1
|
Nieschalke K, Bergau N, Jessel S, Seidel A, Baldermann S, Schreiner M, Abraham K, Lampen A, Monien BH, Kleuser B, Glatt H, Schumacher F. Urinary Excretion of Mercapturic Acids of the Rodent Carcinogen Methyleugenol after a Single Meal of Basil Pesto: A Controlled Exposure Study in Humans. Chem Res Toxicol 2023; 36:1753-1767. [PMID: 37875262 PMCID: PMC10664145 DOI: 10.1021/acs.chemrestox.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.
Collapse
Affiliation(s)
- Kai Nieschalke
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Nick Bergau
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sönke Jessel
- Biochemical
Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, 22927 Grosshansdorf, Germany
| | - Albrecht Seidel
- Biochemical
Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, 22927 Grosshansdorf, Germany
| | - Susanne Baldermann
- Department
Plant Quality and Food Security, Leibniz
Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
- Faculty of
Life Sciences: Food, Nutrition & Health, University of Bayreuth, 95326 Kulmbach, Germany
| | - Monika Schreiner
- Department
Plant Quality and Food Security, Leibniz
Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
| | - Klaus Abraham
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Alfonso Lampen
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Bernhard H. Monien
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Burkhard Kleuser
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hansruedi Glatt
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Fabian Schumacher
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
2
|
FEMA GRAS assessment of natural flavor complexes: Allspice, anise, fennel-derived and related flavoring ingredients. Food Chem Toxicol 2023; 174:113643. [PMID: 36739890 DOI: 10.1016/j.fct.2023.113643] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
The FEMA Expert Panel program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavoring ingredients in food has resulted in the publication of an updated constituent-based procedure as well as publications on the safety evaluation of many botanical-derived NFCs. This publication, ninth in the series and related to the ninth publication, describes the affirmation of the generally recognized as safe (GRAS) status for NFCs with propenylhydroxybenzene and allylalkoxybenzene constituents under their conditions of intended use as flavoring ingredients added to food. The Panel's procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology for the NFCs themselves and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s) with suspected genotoxic potential, the estimated intake of the individual constituent is compared to the TTC for compounds with structural alerts for genotoxicity and if exceeded, a margin of exposure is calculated using BMDL10 values derived from benchmark dose analyses using Bayesian model averaging, as presented in the tenth article of the series. Safety evaluations for NFCs derived from allspice, anise seed, star anise, sweet fennel seed and pimento leaves were conducted and their GRAS status was affirmed for use as flavoring ingredients. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food.
Collapse
|
3
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Taylor SV. FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes. Food Chem Toxicol 2023; 175:113646. [PMID: 36804339 DOI: 10.1016/j.fct.2023.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St, S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA.
| |
Collapse
|
4
|
Essential Oils of Ocimum basilicum L. and Ocimum americanum L. from Djibouti: Chemical Composition, Antimicrobial and Cytotoxicity Evaluations. Processes (Basel) 2022. [DOI: 10.3390/pr10091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ocimum plants are of great interest to traditional medicine in the history of several civilizations, particularly in terms of chronic human diseases. Essential oils obtained from this genus have also been used as therapeutic agents. In this present work, two plants of the Ocimum species from Djibouti, Ocimum basilicum L. and Ocimum americanum L., were subjected to hydrodistillation to obtain their essential oils. Gas chromatography-mass spectrometry was performed to determine the chemical composition of both essential oils. Linalool (41.2%) and estragole (30.1%) are the major compounds among the 37 compounds that have been identified in the essential oil of Ocimum basilicum L. (EOOB), and carvotanacetol (38.4%) and estragole (27.5%) are the main compounds among the 42 compounds that have been identified in the essential oil of Ocimum americanum L. (EOOA). Morever, the cytotoxic activity of EOs was evaluated against 13 human cancer cell lines (K562, A549, HCT116, PC3, U87-MG, MIA-Paca2, HEK293, NCI-N87, RT4, U2OS, A2780, MRC -5 and JIMT-T1) using a luminescence spectrophotometric method; hence, the oils showed significant cytotoxic activities. The antibacterial activities of the oils were assayed on five Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Staphylococcus epidermidis and Corynebacterium sp.) and seven Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Shigella sonnei, Salmonella enterica sv. Typhimurium and Enterobacter cloacae) by agar disc diffusion methods. Both essential oils exhibited moderate activities against Streptococcus agalactiae, and thus each has an activity against Pseudomonas aeruginosa for EOOB and against Enterobacter cloacae for EOOA, while the others are negative. The findings of this work showed the promising anticancer effects of both oils against total cell lines with a potential for use as natural alternatives to synthetic drugs; however, there was only an antibacterial effect against Streptococcus agalactiae.
Collapse
|
5
|
Götz ME, Sachse B, Schäfer B, Eisenreich A. Myristicin and Elemicin: Potentially Toxic Alkenylbenzenes in Food. Foods 2022; 11:1988. [PMID: 35804802 PMCID: PMC9265716 DOI: 10.3390/foods11131988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alkenylbenzenes represent a group of naturally occurring substances that are synthesized as secondary metabolites in various plants, including nutmeg and basil. Many of the alkenylbenzene-containing plants are common spice plants and preparations thereof are used for flavoring purposes. However, many alkenylbenzenes are known toxicants. For example, safrole and methyleugenol were classified as genotoxic carcinogens based on extensive toxicological evidence. In contrast, reliable toxicological data, in particular regarding genotoxicity, carcinogenicity, and reproductive toxicity is missing for several other structurally closely related alkenylbenzenes, such as myristicin and elemicin. Moreover, existing data on the occurrence of these substances in various foods suffer from several limitations. Together, the existing data gaps regarding exposure and toxicity cause difficulty in evaluating health risks for humans. This review gives an overview on available occurrence data of myristicin, elemicin, and other selected alkenylbenzenes in certain foods. Moreover, the current knowledge on the toxicity of myristicin and elemicin in comparison to their structurally related and well-characterized derivatives safrole and methyleugenol, especially with respect to their genotoxic and carcinogenic potential, is discussed. Finally, this article focuses on existing data gaps regarding exposure and toxicity currently impeding the evaluation of adverse health effects potentially caused by myristicin and elemicin.
Collapse
Affiliation(s)
| | | | | | - Andreas Eisenreich
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (M.E.G.); (B.S.); (B.S.)
| |
Collapse
|
6
|
Alkenylbenzenes in Foods: Aspects Impeding the Evaluation of Adverse Health Effects. Foods 2021; 10:foods10092139. [PMID: 34574258 PMCID: PMC8469824 DOI: 10.3390/foods10092139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Alkenylbenzenes are naturally occurring secondary plant metabolites, primarily present in different herbs and spices, such as basil or fennel seeds. Thus, alkenylbenzenes, such as safrole, methyleugenol, and estragole, can be found in different foods, whenever these herbs and spices (or extracts thereof) are used for food production. In particular, essential oils or other food products derived from the aforementioned herbs and spices, such as basil-containing pesto or plant food supplements, are often characterized by a high content of alkenylbenzenes. While safrole or methyleugenol are known to be genotoxic and carcinogenic, the toxicological relevance of other alkenylbenzenes (e.g., apiol) regarding human health remains widely unclear. In this review, we will briefly summarize and discuss the current knowledge and the uncertainties impeding a conclusive evaluation of adverse effects to human health possibly resulting from consumption of foods containing alkenylbenzenes, especially focusing on the genotoxic compounds, safrole, methyleugenol, and estragole.
Collapse
|
7
|
Yadav R, Awasthi N, Shukla A, Kumar D. Modeling the hydroxylation of estragole via human liver cytochrome P450. J Mol Model 2021; 27:199. [PMID: 34117581 DOI: 10.1007/s00894-021-04815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Natural compounds derived from plants are generally regarded safe and devoid of adverse effects. However, there are individual ingredients that possess toxic, genotoxic, and carcinogenic activities. These compounds when exposed at specific level become hazardous to health. Estragole (1-allyl-4-methoxybenzene) is a common component of spice plants. Its toxicity gets activated with the hydroxylation at benzylic carbon (C1') position by P450 enzymes present in the human liver. The present study grounds to explore the reaction mechanism of conversion of estragole to hydroxylated metabolite using computational methodology. Density functional theory (DFT)-based calculations were employed to explore the cytochrome P450-catalyzed mechanism at C1 position aliphatic hydroxylation of estragole. Overall reaction energy profile, electronic configuration, and 3D structure of all intermediates, transition states, and product complexes formed during the reaction along with their free energies were tried to be investigated.
Collapse
Affiliation(s)
- Rolly Yadav
- Molecular Modeling Lab, Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India
| | - Nidhi Awasthi
- Molecular Modeling Lab, Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India
| | - Anamika Shukla
- Molecular Modeling Lab, Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India
| | - Devesh Kumar
- Molecular Modeling Lab, Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India.
| |
Collapse
|
8
|
Dang HNP, Quirino JP. Analytical Separation of Carcinogenic and Genotoxic Alkenylbenzenes in Foods and Related Products (2010-2020). Toxins (Basel) 2021; 13:toxins13060387. [PMID: 34071244 PMCID: PMC8228529 DOI: 10.3390/toxins13060387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Alkenylbenzenes are potentially toxic (genotoxic and carcinogenic) compounds present in plants such as basil, tarragon, anise star and lemongrass. These plants are found in various edible consumer products, e.g., popularly used to flavour food. Thus, there are concerns about the possible health consequences upon increased exposure to alkenylbenzenes especially due to food intake. It is therefore important to constantly monitor the amounts of alkenylbenzenes in our food chain. A major challenge in the determination of alkenylbenzenes in foods is the complexity of the sample matrices and the typically low amounts of alkenylbenzenes present. This review will therefore discuss the background and importance of analytical separation methods from papers reported from 2010 to 2020 for the determination of alkenylbenzenes in foods and related products. The separation techniques commonly used were gas and liquid chromatography (LC). The sample preparation techniques used in conjunction with the separation techniques were various variants of extraction (solvent extraction, liquid-liquid extraction, liquid-phase microextraction, solid phase extraction) and distillation (steam and hydro-). Detection was by flame ionisation and mass spectrometry (MS) in gas chromatography (GC) while in liquid chromatography was mainly by spectrophotometry.
Collapse
|
9
|
Bioactivation of estragole and anethole leads to common adducts in DNA and hemoglobin. Food Chem Toxicol 2021; 153:112253. [PMID: 34015424 DOI: 10.1016/j.fct.2021.112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Estragole and anethole are secondary metabolites occurring in a variety of commonly used herbs like fennel, basil, and anise. Estragole is genotoxic and carcinogenic in rodents, which depends on the formation of 1'-sulfoxyestragole after hydroxylation and subsequent sulfoconjugation catalyzed by CYP and SULT, respectively. It was hypothesized recently that anethole may be bioactivated via the same metabolic pathways. Incubating estragole with hepatic S9-fractions from rats and humans, specific adducts with hemoglobin (N-(isoestragole-3-yl)-valine, IES-Val) and DNA (isoestragole-2'-deoxyguanosine and isoestragole-2'-deoxyadenosine) were formed. An isotope-dilution technique was developed for the quantification of IES-Val after cleavage with fluorescein isothiocyanate (FITC) according to a modified Edman degradation. The same adducts, albeit at lower levels, were also detected in reactions with anethole, indicating the formation of 3'-hydroxyanethole and the reactive 3'-sulfoxyanethole. Finally, we conducted a pilot investigation in which IES-Val levels in human blood were determined during and after the consumption of an estragole- and anethole-rich fennel tea for four weeks. A significant increase of IES-Val levels was observed during the consumption phase and followed by a continuous decrease during the washout period. IES-Val may be used to monitor the internal exposure to the common reactive genotoxic metabolites of estragole and anethole, 1'-sulfoxyestragole and 3'-sulfoxyanethole, respectively.
Collapse
|
10
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|