1
|
Amić A, Mastiľák Cagardová D, Milanović Ž. Theoretical Study of Antioxidant and Prooxidant Potency of Protocatechuic Aldehyde. Int J Mol Sci 2025; 26:404. [PMID: 39796260 PMCID: PMC11721355 DOI: 10.3390/ijms26010404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO•) and lipid peroxyl radicals (modeled by vinyl peroxyl, H2C=CHOO•) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered. The repairing potency of PCA was investigated for damaged tryptophan, cysteine, leucine, DNA base guanine and linolenic acid. The thermodynamics and kinetics of the single electron transfer (SET) and formal hydrogen atom transfer (fHAT) mechanisms underlying the studied processes were investigated under physiological conditions in aqueous and lipid environments using the SMD/M06-2X/6-311++G(d,p) level of theory. Sequestration of catalytic Fe2+ and Fe3+ ions by PCA, which prevents HO• production via Fenton-like reactions, was modeled. Molecular docking was used to study the inhibitory capability of PCA against xanthine oxidase (XO), one of the enzymes producing reactive oxygen species. The attained results show that PCA has the capability to scavenge lipid peroxyl radicals, repair damaged tryptophan, leucine and guanine, chelate catalytic iron ions and inhibit XO. Thus, PCA could be considered a possible multifunctional antioxidant.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia;
| | - Žiko Milanović
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| |
Collapse
|
2
|
Milanović Ž. Exploring enzyme inhibition and comprehensive mechanisms of antioxidant/prooxidative activity of natural furanocoumarin derivatives: A comparative kinetic DFT study. Chem Biol Interact 2024; 396:111034. [PMID: 38723799 DOI: 10.1016/j.cbi.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to explore the antioxidant and prooxidative activity of two natural furanocoumarin derivatives, Bergaptol (4-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, BER) and Xanthotoxol (9-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, XAN). The collected thermodynamic and kinetic data demonstrate that both compounds possess substantial antiradical activity against HO• and CCl3OO• radicals in physiological conditions. BER exhibited better antiradical activity in comparison to XAN, which can be attributed to the enhanced deprotonation caused by the positioning of the -OH group on the psoralen ring. In contrast to highly reactive radical species, newly formed radical species BER• and XAN• exhibited negligible reactivity towards the chosen constitutive elements of macromolecules (fatty acids, amino acids, nucleobases). Furthermore, in the presence of O2•─, the ability to regenerate newly formed radicals BER• and XAN• was observed. Conversely, in physiological conditions in the presence of Cu(II) ions, both compounds exhibit prooxidative activity. Nevertheless, the prooxidative activity of both compounds is less prominent than their antioxidant activity. Furthermore, it has been demonstrated that anionic species can engage in the creation of a chelate complex, which restricts the reduction of metal ions when reducing agents are present (O2•─ and Asc─). Moreover, studies have demonstrated that these chelating complexes can be coupled with other radical species, hence enhancing their ability to inactivate radicals. Both compounds exhibited substantial inhibitory effects against enzymes involved in the direct or indirect generation of ROS: Xanthine Oxidase (XOD), Lipoxygenase (LOX), Myeloperoxidase (MPO), NADPH oxidase (NOX).
Collapse
Affiliation(s)
- Žiko Milanović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| |
Collapse
|
3
|
Milanović Ž, Dimić D, Klein E, Biela M, Lukeš V, Žižić M, Avdović E, Bešlo D, Vojinović R, Dimitrić Marković J, Marković Z. Degradation Mechanisms of 4,7-Dihydroxycoumarin Derivatives in Advanced Oxidation Processes: Experimental and Kinetic DFT Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2046. [PMID: 36767412 PMCID: PMC9916318 DOI: 10.3390/ijerph20032046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Coumarins represent a broad class of compounds with pronounced pharmacological properties and therapeutic potential. The pursuit of the commercialization of these compounds requires the establishment of controlled and highly efficient degradation processes, such as advanced oxidation processes (AOPs). Application of this methodology necessitates a comprehensive understanding of the degradation mechanisms of these compounds. For this reason, possible reaction routes between HO• and recently synthesized aminophenol 4,7-dihydroxycoumarin derivatives, as model systems, were examined using electron paramagnetic resonance (EPR) spectroscopy and a quantum mechanical approach (a QM-ORSA methodology) based on density functional theory (DFT). The EPR results indicated that all compounds had significantly reduced amounts of HO• radicals present in the reaction system under physiological conditions. The kinetic DFT study showed that all investigated compounds reacted with HO• via HAT/PCET and SPLET mechanisms. The estimated overall rate constants (koverall) correlated with the EPR results satisfactorily. Unlike HO• radicals, the newly formed radicals did not show (or showed negligible) activity towards biomolecule models representing biological targets. Inactivation of the formed radical species through the synergistic action of O2/NOx or the subsequent reaction with HO• was thermodynamically favored. The ecotoxicity assessment of the starting compounds and oxidation products, formed in multistage reactions with O2/NOx and HO•, indicated that the formed products showed lower acute and chronic toxicity effects on aquatic organisms than the starting compounds, which is a prerequisite for the application of AOPs procedures in the degradation of compounds.
Collapse
Affiliation(s)
- Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, 12−16 Studentski Trg, 11000 Belgrade, Serbia
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Monika Biela
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Milan Žižić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Edina Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Drago Bešlo
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, University Josip Juraj Strossmayer Osijek, Vladimir Prelog 1, 31000 Osijek, Croatia
| | - Radiša Vojinović
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevc, Serbia
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
| |
Collapse
|
4
|
Guzman-Lopez EG, Reina M, Perez-Gonzalez A, Francisco-Marquez M, Hernandez-Ayala LF, Castañeda-Arriaga R, Galano A. CADMA-Chem: A Computational Protocol Based on Chemical Properties Aimed to Design Multifunctional Antioxidants. Int J Mol Sci 2022; 23:13246. [PMID: 36362034 PMCID: PMC9658414 DOI: 10.3390/ijms232113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023] Open
Abstract
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson's and Alzheimer's diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor-ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzman-Lopez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Perez-Gonzalez
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | | | - Luis Felipe Hernandez-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| |
Collapse
|
5
|
Li L, Lin LM, Deng J, Lin XL, Li YM, Xia BH. The therapeutic effects of Prunella vulgaris against fluoride-induced oxidative damage by using the metabolomics method. ENVIRONMENTAL TOXICOLOGY 2021; 36:1802-1816. [PMID: 34089294 DOI: 10.1002/tox.23301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Fluoride is considered as one of the most ubiquitous environmental pollutants. Numerous studies have linked reactive oxygen species (ROS)-dependent oxidative damage with fluoride intoxication, which could be prevented by antioxidants. However, the metabolomic changes induced by ROS disruptions in fluoride intoxication are yet unknown. The present study aimed to provide novel mechanistic insights into the fluoride-induced oxidative damage and to investigate the potential protective effects of ethanolic extract of Prunella vulgaris (natural antioxidant, PV) against fluoride-induced oxidative damage. The serum biochemical indicators related to fluoride-induced oxidative damage, such as lipid peroxidation parameter, inflammation and marker enzymes in the liver increased significantly in the fluoride-treated group, while antioxidant enzymes were decreased. However, PV treatment restored the level of these biochemical indicators, indicating satisfactory antioxidant, anti-inflammatory, and hepatoprotective potential of PV. The metabolomics analysis in the serum was performed by liquid chromatography-mass spectroscopy, whereas the fluoride treatment caused severe metabolic disorders in rats, which could be improved by PV. The differential metabolites screened by multivariate analysis after fluoride and PV treatment, were organic acids, fatty acids, and lipids. These differential metabolites represented disorders of glyoxylate and dicarboxylate metabolism and the citrate cycle (TCA) according to metabolic pathway analysis in fluoride treatment rats. Interestingly, the result of metabolic pathway analysis of post-treatment with PV was consistent with that of fluoride treatment, indicating that the energy metabolism plays a major role in the progress of fluoride-induced oxidative damage, as well as the therapeutic effect of PV. These findings provided a theoretical basis for understanding the mechanism underlying metabolic disorders of fluoride toxicity and the effect of PV.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Deng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Xiu-Lian Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Mei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Concomitant administration of HAART aggravates anti-Koch-induced oxidative hepatorenal damage via dysregulation of glutathione and elevation of uric acid production. Biomed Pharmacother 2021; 137:111309. [PMID: 33524784 DOI: 10.1016/j.biopha.2021.111309] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/26/2023] Open
Abstract
Anti-Koch and HAART have been shown to independently induce toxicity to the liver and kidney, albeit available data are few and inconsistent. The present study evaluates the impact of Anti-Koch and HAART, when administered singly and in combination, on hepatic and renal status, and the possible role of adenine deaminase (ADA)/xanthine oxidase (XO) pathway. Anti-Koch and HAART administration were observed to independently impair hepatic and renal functions, diminish glutathione content, and substantially increase lipid peroxidation (MDA) and nitrogen reactive specie (NO). Coherently, these drugs caused significant accumulation of polymorphonuclear leucocytes, up-regulated ADA/XO signaling, increased uric acid production, and enhanced DNA fragmentation in the liver and kidney. Anti-Koch treatment did not significantly alter hepatic and renal levels of nitric oxide nor induce DNA fragmentation in the kidney. Co-administration of anti-Koch and HAART aggravated the observed biochemical alterations. Findings from the histopathological studies of the liver and renal tissues were in agreement with observed biochemical alterations. In conclusion, this report is the first to reveal that anti-Koch and HAART, when administered singly or in combination, attenuate glutathione content and elevate uric acid production in the liver and kidney via upregulation of ADA/XO signaling with resultant oxidative and nitrosative stress, and increased DNA fragmentation.
Collapse
|
7
|
Liu C, Song L, Peshkov VA, Van der Eycken EV. Facile construction of peptidomimetics by sequential C–S/C–N bond activation of Ugi-adducts. Org Chem Front 2021. [DOI: 10.1039/d1qo01438b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diverse peptidomimetics containing a primary amide are prepared via the integration of an Ugi-4CR and sequential C–S/C–N bond activation.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, P. R. China
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic of Kazakhstan
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001, Leuven, Belgium
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow, 117198, Russia
| |
Collapse
|
8
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Galano A. Computer-designed melatonin derivatives: potent peroxyl radical scavengers with no pro-oxidant behavior. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Bazan HA, Bhattacharjee S, Burgos C, Recio J, Abet V, Pahng AR, Jun B, Heap J, Ledet AJ, Gordon WC, Edwards S, Paul D, Alvarez-Builla J, Bazan NG. A novel pipeline of 2-(benzenesulfonamide)-N-(4-hydroxyphenyl) acetamide analgesics that lack hepatotoxicity and retain antipyresis. Eur J Med Chem 2020; 202:112600. [PMID: 32629335 PMCID: PMC7324353 DOI: 10.1016/j.ejmech.2020.112600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/18/2023]
Abstract
Although acetaminophen (ApAP) is one of the most commonly used medicines worldwide, hepatotoxicity is a risk with overdose or in patients with compromised liver function. ApAP overdose is the most common cause of acute fulminant hepatic failure. Oxidation of ApAP to N-acetyl-p-benzoquinone imine (NAPQI) is the mechanism for hepatotoxicity. 1 is a non-hepatotoxic, metabolically unstable lipophilic ApAP analog that is not antipyretic. The newly synthesized 3 is a non-hepatotoxic ApAP analog that is stable, lipophilic, and retains analgesia and antipyresis. Intraperitoneal or po administration of the new chemical entities (NCEs), 3b and 3r, in concentrations equal to a toxic dose of ApAP did not result in the formation of NAPQI. Unlike livers from NCE-treated mice, the livers from ApAP-treated mice demonstrated large amounts of nitrotyrosine, a marker of mitochondrial free radical formation, and loss of hepatic tight junction integrity. Given the widespread use of ApAP, hepatotoxicity risk with overuse, and the ongoing opioid epidemic, these NCEs represent a novel, non-narcotic therapeutic pipeline.
Collapse
Affiliation(s)
- Hernan A Bazan
- Section of Vascular/Endovascular Surgery, Department of Surgery, Ochsner Clinic, New Orleans, LA, 70118, USA.
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Carolina Burgos
- Department of Organic Chemistry and IQAR, University of Alcala, Alcala de Henares, Madrid, 28805, Spain
| | - Javier Recio
- Department of Organic Chemistry and IQAR, University of Alcala, Alcala de Henares, Madrid, 28805, Spain
| | - Valentina Abet
- Department of Organic Chemistry and IQAR, University of Alcala, Alcala de Henares, Madrid, 28805, Spain
| | - Amanda R Pahng
- Department of Physiology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70119, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Jessica Heap
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Alexander J Ledet
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA; Department of Physiology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Dennis Paul
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Julio Alvarez-Builla
- Department of Organic Chemistry and IQAR, University of Alcala, Alcala de Henares, Madrid, 28805, Spain
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| |
Collapse
|
10
|
Sahu A, Das D, Sahu P, Mishra S, Sakthivel A, Gajbhiye A, Agrawal R. Bioisosteric Replacement of Amide Group with 1,2,3-Triazoles in Acetaminophen Addresses Reactive Oxygen Species-Mediated Hepatotoxic Insult in Wistar Albino Rats. Chem Res Toxicol 2020; 33:522-535. [PMID: 31849220 DOI: 10.1021/acs.chemrestox.9b00392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acetaminophen (AP) is a popularly recommended over-the-counter analgesic-antipyretic in clinical use. However, the drug is handicapped by the occurrence of hepatotoxic insult following acute ingestion. Consequently, AP-induced hepatotoxicity is often implicated in accidental or suicidal overdose. In the current study, we investigated the potential of bioisosteric replacement of amide in AP with 1,2,3-triazoles in curbing AP-induced hepatotoxicity. The therapeutic utility of synthesized bioisosteres was established by careful tailoring and optimization of the synthetic methodology along with detailed toxicological testing of pharmacologically potent acetaminophen-triazole derivatives (APTDs). Along the same lines, we herein report a series of 17 novel APTDs synthesized via aromatic substitution using sodium azide, l-proline, and copper iodide followed by click reaction with substituted alkynes using copper sulfate and sodium ascorbate. Pharmacological evaluation of synthesized APTDs revealed that, out of the series of 17 compounds, 5a and 5e were found to be most efficacious in exerting anti-inflammatory, analgesic, and antipyretic activity in an animal model. Further toxicity studies documented that, in both acute and sub-acute toxicology, AP administration caused significant hepatotoxicity, which was found to be a consequence of ROS-mediated oxidative stress. Potent APTDs (5a and 5e), on the other hand, revealed no adverse event in both acute and sub-toxicological analyses. Median lethal dose (LD50) and no observed adverse effect level (NOAEL) values for 5a and 5e were found to be >1000 mg/kg and 2000 mg/kg, respectively. The human equivalent dose, defining the maximum safe concentration of a compound in a human's physiology, was found to be 27.68 mg/kg for the most potent APTDs (5a and 5e). Thus, it can be concluded that triazole incorporation into AP nucleus produced conjugates devoid of hepatotoxic manifestations, having the added advantage of anti-inflammatory efficacy along with analgesic and antipyretic potency.
Collapse
Affiliation(s)
- Adarsh Sahu
- Department of Pharmaceutical Sciences , Dr. Harisingh Gour Vishwavidyalaya , Sagar (MP) , India
| | - Debashree Das
- Department of Pharmaceutical Sciences , Dr. Harisingh Gour Vishwavidyalaya , Sagar (MP) , India
| | - Preeti Sahu
- Department of chemistry , Central University of Kerala , Kerala , India
| | - Shweta Mishra
- Department of Pharmaceutical Sciences , Dr. Harisingh Gour Vishwavidyalaya , Sagar (MP) , India
| | | | - Asmita Gajbhiye
- Department of Pharmaceutical Sciences , Dr. Harisingh Gour Vishwavidyalaya , Sagar (MP) , India
| | - Ramkishore Agrawal
- Department of Pharmaceutical Sciences , Dr. Harisingh Gour Vishwavidyalaya , Sagar (MP) , India
| |
Collapse
|
11
|
El-Boshy M, BaSalamah MA, Ahmad J, Idris S, Mahbub A, Abdelghany AH, Almaimani RA, Almasmoum H, Ghaith MM, Elzubier M, Refaat B. Vitamin D protects against oxidative stress, inflammation and hepatorenal damage induced by acute paracetamol toxicity in rat. Free Radic Biol Med 2019; 141:310-321. [PMID: 31255668 DOI: 10.1016/j.freeradbiomed.2019.06.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
Acute paracetamol (APAP) toxicity is a leading cause of liver, and less commonly renal, injuries through oxidative stress and inflammation. Albeit vitamin D (VD) is a well-known anti-oxidant and anti-inflammatory hormone, there is no report on its potential protective/therapeutic actions against APAP acute toxicity. This study, therefore, measured the interplay between APAP toxicity and the hepatorenal expressions of the VD-metabolising enzymes (Cyp2R1, Cyp27b1 & cyp24a1), receptor (VDR) and binding protein (VDBP) alongside the effects of VD treatment on APAP-induced hepatorenal injuries. Thirty-two male rats were distributed equally into negative (NC) and positive (PC) controls besides VD prophylactic (P-VD) and therapeutic (T-VD) groups. All groups, except the NC, received a single oral dose of APAP (1200 mg/kg). The P-VD also received by intraperitoneal injection two cycles of VD3 (1000 IU/Kg/day; 5 days/week) prior to, and a third round after, APAP administration. Similarly, the T-VD group received VD3 (3000 IU/Kg/day) for five successive days post-APAP intoxication. Euthanasia was on the sixth day post-APAP toxicity. The PC group had marked alterations in the hepatorenal biochemical parameters, upregulation in cellular cleaved caspase-3 as well as pronounced increase in the numbers of apoptotic/necrotic cells by TUNEL technique. The PC group plasma levels of 25-hydroxyvitamin D (25-OH VD) also declined markedly and coincided with significant inhibitions in the expression of Cyp2R1 and Cyp27b1 enzymes and VDR, whereas the VDBP and Cyp24a1 increased substantially, in the hepatorenal tissues at the gene and protein levels compared with the NC group. Coherently, the lipid peroxidation marker (MDA) and pro-inflammatory cytokines (IL1β, IL6, IL17A, IFN-γ & TNF-α) augmented significantly, while the anti-oxidative markers (GSH, GPx & CAT) and anti-inflammatory cytokines (IL10 & IL22) diminished substantially, in the PC hepatorenal tissues. Both VD regimens alleviated the APAP-induced hepatorenal damages and restored the 25-OH VD levels together with the hepatorenal expression of Cyp2R1, Cyp27b1, Cyp24a1, VDR and VDBP. Additionally, MDA and all the targeted pro-inflammatory cytokines declined, whereas all the anti-oxidative and anti-inflammatory markers increased, in both VD groups hepatorenal tissues and the results were significantly different than the PC group. Although the P-VD anti-inflammatory and anti-oxidative stress actions were more pronounced than the T-VD group, the results remained markedly abnormal than the NC group. In conclusion, this report is the first to reveal that the circulatory VD levels alongside the hepatorenal VD-metabolising enzymes and VDR are pathologically altered following acute APAP toxicity. Moreover, the prophylactic protocol showed better anti-oxidative and anti-inflammatory effects than the therapeutic regimen against APAP-induced hepatorenal injuries.
Collapse
Affiliation(s)
- Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammad A BaSalamah
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Amani Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Abdelghany H Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Mohamed Elzubier
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| |
Collapse
|
12
|
Carreon-Gonzalez M, Vivier-Bunge A, Alvarez-Idaboy JR. Thiophenols, Promising Scavengers of Peroxyl Radicals: Mechanisms and kinetics. J Comput Chem 2019; 40:2103-2110. [PMID: 31124582 DOI: 10.1002/jcc.25862] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023]
Abstract
The activity of 12 thiophenols as primary antioxidants in aqueous solution has been studied using density functional theory. Twelve different substituted thiophenols were tested as peroxyl radicals scavengers. Single electron transfer (SET) and formal hydrogen transfer (FHT) were investigated. The SET mechanism was found to be the main mechanism, with rate constants that are close to the diffusion limit, which means that these thiophenolic compounds have the capacity to scavenge peroxyl radicals before they can damage biomolecules. All 12 thiophenolic compounds react faster with methylperoxyl than with hydroperoxyl radicals. In addition, it was found that pH plays an important role in the reactivity of these compounds. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Annik Vivier-Bunge
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, 09340, Mexico
| | - Juan Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
13
|
Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019; 123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Fatal unintentional poisoning is widespread upon human exposure to toxic agents such as pesticides, heavy metals, environmental pollutants, bacterial and fungal toxins or even some medications and cosmetic products. In this regards, the application of the natural dietary agents as antidotes has engrossed a substantial attention. One of the ancient known traditional medicines and spices with an arsenal of metabolites of several reported health benefits is ginger. This extended literature review serves to demonstrate the protective effects and mechanisms of ginger and its phytochemicals against natural, chemical and radiation-induced toxicities. Collected data obtained from the in-vivo and in-vitro experimental studies in this overview detail the designation of the protective effects to ginger's antioxidant, anti-inflammatory, and anti-apoptotic properties. Ginger's armoury of phytochemicals exerted its protective function via different mechanisms and cell signalling pathways, including Nrf2/ARE, MAPK, NF-ƙB, Wnt/β-catenin, TGF-β1/Smad3, and ERK/CREB. The outcomes of this review could encourage further clinical trials of ginger applications in radiotherapy and chemotherapy regime for cancer treatments or its implementation to counteract the chemical toxicity induced by industrial pollutants, alcohol, smoking or administered drugs.
Collapse
Affiliation(s)
- Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Allan Torres
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia.
| |
Collapse
|
14
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Alvarez-Idaboy JR, Galano A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J Phys Chem B 2018; 122:6198-6214. [PMID: 29771524 DOI: 10.1021/acs.jpcb.8b03500] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS) is a health-threatening process that is involved, at least partially, in the development of several diseases. Although antioxidants can be used as a chemical defense against OS, they might also exhibit pro-oxidant effects, depending on environmental conditions. In this work, such a dual behavior was investigated for phenolic compounds (PhCs) within the framework of the density functional theory and based on kinetic data. Multiple reaction mechanisms were considered in both cases. The presence of redox metals, the pH, and the possibility that PhCs might be transformed into benzoquinones were identified as key aspects in the antioxidant versus pro-oxidant effects of these compounds. The main virtues of PhCs as antioxidants are their radical trapping activity, their regeneration under physiological conditions, and their behavior as OH-inactivating ligands. The main risks of PhCs as pro-oxidants are predicted to be the role of phenolate ions in the reduction of metal ions, which can promote Fenton-like reactions, and the formation of benzoquinones that might cause protein arylation at cysteine sites. Although the benefits seem to overcome the hazards, to properly design chemical strategies against OS using PhCs, it is highly recommended to carefully explore their duality in this context.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Adriana Pérez-González
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Miguel Reina
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - J Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica , Universidad Nacional Autónoma de México , C.P. 04510 México City , México
| | - Annia Galano
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| |
Collapse
|
15
|
Pérez-González A, Castañeda-Arriaga R, Verastegui B, Carreón-González M, Alvarez-Idaboy JR, Galano A. Estimation of empirically fitted parameters for calculating pK
a values of thiols in a fast and reliable way. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2179-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|