1
|
Cirovic A, Cirovic A, Yimthiang S, Vesey DA, Satarug S. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters. Biomolecules 2024; 14:650. [PMID: 38927054 PMCID: PMC11202194 DOI: 10.3390/biom14060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Supabhorn Yimthiang
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
| |
Collapse
|
2
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Jeong H, Byeon E, Kim DH, Maszczyk P, Lee JS. Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. MARINE POLLUTION BULLETIN 2023; 191:114959. [PMID: 37146547 DOI: 10.1016/j.marpolbul.2023.114959] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
Heavy metals (HMs) and metalloid occur naturally and are found throughout the Earth's crust but they are discharged into aquatic environments at high concentrations by human activities, increasing heavy metal pollution. HMs can bioaccumulate in higher organisms through the food web and consequently affect humans. In an aquatic environment, various HMs mixtures can be present. Furthermore, HMs adsorb on other environmental pollutants, such as microplastics and persistent organic pollutants, causing a synergistic or antagonistic effect on aquatic organisms. Therefore, to understand the biological and physiological effects of HMs on aquatic organisms, it is important to evaluate the effects of exposure to combinations of complex HM mixtures and/or pollutants and other environmental factors. Aquatic invertebrates occupy an important niche in the aquatic food chain as the main energy link between higher and lower organisms. The distribution of heavy metals and the resulting toxic effects in aquatic invertebrates have been extensively studied, but few reports have dealt with the relationship between HMs, pollutants, and environmental factors in biological systems with regard to biological availability and toxicity. This review describes the overall properties of individual HM and their effects on aquatic invertebrates and comprehensively reviews physiological and biochemical endpoints in aquatic invertebrates depending on interactions among HMs, other pollutants, and environmental factors.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Lussier-Price M, Wahba HM, Mascle XH, Cappadocia L, Bourdeau V, Gagnon C, Igelmann S, Sakaguchi K, Ferbeyre G, Omichinski J. Zinc controls PML nuclear body formation through regulation of a paralog specific auto-inhibition in SUMO1. Nucleic Acids Res 2022; 50:8331-8348. [PMID: 35871297 PMCID: PMC9371903 DOI: 10.1093/nar/gkac620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO–SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.
Collapse
Affiliation(s)
- Mathieu Lussier-Price
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Haytham M Wahba
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
- Department of Biochemistry, Beni-Suef University , Beni-Suef, Egypt
| | - Xavier H Mascle
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Laurent Cappadocia
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Veronique Bourdeau
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Christina Gagnon
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Sebastian Igelmann
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo, Japan
| | - Gerardo Ferbeyre
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| | - James G Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal , Montréal, QC, Canada
| |
Collapse
|
7
|
Cole TR, Igumenova TI. Reactivity of Thiol-Rich Zn Sites in Diacylglycerol-Sensing PKC C1 Domain Probed by NMR Spectroscopy. Front Mol Biosci 2021; 8:728711. [PMID: 34447788 PMCID: PMC8382798 DOI: 10.3389/fmolb.2021.728711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Conserved homology 1 (C1) domains are peripheral zinc finger domains that are responsible for recruiting their host signaling proteins, including Protein Kinase C (PKC) isoenzymes, to diacylglycerol-containing lipid membranes. In this work, we investigated the reactivity of the C1 structural zinc sites, using the cysteine-rich C1B regulatory region of the PKCα isoform as a paradigm. The choice of Cd2+ as a probe was prompted by previous findings that xenobiotic metal ions modulate PKC activity. Using solution NMR and UV-vis spectroscopy, we found that Cd2+ spontaneously replaced Zn2+ in both structural sites of the C1B domain, with the formation of all-Cd and mixed Zn/Cd protein species. The Cd2+ substitution for Zn2+ preserved the C1B fold and function, as probed by its ability to interact with a potent tumor-promoting agent. Both Cys3His metal-ion sites of C1B have higher affinity to Cd2+ than Zn2+, but are thermodynamically and kinetically inequivalent with respect to the metal ion replacement, despite the identical coordination spheres. We find that even in the presence of the oxygen-rich sites presented by the neighboring peripheral membrane-binding C2 domain, the thiol-rich sites can successfully compete for the available Cd2+. Our results indicate that Cd2+ can target the entire membrane-binding regulatory region of PKCs, and that the competition between the thiol- and oxygen-rich sites will likely determine the activation pattern of PKCs.
Collapse
Affiliation(s)
- Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Liao G, Wang P, Zhu J, Weng X, Lin S, Huang J, Xu Y, Zhou F, Zhang H, Tse LA, Zou F, Meng X. Joint toxicity of lead and cadmium on the behavior of zebrafish larvae: An antagonism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105912. [PMID: 34303158 DOI: 10.1016/j.aquatox.2021.105912] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Although the individual toxicity of lead (Pb) and cadmium (Cd) was intensively studied, little is known about their joint toxicity on the development of circadian behavioral rhythm. Therefore, we co-exposed zebrafish to Pb and Cd to investigate the alterations of behavioral rhythm and the potential mechanism. Inductively coupled plasma mass spectrometry analysis was used to detect the internal exposure level of heavy metals. The behavioral rhythm was monitored by a video-track tracking system. The changes of gene expression regarding melatonin-related molecules and clock genes were analyzed by quantitative polymerase chain reaction and JTK-Cycle analysis. The results showed that the level of Pb2+ and Cd2+ accumulated in the co-exposure group were significantly lower than that in the Pb or Cd group. Exposed to Pb reduced the locomotor activity; the behavioral rhythms were disrupted by Cd, while the pattern in the co-exposure group showed an antagonistic effect on locomotor activity and behavioral rhythm. The expression rhythm of aanat1 was disturbed and the expression levels of mtnr1aa and mtnr1bb were decreased by co-exposure treatment, but mtnr1c was increased in Pb and Cd group, respectively. Exposure to Cd caused the disruption of expression rhythm in clock genes, like clock1b, clock2, and cry1b, while only the rhythm of clock2 was disrupted in the co-exposure group. The results suggest that the behavioral rhythm disruption caused by Cd exposure is associated with the disturbance of certain circadian genes, whereas Pb exposure only abates the locomotor activity; an antagonistic effect on the behavioral pattern when co-exposed zebrafish larvae to Pb and Cd.
Collapse
Affiliation(s)
- Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqiong Weng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanshan Lin
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingwen Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongnan Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Hojitsiriyanont J, Chaibuth P, Boonkitpatarakul K, Ruangpornvisuti V, Palaga T, Chainok K, Sukwattanasinitt M. Effects of amino proton and denticity of quinoline-pyridine based dyes on Cd2+ and Zn2+ fluorescence sensing properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Abstract
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example.
Collapse
|
11
|
Gender Differences in Zinc and Copper Excretion in Response to Co-Exposure to Low Environmental Concentrations of Cadmium and Lead. Stress 2020. [DOI: 10.3390/stresses1010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Disruption of the homeostasis of zinc (Zn) and copper (Cu) has been associated with nephrotoxicity of cadmium (Cd). Herein, we report the results of a cross sectional analysis of urinary excretion of Zn, Cu, Cd and lead (Pb) in 392 Thais (mean age 33.6) living in an area of low-level environmental exposure to Cd and Pb, reflected by the respective median Cd and Pb excretion rates of 0.44 and 1.75 μg/g creatinine. Evidence for dysregulation of Zn and Cu homeostasis has emerged together with gender differentiated responses. In men, excretion rates for Zn and Cu were increased concomitantly, and their urinary Zn-to-Cu ratios were maintained. In women, only Cu excretion rose, causing a reduction in urinary Zn-to-Cu ratios. Only in women, urinary Zn-to-Cu ratios were associated with worse kidney function, assessed by estimated glomerular filtration rate (eGFR) (β = −7.76, p = 0.015). Only in men, a positive association was seen between eGFR and body iron stores, reflected by serum ferritin (β = 5.32, p = 0.030). Thus, co-exposure to Cd and Pb may disrupt the homeostasis of Zn and Cu more severely in women than men, while urinary Zn-to-Cu ratios and body iron stores can serve as predictors of an adverse effect of co-exposure to Cd and Pb.
Collapse
|
12
|
Yu X, Chen B, He M, Hu B. Argon Enclosed Droplet Based 3D Microfluidic Device Online Coupled with Time-Resolved ICPMS for Determination of Cadmium and Zinc in Single Cells Exposed to Cadmium Ion. Anal Chem 2020; 92:13550-13557. [PMID: 32883069 DOI: 10.1021/acs.analchem.0c03194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Time-resolved (TRA)-ICPMS has become a booming subfield of single-cell analysis tools in recent years, while generation of single cells remains the major challenge. Microfluidic devices reveal their great capability and potential in encapsulation of single cells into water droplets. However, current strategies to pinch off droplets require a specific oil phase, which is not compatible to conventional ICPMS and makes the signal of cells in the water phase susceptible. Herein, we built a 3D water-in-gas microfluidic device (3D W/G MFD) with commercially available components, producing single cell droplet enclosed by argon gas. By simply tuning the flow rate of gas and water, the droplets were generated to encapsulate single cells, which significantly reduced the probability of the single signal coming from multiple cells by 1 or 2 orders of magnitude compared to direct injection. The developed oil-free 3D W/G MFD was more friendly to online coupling with TRA-ICPMS than water-in-oil devices. The effect of Cd2+ on HepG2 cells was studied by single cell detecting total Zn with 3D W/G MFD-TRA-ICPMS, and the variation of labile Zn was explored by flow cytometry with an N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide probe. To the best of our knowledge, this work pioneered the exploration of variation in cellular metal content and speciation at the single-cell level, compensating for the deficiency of speciation analysis based on TRA-ICPMS and providing new insights into exploring the complexity of biology.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020; 8:848. [PMID: 32984336 PMCID: PMC7492674 DOI: 10.3389/fcell.2020.00848] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of body fluid homeostasis is a major renal function, occurring largely through epithelial solute transport in various nephron segments driven by Na+/K+-ATPase activity. Energy demands are greatest in the proximal tubule and thick ascending limb where mitochondrial ATP production occurs through oxidative phosphorylation. Mitochondria contain 20-80% of the cell's iron, copper, and manganese that are imported for their redox properties, primarily for electron transport. Redox reactions, however, also lead to reactive, toxic compounds, hence careful control of redox-active metal import into mitochondria is necessary. Current dogma claims the outer mitochondrial membrane (OMM) is freely permeable to metal ions, while the inner mitochondrial membrane (IMM) is selectively permeable. Yet we recently showed iron and manganese import at the OMM involves divalent metal transporter 1 (DMT1), an H+-coupled metal ion transporter. Thus, iron import is not only regulated by IMM mitoferrins, but also depends on the OMM to intermembrane space H+ gradient. We discuss how these mitochondrial transport processes contribute to renal injury in systemic (e.g., hemochromatosis) and local (e.g., hemoglobinuria) iron overload. Furthermore, the environmental toxicant cadmium selectively damages kidney mitochondria by "ionic mimicry" utilizing iron and calcium transporters, such as OMM DMT1 or IMM calcium uniporter, and by disrupting the electron transport chain. Consequently, unraveling mitochondrial metal ion transport may help develop new strategies to prevent kidney injury induced by metals.
Collapse
Affiliation(s)
- Frank Thévenod
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Wing-Kee Lee
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Michael D Garrick
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
15
|
Padjasek M, Maciejczyk M, Nowakowski M, Kerber O, Pyrka M, Koźmiński W, Krężel A. Metal Exchange in the Interprotein Zn II -Binding Site of the Rad50 Hook Domain: Structural Insights into Cd II -Induced DNA-Repair Inhibition. Chemistry 2020; 26:3297-3313. [PMID: 31846102 PMCID: PMC7155053 DOI: 10.1002/chem.201904942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Indexed: 11/17/2022]
Abstract
CdII is a major genotoxic agent that readily displaces ZnII in a multitude of zinc proteins, abrogates redox homeostasis, and deregulates cellular metalloproteome. To date, this displacement has been described mostly for cysteine(Cys)-rich intraprotein binding sites in certain zinc finger domains and metallothioneins. To visualize how a ZnII -to-CdII swap can affect the target protein's status and thus understand the molecular basis of CdII -induced genotoxicity an intermolecular ZnII -binding site from the crucial DNA repair protein Rad50 and its zinc hook domain were examined. By using a length-varied peptide base, ZnII -to-CdII displacement in Rad50's hook domain is demonstrated to alter it in a bimodal fashion: 1) CdII induces around a two-orders-of-magnitude stabilization effect (log K 12 Zn II =20.8 vs. log K 12 Cd II =22.7), which defines an extremely high affinity of a peptide towards a metal ion, and 2) the displacement disrupts the overall assembly of the domain, as shown by NMR spectroscopic and anisotropy decay data. Based on the results, a new model explaining the molecular mechanism of CdII genotoxicity that underlines CdII 's impact on Rad50's dimer stability and quaternary structure that could potentially result in abrogation of the major DNA damage response pathway is proposed.
Collapse
Affiliation(s)
- Michał Padjasek
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Maciej Maciejczyk
- Department of Physics and BiophysicsFaculty of Food ScienceUniversity of Warmia and Mazury in OlsztynOczapowskiego 410-719OlsztynPoland
| | - Michał Nowakowski
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of WarsawŻwirki i Wigury 10102-089WarsawPoland
| | - Olga Kerber
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| | - Maciej Pyrka
- Department of Physics and BiophysicsFaculty of Food ScienceUniversity of Warmia and Mazury in OlsztynOczapowskiego 410-719OlsztynPoland
| | - Wiktor Koźmiński
- Faculty of ChemistryBiological and Chemical Research CenterUniversity of WarsawŻwirki i Wigury 10102-089WarsawPoland
| | - Artur Krężel
- Department of Chemical BiologyFaculty of BiotechnologyUniversity of WrocławJoliot-Curie 14a50-383WrocławPoland
| |
Collapse
|
16
|
Wang M, Zhang C, Lee JS. Quantitative Shotgun Proteomics Associates Molecular-Level Cadmium Toxicity Responses with Compromised Growth and Reproduction in a Marine Copepod under Multigenerational Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1612-1623. [PMID: 29323882 DOI: 10.1021/acs.est.8b00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, the copepod Tigriopus japonicus was exposed to different cadmium (Cd) treatments (0, 2.5, 5, 10, and 50 μg/L in seawater) for five generations (F0-F4), followed by a two-generation (F5-F6) recovery period in clean seawater. Six life-history traits (survival, developmental time of nauplius phase, developmental time to maturation, number of clutches, number of nauplii/clutch, and fecundity) were examined for each generation. Metal accumulation was also analyzed for generations F0-F6. Additionally, proteome profiling was performed for the control and 50 μg/L Cd-treated F4 copepods. In F0-F4 copepods, Cd accumulated in a concentration-dependent manner, prolonging the development of the nauplius phase and maturation and reducing the number of nauplii/clutch and fecundity. However, during F5-F6, Cd accumulation decreased rapidly, and significant but subtle effects on growth and reproduction were observed only for the highest metal treatment at F5. Proteomic analysis revealed that Cd treatment had several toxic effects including depressed nutrient absorption, dysfunction in cellular redox homeostasis and metabolism, and oxidative stress, resulting in growth retardation and reproduction limitation in this copepod species. Taken together, our results demonstrate the relationship between molecular toxicity responses and population-level adverse outcomes in T. japonicus under multigenerational Cd exposure.
Collapse
Affiliation(s)
- Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University , Xiamen 361102, China
| | - Chen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University , Xiamen 361102, China
| | - Jae-Seong Lee
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University , Xiamen 361102, China
- Department of Biological Science, College of Science, Sungkyunkwan University , Suwon 16419, South Korea
| |
Collapse
|
17
|
Scheller JS, Irvine GW, Wong DL, Hartwig A, Stillman MJ. Stepwise copper(i) binding to metallothionein: a mixed cooperative and non-cooperative mechanism for all 20 copper ions. Metallomics 2017; 9:447-462. [DOI: 10.1039/c7mt00041c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|