and sustainability. However, many studies only focused on the cells viability inhibition of the compounds, the underlying molecular mechanisms, and the intracellular targets remain ambiguous. In conclusion, C. tricuspidata has a great potential for anti-tumor prevention or therapy, but more attention should be paid to deeper research in vitro and in vivo models.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Zilan Yao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- >Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Guojing Ran
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xuan Yang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Yaqi Zhao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Ying Yan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Zisheng Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
27
|
Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly Cancer Selective Antiproliferative Activity of Natural Prenylated Flavonoids. Molecules 2018; 23:molecules23112922. [PMID: 30423918 PMCID: PMC6278664 DOI: 10.3390/molecules23112922] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Xanthohumol (XN) and four minor hops prenylflavonoids: α,β-dihydroxanthohumol (2HXN), isoxanthohumol (IXN), 8-prenylnaringenin (8PN), and 6-prenylnaringenin (6PN), were tested for antiproliferative activity towards human cancer and normal cell lines. Nonprenylated naringenin (NG) was used as a model compound. Xanthohumol, α,β-dihydroxanthohumol and 6-prenylnaringenin were the most active compounds. Xanthohumol exhibited higher antiproliferative activity than cisplatin (CP) against five cancer cell lines: ovarian resistant to cisplatin A2780cis, breast MDA-MB-231 and T-47D, prostate PC-3, and colon HT-29. Isoxanthohumol was more potent than cisplatin against breast cancer cell lines MDA-MB-231 and T-47D whereas 6-prenylnaringenin was stronger than cisplatin against breast cancer cell line T-47D. It was found that tested chalcones possessed highly selective antiproliferative activity towards all tested breast cancer lines compared to the normal breast MCF 10A cell line (the calculated selectivity index ranged from 5 to 10). Low antiproliferative activity of naringenin indicates the importance of the prenyl group with respect to antiproliferative activity.
Collapse
Affiliation(s)
- Agnieszka Bartmańska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| | - Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
28
|
Wang S, Dunlap TL, Huang L, Liu Y, Simmler C, Lantvit DD, Crosby J, Howell CE, Dong H, Chen SN, Pauli GF, van Breemen RB, Dietz BM, Bolton JL. Evidence for Chemopreventive and Resilience Activity of Licorice: Glycyrrhiza Glabra and G. Inflata Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prev Res (Phila) 2018; 11:819-830. [PMID: 30287522 DOI: 10.1158/1940-6207.capr-18-0178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Women are increasingly using botanical dietary supplements (BDS) to reduce menopausal hot flashes. Although licorice (Glycyrrhiza sp.) is one of the frequently used ingredients in BDS, the exact plant species is often not identified. We previously showed that in breast epithelial cells (MCF-10A), Glycyrrhiza glabra (GG) and G. inflata (GI), and their compounds differentially modulated P450 1A1 and P450 1B1 gene expression, which are responsible for estrogen detoxification and genotoxicity, respectively. GG and isoliquiritigenin (LigC) increased CYP1A1, whereas GI and its marker compound, licochalcone A (LicA), decreased CYP1A1 and CYP1B1 The objective of this study was to determine the distribution of the bioactive licorice compounds, the metabolism of LicA, and whether GG, GI, and/or pure LicA modulate NAD(P)H quinone oxidoreductase (NQO1) in an ACI rat model. In addition, the effect of licorice extracts and compounds on biomarkers of estrogen chemoprevention (CYP1A1) as well as carcinogenesis (CYP1B1) was studied. LicA was extensively glucuronidated and formed GSH adducts; however, free LicA as well as LigC were bioavailable in target tissues after oral intake of licorice extracts. GG, GI, and LicA caused induction of NQO1 activity in the liver. In mammary tissue, GI increased CYP1A1 and decreased CYP1B1, whereas GG only increased CYP1A1 LigC may have contributed to the upregulation of CYP1A1 after GG and GI administration. In contrast, LicA was responsible for GI-mediated downregulation of CYP1B1 These studies highlight the polypharmacologic nature of botanicals and the importance of standardization of licorice BDS to specific Glycyrrhiza species and to multiple constituents.
Collapse
Affiliation(s)
- Shuai Wang
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Lingyi Huang
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel D Lantvit
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Jenna Crosby
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Caitlin E Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
29
|
Stiborová M, Dračínská H, Bořek-Dohalská L, Klusoňová Z, Holecová J, Martínková M, Schmeiser HH, Arlt VM. Exposure to endocrine disruptors 17alpha-ethinylestradiol and estradiol influences cytochrome P450 1A1-mediated genotoxicity of benzo[a]pyrene and expression of this enzyme in rats. Toxicology 2018; 400-401:48-56. [PMID: 29649501 PMCID: PMC6593260 DOI: 10.1016/j.tox.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 01/04/2023]
Abstract
17α-ethinylestradiol (EE2) and estradiol affect genotoxicity of benzo[a]pyrene (BaP) in rats. Cytochrome P450 (CYP) 1A1 and 1B1 are induced in rats by BaP but not EE2 and estradiol. Exposure of rats to EE2, estradiol and BaP decreased BaP-DNA adduct formation in vivo. The decrease results from inhibition of CYP1A1-mediated BaP activation by EE2 and estradiol.
Endocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine system by mimicking or antagonising the effects of endogenous hormones, by altering the synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a natural endogenous ED. Although the biological effects of these individual EDs have partially been studied previously, their toxicity when acting in combination has not yet been investigated. Here we treated Wistar rats with BaP, EE2 and estradiol alone or in combination and studied the influence of EE2 and estradiol on: (i) the expression of cytochrome P450 (CYP) 1A1 and 1B1 in rat liver on the transcriptional and translational levels; (ii) the inducibility of these CYP enzymes by BaP in this rat organ; (iii) the formation of BaP-DNA adducts in rat liver in vivo; and (iv) the generation of BaP-induced DNA adducts after activation of BaP with hepatic microsomes of rats exposed to BaP, EE2 and estradiol and with recombinant rat CYP1A1 in vitro. BaP acted as a strong and moderate inducer of CYP1A1 and 1B1 in rat liver, respectively, whereas EE2 or estradiol alone had no effect on the expression of these enzymes. However, when EE2 was administered to rats together with BaP, it significantly decreased the potency of BaP to induce CYP1A1 and 1B1 gene expression. For EE2, but not estradiol, this also correlated with a reduction of BaP-induced CYP1A1 enzyme activity in rat hepatic microsomes. Further, while EE2 and estradiol did not form covalent adducts with DNA, they affected BaP-derived DNA adduct formations in vivo and in vitro. The observed decrease in BaP-DNA adduct levels in rat liver in vivo resulted from the inhibition of CYP1A1-mediated BaP bioactivation by EE2 and estradiol. Our results indicate that BaP genotoxicity mediated through its activation by CYP1A1 in rats in vivo is modulated by estradiol and its synthetic derivative EE2.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Lucie Bořek-Dohalská
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Zuzana Klusoňová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Jana Holecová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
30
|
Štulíková K, Karabín M, Nešpor J, Dostálek P. Therapeutic Perspectives of 8-Prenylnaringenin, a Potent Phytoestrogen from Hops. Molecules 2018; 23:E660. [PMID: 29543713 PMCID: PMC6017581 DOI: 10.3390/molecules23030660] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 02/03/2023] Open
Abstract
Hop (Humulus lupulus L.), as a key ingredient for beer brewing, is also a source of many biologically active molecules. A notable compound, 8-prenylnaringenin (8-PN), structurally belonging to the group of prenylated flavonoids, was shown to be a potent phytoestrogen, and thus, became the topic of active research. Here, we overview the pharmacological properties of 8-PN and its therapeutic opportunities. Due to its estrogenic effects, administration of 8-PN represents a novel therapeutic approach to the treatment of menopausal and post-menopausal symptoms that occur as a consequence of a progressive decline in hormone levels in women. Application of 8-PN in the treatment of menopause has been clinically examined with promising results. Other activities that have already been assessed include the potential to prevent bone-resorption or inhibition of tumor growth. On the other hand, the use of phytoestrogens is frequently questioned regarding possible adverse effects associated with long-term consumption. In conclusion, we emphasize the implications of using 8-PN in future treatments of menopausal and post-menopausal symptoms, including the need for precise evidence and further investigations to define the safety risks related to its therapeutic use.
Collapse
Affiliation(s)
- Kateřina Štulíková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Marcel Karabín
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jakub Nešpor
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Pavel Dostálek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
31
|
Keiler AM, Macejova D, Dietz BM, Bolton JL, Pauli GF, Chen SN, van Breemen RB, Nikolic D, Goerl F, Muders MH, Zierau O, Vollmer G. Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. J Steroid Biochem Mol Biol 2017; 174:234-241. [PMID: 28964928 PMCID: PMC5760272 DOI: 10.1016/j.jsbmb.2017.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Supplements with estrogenic activities are intensively investigated as potential alternatives for the treatment of menopausal symptoms. These investigations include studies on their safety regarding potential breast cancer risks. Therefore, the aim of this study was to assess whether or not a standardized hops (Humulus lupulus) extract, containing 0.42% of the estrogenic flavanone, 8-prenylnaringenin, would stimulate growth of methyl-nitrosourea (MNU) induced mammary cancer in ovariectomized (OVX) Sprague-Dawley (SD) rats or would impact on the proliferative activity within the normal mammary gland of Wistar rats. To induce tumorigenesis SD-rats received an intraperitoneal injection of 50mg/kg body weight of MNU on postnatal days PND 50 and 52. 28days later animals were OVX or were SHAM operated (positive control) and randomly allocated and maintained for 140days on either a phytoestrogen-free placebo diet (SHAM and negative control) or on the hops fortified diet. For the investigations in the normal mammary gland young adult Wistar rats were bilaterally OVX and randomly allocated to a control group fed to a phytoestrogen-free diet, or to a diet supplemented either with E2-benzoate or the hops extract. As a major result, the tumor incidence was 15% (3 tumors totally) in OVX controls, whereas it was 85% (39 tumors totally) in SHAM operated positive controls. No tumors were detectable in the hops group. In addition, no estrogenic activity of the hops extract was detectable in uterus and liver of these animals. In investigations on the normal mammary gland, no impact of hops extract on the expression of estrogen dependent proliferation markers or of progesterone receptor became apparent. In conclusion, the lack of growth stimulation of MNU-induced breast cancer in OVX SD-rats and the lack of stimulation proliferative events in the normal mammary gland of OVX Wistar rats by standardized hops extracts provides an important piece of evidence regarding the safety of these extracts in the management of menopausal symptoms.
Collapse
Affiliation(s)
- Annekathrin M Keiler
- Chair for Molecular Cell Physiology & Endocrinology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany; Institute for Doping Analytics and Sports Biochemistry Dresden (IDAS), Dresdner Str. 12, 01731 Kreischa, Germany
| | - Dana Macejova
- Laboratory of Molecular Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Florian Goerl
- Institute for Pathology, 01454 Radeberg, Germany; Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael H Muders
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Oliver Zierau
- Chair for Molecular Cell Physiology & Endocrinology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Günter Vollmer
- Chair for Molecular Cell Physiology & Endocrinology, Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
32
|
Dunlap TL, Howell CE, Mukand N, Chen SN, Pauli GF, Dietz BM, Bolton JL. Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism. Chem Res Toxicol 2017; 30:2084-2092. [PMID: 28985473 PMCID: PMC5698877 DOI: 10.1021/acs.chemrestox.7b00237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Many
women consider botanical dietary supplements (BDSs) as safe
alternatives to hormone therapy for menopausal symptoms. However,
the effect of BDSs on breast cancer risk is largely unknown. In the
estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens
to 4-hydroxylated catechols, which are oxidized to genotoxic quinones
that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed
2-hydroxylation represents a detoxification pathway. The current study
evaluated the effects of red clover, a popular BDS used for women’s
health, and its isoflavones, biochanin A (BA), formononetin (FN),
genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy
estrogen metabolites (2-MeOE1, 4-MeOE1) were
measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed
by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A)
and ER-positive breast cancer cells (MCF-7) were derived from normal
breast epithelial tissue and ER+ breast cancer tissue. Red clover
extract (RCE, 10 μg/mL) and isoflavones had no effect on estrogen
metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments
downregulated CYP1A1 expression and enhanced genotoxic metabolism
(4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments
with the isoflavones showed that the AhR agonists (BA, FN) preferentially
induced CYP1B1 expression as well as 4-MeOE1. In contrast,
the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through
an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated
isoflavone-induced XRE-luciferase reporter activity and reversed GN
and DZ induced downregulation of CYP1A1 expression. Overall, these
studies show that red clover and its isoflavones have differential
effects on estrogen metabolism in “normal” vs breast
cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic
metabolism, and the ER agonists downregulate the detoxification pathway.
These data may suggest that especially breast cancer patients should
avoid red clover and isoflavone based BDSs when making choices for
menopausal symptom relief.
Collapse
Affiliation(s)
- Tareisha L Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Caitlin E Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Nita Mukand
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
33
|
Keiler AM, Helle J, Bader MI, Ehrhardt T, Nestler K, Kretzschmar G, Bernhardt R, Vollmer G, Nikolić D, Bolton JL, Pauli GF, Chen SN, Dietz BM, van Breemen RB, Zierau O. A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:50-58. [PMID: 28899509 PMCID: PMC5736964 DOI: 10.1016/j.phymed.2017.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/15/2017] [Accepted: 08/01/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND Hops (Humulus lupulus (L.)) dietary supplements are of interest as herbal remedies to alleviate menopausal symptoms, such as hot flushes, depression and anxiety. So far, the evidence regarding estrogenic and related properties of hops preparations has been considered insufficient for a market authorization for menopausal indications. PURPOSE The study aims to investigate a chemically standardized hops extract regarding its safety in the uterus, as wells as its efficacy to prevent bone loss in the ovariectomized rat model. STUDY DESIGN/METHODS Female Wistar rats were ovariectomized and divided into a control group receiving phytoestrogen-free diet, a group treated with E2benzoate (0.93 mg/kg body weight/d) and a group treated with the standardized hops extract (60 mg/kg body weight/d) for 8 weeks. Micro-computed tomography of the tibiae and vertebrae, as wells as histological changes in the uterus and tibia were analyzed. RESULTS Neither uterotrophic nor proliferative effects were observed in the endometrium in response to the oral 8-week administration of the hops extract. However, site-dependent skeletal effects were observed. The hops extract significantly decreased the number of osteoclasts in the tibial metaphysis and prevented reduction of the trabecular thickness that resulted from estradiol depletion. In contrast, the hops extract did not prevent the ovariectomy-induced micro-architectural changes in the lumbar vertebra. Certain parameters (e.g. thickness and number of trabeculae) were even found to be below the values determined in the ovariectomized control group. CONCLUSION Taken together, the results provide evidence for the safety of the standardized hops extract and point to a weak bone type-specific, protective effect on bone loss following estradiol depletion.
Collapse
Affiliation(s)
- Annekathrin M Keiler
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany; Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Manuela I Bader
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tino Ehrhardt
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Kristin Nestler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ricardo Bernhardt
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL, USA
| | - Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
34
|
van Duursen MBM. Modulation of estrogen synthesis and metabolism by phytoestrogens in vitro and the implications for women's health. Toxicol Res (Camb) 2017; 6:772-794. [PMID: 30090542 DOI: 10.1039/c7tx00184c] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens are increasingly used as dietary supplements due to their suggested health promoting properties, but also by women for breast enhancement and relief of menopausal symptoms. Generally, phytoestrogens are considered to exert estrogenic activity via estrogen receptors (ERs), but they may also affect estrogen synthesis and metabolism locally in breast, endometrial and ovarian tissues. Considering that accurate regulation of local hormone levels is crucial for normal physiology, it is not surprising that interference with hormonal synthesis and metabolism is associated with a wide variety of women's health problems, varying from altered menstrual cycle to hormone-dependent cancers. Yet, studies on phytoestrogens have mainly focused on ER-mediated effects of soy-derived phytoestrogens, with less attention paid to steroid synthesis and metabolism or other phytoestrogens. This review aims to evaluate the potential of phytoestrogens to modulate local estrogen levels and the implications for women's health. For that, an overview is provided of the effects of commonly used phytoestrogens, i.e. 8-prenylnaringenin, biochanin A, daidzein, genistein, naringenin, resveratrol and quercetin, on estrogen synthesizing and metabolizing enzymes in vitro. The potential implications for women's health are assessed by comparing the in vitro effect concentrations with blood concentrations that can be found after intake of these phytoestrogens. Based on this evaluation, it can be concluded that high-dose supplements with phytoestrogens might affect breast and endometrial health or fertility in women via the modulation of steroid hormone levels. However, more data regarding the tissue levels of phytoestrogens and effect data from dedicated, tissue-specific assays are needed for a better understanding of potential risks. At least until more certainty regarding the safety has been established, especially young women would better avoid using supplements containing high doses of phytoestrogens.
Collapse
Affiliation(s)
- Majorie B M van Duursen
- Research group Endocrine Toxicology , Institute for Risk Assessment Sciences , Faculty of Veterinary Medicine , Utrecht University , Yalelaan 104 , 3584 CM , Utrecht , the Netherlands . ; Tel: +31 (0)30 253 5398
| |
Collapse
|
35
|
Dietz B, Chen SN, Alvarenga RF, Dong H, Nikolić D, Biendl M, van Breemen RB, Bolton JL, Pauli GF. DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women's Health. JOURNAL OF NATURAL PRODUCTS 2017; 80:2284-2294. [PMID: 28812892 PMCID: PMC5765536 DOI: 10.1021/acs.jnatprod.7b00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 05/22/2023]
Abstract
Botanical dietary supplements contain multiple bioactive compounds that target numerous biological pathways. The lack of uniform standardization requirements is one reason that inconsistent clinical effects are reported frequently. The multifaceted biological interactions of active principles can be disentangled by a coupled pharmacological/phytochemical approach using specialized ("knock-out") extracts. This is demonstrated for hops, a botanical for menopausal symptom management. Employing targeted, adsorbent-free countercurrent separation, Humulus lupulus extracts were designed for pre- and postmenopausal women by containing various amounts of the phytoestrogen 8-prenylnaringenin (8-PN) and the chemopreventive constituent xanthohumol (XH). Analysis of their estrogenic (alkaline phosphatase), chemopreventive (NAD(P)H-quinone oxidoreductase 1 [NQO1]), and cytotoxic bioactivities revealed that the estrogenicity of hops is a function of 8-PN, whereas their NQO1 induction and cytotoxic properties depend on XH levels. Antagonization of the estrogenicity of 8-PN by elevated XH concentrations provided evidence for the interdependence of the biological effects. A designed postmenopausal hop extract was prepared to balance 8-PN and XH levels for both estrogenic and chemopreventive properties. An extract designed for premenopausal women contains reduced 8-PN levels and high XH concentrations to minimize estrogenic while retaining chemopreventive properties. This study demonstrates the feasibility of modulating the concentrations of bioactive compounds in botanical extracts for potentially improved efficacy and safety.
Collapse
Affiliation(s)
- Birgit
M. Dietz
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Shao-Nong Chen
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - René F.
Ramos Alvarenga
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Huali Dong
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Dejan Nikolić
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Martin Biendl
- Hopsteiner,
Hallertauer Hopfenveredelung GmbH, Auhofstrasse 16, 84048 Mainburg, Germany
| | - Richard B. van Breemen
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Judy L. Bolton
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Guido F. Pauli
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| |
Collapse
|
36
|
In Vitro Effect of 8-Prenylnaringenin and Naringenin on Fibroblasts and Glioblastoma Cells-Cellular Accumulation and Cytotoxicity. Molecules 2017; 22:molecules22071092. [PMID: 28665345 PMCID: PMC6152326 DOI: 10.3390/molecules22071092] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/14/2023] Open
Abstract
Gliomas are one of the most aggressive and treatment-resistant types of human brain cancer. Identification and evaluation of anticancer properties of compounds found in plants, such as naringenin (N) and 8-prenylnaringenin (8PN), are among the most promising applications in glioma therapy. The prenyl group seems to be crucial to the anticancer activity of flavones, since it may lead to enhanced cell membrane targeting and thus increased intracellular activity. It should be noted that 8PN content in hop cones is 10 to 100 times lower compared to other flavonoids, such as xanthohumol. In the study presented, we used a simple method for the synthesis of 8PN from isoxanthohumol—O-demethylation, with a high yield of 97%. Cellular accumulation and cytotoxicity of naringenin and 8-prenylnaringenin in normal (BJ) and cancer cells (U-118 MG) was also examined. Obtained data indicated that 8-prenylnaringenin exhibited higher cytotoxicity against used cell lines than naringenin, and the effect of both flavones was stronger in U-118 MG cells than in normal fibroblasts. The anticancer properties of 8PN correlated with its significantly greater (37%) accumulation in glioblastoma cells than in normal fibroblasts. Additionally, naringenin demonstrated higher selectivity for glioblastoma cells, as it was over six times more toxic for cancer than normal cells. Our results provide evidence that examined prenylated and non-prenylated flavanones have different biological activities against normal and cancer cell lines, and this property may be useful in designing new anticancer drugs for glioblastoma therapy.
Collapse
|
37
|
Pellow J, McGrath L. Herbal medicine for low sexual desire in menopausal women: A clinical review. Complement Ther Clin Pract 2016; 25:122-129. [PMID: 27863600 DOI: 10.1016/j.ctcp.2016.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Many women typically experience a significant reduction in sexual desire during the late perimenopausal and early postmenopausal stages, with the biggest decline in sexual desire occurring from three years prior to two years after the final menstrual period. Despite being a prevalent female complaint, currently no standard treatment for low sexual desire exists. Herbal medicines have been used therapeutically all around the world, and are an important component of Traditional and Complementary Medicine. There have been numerous trials and pharmacological studies of specific herbal preparations related to the treatment of low sexual desire. This article serves to provide a clinical review of the evidence relating to the herbal treatment options for this common condition.
Collapse
Affiliation(s)
- Janice Pellow
- Department of Homoeopathy, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, Gauteng, 2028, South Africa.
| | - Linda McGrath
- Department of Homoeopathy, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, Gauteng, 2028, South Africa.
| |
Collapse
|
38
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
39
|
Dong J, Zhang Q, Cui Q, Huang G, Pan X, Li S. Flavonoids and Naphthoflavonoids: Wider Roles in the Modulation of Cytochrome P450 Family 1 Enzymes. ChemMedChem 2016; 11:2102-2118. [DOI: 10.1002/cmdc.201600316] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyun Dong
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Qijing Zhang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Qing Cui
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Guang Huang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| | - Xiaoyan Pan
- School of Pharmacy; Xi'an Jiaotong University; Xi'an Shaanxi Province P.R. China
| | - Shaoshun Li
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P.R. China
| |
Collapse
|