1
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
2
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Souto EB, Gálvez-Martín P, Clares-Naveros B. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res 2025; 15:291-311. [PMID: 38662335 PMCID: PMC11614963 DOI: 10.1007/s13346-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.
Collapse
Grants
- Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp
- FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- FCT—Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- Universidade do Porto
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
- R&D Human and Animal Health, Bioibérica S.A.U., 08029, Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Liu J, Wang Q, Le Y, Hu M, Li C, An N, Song Q, Yin W, Ma W, Pan M, Feng Y, Wang Y, Han L, Liu J. 3D-Bioprinting for Precision Microtissue Engineering: Advances, Applications, and Prospects. Adv Healthc Mater 2024:e2403781. [PMID: 39648541 DOI: 10.1002/adhm.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Microtissues, engineered to emulate the complexity of human organs, are revolutionizing the fields of regenerative medicine, disease modelling, and drug screening. Despite the promise of traditional microtissue engineering, it has yet to achieve the precision required to fully replicate organ-like structures. Enter 3D bioprinting, a transformative approach that offers unparalleled control over the microtissue's spatial arrangement and mechanical properties. This cutting-edge technology enables the detailed layering of bioinks, crafting microtissues with tissue-like 3D structures. It allows for the direct construction of organoids and the fine-tuning of the mechanical forces vital for tissue maturation. Moreover, 3D-printed devices provide microtissues with the necessary guidance and microenvironments, facilitating sophisticated tissue interactions. The applications of 3D-printed microtissues are expanding rapidly, with successful demonstrations of their functionality in vitro and in vivo. This technology excels at replicating the intricate processes of tissue development, offering a more ethical and controlled alternative to traditional animal models. By simulating in vivo conditions, 3D-printed microtissues are emerging as powerful tools for personalized drug screening, offering new avenues for pharmaceutical development and precision medicine.
Collapse
Affiliation(s)
- Jinrun Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yinpeng Le
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Min Hu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenzhen Yin
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenrui Ma
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Mingyue Pan
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yutian Feng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Lu Han
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| |
Collapse
|
4
|
Pohjola J, Jokinen M, Soukka T, Stolt M. Polymer microsphere inks for semi-solid extrusion 3D printing at ambient conditions. J Mech Behav Biomed Mater 2024; 160:106783. [PMID: 39486301 DOI: 10.1016/j.jmbbm.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Extrusion-based 3D printing methods have great potential for manufacturing of personalized polymer-based drug-releasing systems. However, traditional melt-based extrusion techniques are often unsuitable for processing thermally labile molecules. Consequently, methods that utilize the extrusion of semi-solid inks under mild conditions are frequently employed. The rheological properties of the semi-solid inks have a substantial impact on the 3D printability, making it necessary to evaluate and tailor these properties. Here, we report a novel semi-solid extrusion 3D printing method based on utilization of a Carbopol gel matrix containing various concentrations of polymeric microspheres. We also demonstrate the use of a solvent vapor-based post-processing method for enhancing the mechanical strength of the printed objects. As our approach enables room-temperature processing of polymers typically used in the pharmaceutical industry, it may also facilitate the broader application of 3D printing and microsphere technologies in preparation of personalized medicine.
Collapse
Affiliation(s)
- Juuso Pohjola
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland; Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland.
| | | | - Tero Soukka
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Stolt
- Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland
| |
Collapse
|
5
|
Chiticaru EA, Ioniță M. Commercially available bioinks and state-of-the-art lab-made formulations for bone tissue engineering: A comprehensive review. Mater Today Bio 2024; 29:101341. [PMID: 39649248 PMCID: PMC11625167 DOI: 10.1016/j.mtbio.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024] Open
Abstract
Bioprinting and bioinks are two of the game changers in bone tissue engineering. This review presents different bioprinting technologies including extrusion-based, inkjet-based, laser-assisted, light-based, and hybrid technologies with their own strengths and weaknesses. This review will aid researchers in the selection and assessment of the bioink; the discussion ranges from commercially available bioinks to custom lab-made formulations mainly based on natural polymers, such as agarose, alginate, gelatin, collagen, and chitosan, designed for bone tissue engineering. The review is centered on technological advancements and increasing clinical demand within the rapidly growing bioprinting market. From this point of view, 4D, 5D, and 6D printing technologies promise a future where unprecedented levels of innovation will be involved in fabrication processes leading to more dynamic multifunctionalities of bioprinted constructs. Further advances in bioprinting technology, such as hybrid bioprinting methods are covered, with the promise to meet personalized medicine goals while advancing patient outcomes for bone tissues engineering applications.
Collapse
Affiliation(s)
- Elena Alina Chiticaru
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh Polizu 1-7, 011061, Bucharest, Romania
| |
Collapse
|
6
|
Kang R, Wu J, Cheng R, Li M, Sang L, Zhang H, Sang S. 3D bioprinting technology and equipment based on microvalve control. Biotechnol Bioeng 2024; 121:3768-3781. [PMID: 39289816 DOI: 10.1002/bit.28850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
3D bioprinting technology is widely used in biomedical fields such as tissue regeneration and constructing pathological model. The prevailing printing technique is extrusion-based bioprinting. In this printing method, the bioink needs to meet both printability and functionality, which are often conflicting requirements. Therefore, this study has developed an innovative microvalve-based equipment, incorporating components such as pressure control, a three-dimensional motion platform, and microvalve. Here, we present a droplet-based method for constructing complex three-dimensional structures. By leveraging the rapid switching characteristics of the microvalve, this equipment can achieve precise printing of bio-materials with viscosities as low as 10mPa·s, significantly expanding the biofabrication window for bioinks. This technology is of great significance for 3D bioprinting in tissue engineering and lays a solid foundation for the construction of complex artificial organ tissues.
Collapse
Affiliation(s)
- Rihui Kang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Jiaxing Wu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Luxiao Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hulin Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
7
|
Kafili G, Tamjid E, Simchi A. The impact of mechanical tuning on the printability of decellularized amniotic membrane bioinks for cell-laden bioprinting of soft tissue constructs. Sci Rep 2024; 14:29697. [PMID: 39613811 DOI: 10.1038/s41598-024-80973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Decellularized extracellular matrix (dECM) bioinks hold significant potential in the 3D bioprinting of tissue-engineered constructs (TECs). While 3D bioprinting allows for the creation of custom-designed TECs, the development of bioinks based solely on dAM, without the inclusion of supporting agents or chemical modifications, remains underexplored. In this study, we present the concentration-dependent printability and rheological properties of dAM bioinks, along with an analysis of their in vitro cellular responses. Our findings demonstrate that increasing dAM concentrations, within the range of 1 to 3% w/v, enhances the mechanical moduli of the bioinks, enabling the 3D printing of flat structures with superior shape fidelity. In vitro assays reveal high cell viability across all dAM bioink formulations; however, at 3% w/v, the bioink tends to impede fibroblast proliferation, resulting in round cell morphology. We propose that bioinks containing 2% w/v dAM strike an optimal balance, providing fine-resolved features and a supportive microenvironment for fibroblasts, promoting elongated spindle-like morphology and enhanced proliferation. These results underscore the importance of dAM concentration in regulating the properties and performance of bioinks, particularly regarding cell viability and morphology, for the successful 3D bioprinting of soft tissues.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Advanced Ceramics, University of Bremen, 28359, Bremen, Germany
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-11155, Tehran, Iran.
- Center for BioScience and Technology, Institute for Convergence Science & Technology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), 28359, Bremen, Germany.
| |
Collapse
|
8
|
Li Q, Quan X, Xu S, Hu Z, Hu R, Li G, Han B, Ji X. Multifunctional Network-Shaped Hydrogel Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408037. [PMID: 39593252 DOI: 10.1002/smll.202408037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/28/2024]
Abstract
The previously reported hydrogel assemblies carry bulky shapes, for which the unitary assembly form immensely restricted further applications. Yet there are abundant natural examples of network-shaped assemblies constructed by animals, of which it is brought up inspirations for constructing hydrogel assemblies. Herein, the network-shaped assemblies with diverse functions are reported. The precursor solutions are prepared by acrylamide, 4-acryloylmorpholine, choline chloride, and photo-initiators. By means of three dimension (3D) printing, the hydrogel networks are formed driven by hydrogen bonds, and then the prepared jagged hydrogel blocks are assembled into network-shaped hydrogel assembly NSHA-0 by weaving method. Benefitting from the modifiability of hydrogels, hydrogel assemblies with different properties and functions are prepared by incorporating different functional monomers including ion pair acryloyloxyethyl trimethyl ammonium chloride, and sodium p-styrenesulfonate, N-isopropylacrylamide, spiropyran derivative and tetra-(4-pyridylphenyl)ethylene. The incorporation of these monomers bestowed the assemblies self-healing ability, thermo-responsiveness, ultraviolet-responsiveness as well as acid-responsiveness respectively.
Collapse
Affiliation(s)
- Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xinyi Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shaoyu Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ziqing Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rui Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Bin Han
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Zhu J, Xie F, Qiu Z, Chen L. Effect of active carbonyl-carboxyl ratio on dynamic Schiff base crosslinking and its modulation of high-performance oxidized starch-chitosan hydrogel by hot extrusion 3D printing. Carbohydr Polym 2024; 343:122438. [PMID: 39174083 DOI: 10.1016/j.carbpol.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024]
Abstract
The quest to develop 3D starch-based printing hydrogels for the controlled release of active substances with excellent mechanical and printing properties has gained significant attention. This work introduced a facile method based on crosslinking via Schiff base reaction for preparing bicomponent hydrogels. The method involved the utilization of customizable oxidized starch (OS) and chitosan (CS), enabling superior printing performance through the precise control of various active carbonyl-carboxyl ratios (ACR, 2:1, 1:1, and 2:3, respectively) of OS. OS-CS hydrogel (OSC) with an ACR level of 2:1 (OS-2-y%CS) underwent rearrangement during printing environment, fostering increased Schiff base reaction with a higher crosslinking degree and robust high structural recovery (>95 %). However, with decreasing ACR levels (from 2:1 to 2:3), the printing performance and mechanical strength of printed OSC (POSC) declined due to lower Schiff base bonds and increased phase separation. Compared with printed OS, POS-2-2%CS exhibited a remarkable 1250.52 % increase in tensile strength and a substantial 2424.71 % boost in compressive strength, enhanced shape fidelity and notable self-healing properties. Moreover, POS-2-2%CS exhibited stable diffusive drug release, showing potential application in the pH-responsive release of active substances. Overall, controlling the active carbonyl-carboxyl ratios provided an efficient and manageable approach for preparing high-performance 3D-printed hydrogels.
Collapse
Affiliation(s)
- Junchao Zhu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Zhipeng Qiu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
10
|
Bucciarelli A, Selicato N, Coricciati C, Rainer A, Capodilupo AL, Gigli G, Moroni L, Polini A, Gervaso F. Modelling methacrylated chitosan hydrogel properties through an experimental design approach: from composition to material properties. J Mater Chem B 2024; 12:10221-10240. [PMID: 39248047 DOI: 10.1039/d4tb00670d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Hydrogels of biopolymers are gradually substituting synthetic hydrogels in tissue engineering applications due to their properties. However, biopolymeric hydrogels are difficult to standardize because of the intrinsic variability of the material and the reversibility of physical crosslinking processes. In this work, we synthesized a photocrosslinkable derivative of chitosan (Cs), namely methacrylated chitosan (CsMA), in which the added methacrylic groups allow the formation of hydrogels through radical polymerization triggered by UV exposure. We then performed a systematic study to link the physical properties of the materials to its preparation parameters to standardize its preparation according to specific applications. We studied the properties of CsMA solutions and the derived hydrogels using a statistical method, namely, response surface method, which allowed us to build empirical models describing material properties in terms of several selected processing factors. In particular, we studied the viscosity of CsMA solutions as a function of CsMA concentration, temperature, and shear rate, while hydrogel compression modulus, morphology, degradation and solubilization were investigated as a function of CsMA concentration, photoinitiator concentration and UV exposure. CsMA solutions resulted in shear thinning and were thus suitable for extrusion-based 3D printing. The CsMA hydrogel was found to be highly tunable, with a stiffness in the 12-64 kPa range, and was stable over a long timeframe (up to 60 days). Finally, the possibility to engineer hydrogel stiffness through an empirical model allowed us to hypothesize a number of possible applications based on the mechanical properties of several biological tissues reported in the literature.
Collapse
Affiliation(s)
- Alessio Bucciarelli
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Nora Selicato
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Chiara Coricciati
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Alberto Rainer
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
- Department of Engineering, Università Campus Bio-Medico di Roma, via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | - Agostina Lina Capodilupo
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands.
| | - Alessandro Polini
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Gervaso
- CNR NANOTEC - Institute of Nanotechnology, National Council of Research, University Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
11
|
Li T, Sun W, Qian D, Wang P, Liu X, He C, Chang T, Liao G, Zhang J. Plant-derived biomass-based hydrogels for biomedical applications. Trends Biotechnol 2024:S0167-7799(24)00254-3. [PMID: 39384469 DOI: 10.1016/j.tibtech.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Hydrogels made of plant-derived biomass have gained popularity in biomedical applications because they are frequently affordable, readily available, and biocompatible. Finding the perfect plant-derived biomass-based hydrogels for biomedicine that can replicate essential characteristics of human tissues in regard to structure, function, and performance has proved to be difficult. In this review, we summarize some of the major contributions made to this topic, covering basic ideas and different biomass-based hydrogels made of cellulose, hemicellulose, and lignin. Also included is an in-depth discussion regarding the biosafety and toxicity assessments of biomass-based hydrogels. Finally, this review also highlights important scientific debates and major obstacles regarding biomass-based hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Tushuai Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Wenxue Sun
- Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Translational Pharmaceutical Laboratory, Jining No.1 People's Hospital, Shandong First Medical University, Jining 272000, China; Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Suzhou 215500, China
| | - Peng Wang
- Shandong Chambroad Petrochemicals Co., Ltd, Binzhou, Shandong 256500, China
| | - Xingyu Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Chengsheng He
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Tong Chang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China.
| |
Collapse
|
12
|
Li S, Zhang H, Sun L, Zhang X, Guo M, Liu J, Wang W, Zhao N. 4D printing of biological macromolecules employing handheld bioprinters for in situ wound healing applications. Int J Biol Macromol 2024; 280:135999. [PMID: 39326614 DOI: 10.1016/j.ijbiomac.2024.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In situ bioprinting may be preferred over standard in vitro bioprinting in specific cases when de novo tissues are to be created directly on the appropriate anatomical region in the live organism, employing the body as a bioreactor. So far, few efforts have been made to create in situ tissues that can be safely halted and immobilized during printing in preclinical live animals. However, the technique has to be improved significantly in order to manufacture complex tissues in situ, which may be attainable in the future thanks to multidisciplinary advances in tissue engineering. Thanks to the biological macromolecules, natural and synthetic hydrogels and polymers are among the most used biomaterials in in situ bioprinting procedure. Bioprinters, which encounter multiple challenges, including cross-linking the printed structure, adjusting the rheology parameters, and printing various constructs. The introduction of handheld 3D and 4D bioprinters might potentially overcome the difficulties and problems associated with using traditional bioprinters. Studies showed that this technique could be efficient in wound healing and skin tissue regeneration. This study aims to analyze the benefits and difficulties associated with materials in situ 4D printing via handheld bioprinters.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Hongyang Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Lei Sun
- Department of Thoracic surgery, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Xinyue Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Meiqi Guo
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Jingyang Liu
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| |
Collapse
|
13
|
Sever M, Škrinjar D, Maver T, Belak M, Zupanič F, Anžel I, Zidarič T. The Impact of Temperature and the Duration of Freezing on a Hydrogel Used for a 3D-Bioprinted In Vitro Skin Model. Biomedicines 2024; 12:2028. [PMID: 39335542 PMCID: PMC11428255 DOI: 10.3390/biomedicines12092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Skin bioprinting has the potential to revolutionize treatment approaches for injuries and surgical procedures, while also providing a valuable platform for assessing and screening cosmetic and pharmaceutical products. This technology offers key advantages, including flexibility and reproducibility, which enable the creation of complex, multilayered scaffolds that closely mimic the intricate microenvironment of native skin tissue. The development of an ideal hydrogel is critical for the successful bioprinting of these scaffolds with incorporated cells. In this study, we used a hydrogel formulation developed in our laboratory to fabricate a 3D-bioprinted skin model. The hydrogel composition was carefully selected based on its high compatibility with human skin cells, incorporating alginate, methyl cellulose, and nanofibrillated cellulose. One of the critical challenges in this process, particularly for its commercialization and large-scale production, is ensuring consistency with minimal batch-to-batch variations. To address this, we explored methods with which to preserve the physicochemical properties of the hydrogels, with a focus on freezing techniques. We validated the pre-frozen hydrogels' printability, rheology, and mechanical and surface properties. Our results revealed that extended freezing times significantly reduced the viscosity of the formulations due to ice crystal formation, leading to a redistribution of the polymer chains. This reduction in viscosity resulted in a more challenging extrusion and increased macro- and microporosity of the hydrogels, as confirmed by nanoCT imaging. The increased porosity led to greater water uptake, swelling, compromised scaffold integrity, and altered degradation kinetics. The insights gained from this study lay a solid foundation for advancing the development of an in vitro skin model with promising applications in preclinical and clinical research.
Collapse
Affiliation(s)
- Maja Sever
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Dominik Škrinjar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Monika Belak
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| | - Franc Zupanič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (F.Z.); (I.A.)
| | - Ivan Anžel
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (F.Z.); (I.A.)
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.S.); (D.Š.); (M.B.); (T.Z.)
| |
Collapse
|
14
|
Liu XL, Wang X, Wang Y, Huang D, Li KW, Luo MJ, Liu DF, Mu Y. 3D Bioprinting of Engineered Living Materials with Extracellular Electron Transfer Capability for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39226031 DOI: 10.1021/acs.est.4c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.
Collapse
Affiliation(s)
- Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingyu Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yixuan Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Dahong Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke-Wan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng-Jie Luo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
16
|
Abuhamad AY, Masri S, Fadilah NIM, Alamassi MN, Maarof M, Fauzi MB. Application of 3D-Printed Bioinks in Chronic Wound Healing: A Scoping Review. Polymers (Basel) 2024; 16:2456. [PMID: 39274089 PMCID: PMC11397625 DOI: 10.3390/polym16172456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
Chronic wounds, such as diabetic foot ulcers, pressure ulcers, and venous ulcers, pose significant clinical challenges and burden healthcare systems worldwide. The advent of 3D bioprinting technologies offers innovative solutions for enhancing chronic wound care. This scoping review evaluates the applications, methodologies, and effectiveness of 3D-printed bioinks in chronic wound healing, focusing on bioinks incorporating living cells to facilitate wound closure and tissue regeneration. Relevant studies were identified through comprehensive searches in databases, including PubMed, Scopus, and Web of Science databases, following strict inclusion criteria. These studies employ various 3D bioprinting techniques, predominantly extrusion-based, to create bioinks from natural or synthetic polymers. These bioinks are designed to support cell viability, promote angiogenesis, and provide structural integrity to the wound site. Despite these promising results, further research is necessary to optimize bioink formulations and printing parameters for clinical application. Overall, 3D-printed bioinks offer a transformative approach to chronic wound care, providing tailored and efficient solutions. Continued development and refinement of these technologies hold significant promise for improving chronic wound management and patient outcomes.
Collapse
Affiliation(s)
- Asmaa Y Abuhamad
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Syafira Masri
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohammed Numan Alamassi
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Manira Maarof
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mh Busra Fauzi
- Department for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
17
|
Wang Y, Duan Y, Yang B, Li Y. Nanocomposite Hydrogel Bioinks for 3D Bioprinting of Tumor Models. Biomacromolecules 2024; 25:5288-5299. [PMID: 39083715 DOI: 10.1021/acs.biomac.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In vitro tumor models were successfully constructed by 3D bioprinting; however, bioinks with proper viscosity, good biocompatibility, and tunable biophysical and biochemical properties are highly desirable for tumor models that closely recapitulated the main features of native tumors. Here, we developed a nanocomposite hydrogel bioink that was used to construct ovarian and colon cancer models by 3D bioprinting. The nanocomposite bioink was composed of aldehyde-modified cellulose nanocrystals (aCNCs), aldehyde-modified hyaluronic acid (aHA), and gelatin. The hydrogels possessed tunable gelation time, mechanical properties, and printability by controlling the ratio between aCNCs and gelatin. In addition, ovarian and colorectal cancer cells embedded in hydrogels showed high survival rates and rapid growth. By the combination of 3D bioprinting, ovarian and colorectal tumor models were constructed in vitro and used for drug screening. The results showed that gemcitabine had therapeutic effects on ovarian tumor cells. However, the ovarian tumor model showed drug resistance for oxaliplatin treatment.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yixiong Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
18
|
Qi Y, Lv H, Huang Q, Pan G. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng 2024; 52:1518-1533. [PMID: 38530536 DOI: 10.1007/s10439-024-03500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.
Collapse
Affiliation(s)
- Yongjie Qi
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Hangying Lv
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Qinghua Huang
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Guangyong Pan
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.
| |
Collapse
|
19
|
Li Z, Saravanakumar K, Yao L, Kim Y, Choi SY, Yoo G, Keon K, Lee CM, Youn B, Lee D, Cho N. Acer tegmentosum extract-mediated silver nanoparticles loaded chitosan/alginic acid scaffolds enhance healing of E. coli-infected wounds. Int J Biol Macromol 2024; 267:131389. [PMID: 38582461 DOI: 10.1016/j.ijbiomac.2024.131389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This work developed Acer tegmentosum extract-mediated silver nanoparticles (AgNPs) loaded chitosan (CS)/alginic acid (AL) scaffolds (CS/AL-AgNPs) to enhance the healing of E. coli-infected wounds. The SEM-EDS and XRD results revealed the successful formation of the CS/AL-AgNPs. FTIR analysis evidenced that the anionic group of AL (-COO-) and cationic amine groups of CS (-NH3+) were ionically crosslinked to form scaffold (CS/AL). The CS/AL-AgNPs exhibited significant antimicrobial activity against both Gram-positive (G+) and Gram-negative (G-) bacterial pathogens, while being non-toxic to red blood cells (RBCs), the hen's egg chorioallantoic membrane (HET-CAM), and a non-cancerous cell line (NIH3T3). Treatment with CS/AL-AgNPs significantly accelerated the healing of E. coli-infected wounds by regulating the collagen deposition and blood parameters as evidenced by in vivo experiments. Overall, these findings suggest that CS/AL-AgNPs are promising for the treatment of infected wounds.
Collapse
Affiliation(s)
- Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Lulu Yao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Sang Yoon Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Kim Keon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea.
| | - Byungwook Youn
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Doojin Lee
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
20
|
Yang J, Chen Z, Gao C, Liu J, Liu K, Wang X, Pan X, Wang G, Sang H, Pan H, Liu W, Ruan C. A mechanical-assisted post-bioprinting strategy for challenging bone defects repair. Nat Commun 2024; 15:3565. [PMID: 38670999 PMCID: PMC11053166 DOI: 10.1038/s41467-024-48023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bioprinting that can synchronously deposit cells and biomaterials has lent fresh impetus to the field of tissue regeneration. However, the unavoidable occurrence of cell damage during fabrication process and intrinsically poor mechanical stability of bioprinted cell-laden scaffolds severely restrict their utilization. As such, on basis of heart-inspired hollow hydrogel-based scaffolds (HHSs), a mechanical-assisted post-bioprinting strategy is proposed to load cells into HHSs in a rapid, uniform, precise and friendly manner. HHSs show mechanical responsiveness to load cells within 4 s, a 13-fold increase in cell number, and partitioned loading of two types of cells compared with those under static conditions. As a proof of concept, HHSs with the loading cells show an enhanced regenerative capability in repair of the critical-sized segmental and osteoporotic bone defects in vivo. We expect that this post-bioprinting strategy can provide a universal, efficient, and promising way to promote cell-based regenerative therapy.
Collapse
Affiliation(s)
- Jirong Yang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Chen
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juan Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiao Wang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Xiaoling Pan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Guocheng Wang
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxun Sang
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Haobo Pan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Man T, Yu G, Zhu F, Huang Y, Wang Y, Su Y, Deng S, Pei H, Li L, Ye H, Wan Y. Antidiabetic Close Loop Based on Wearable DNA-Hydrogel Glucometer and Implantable Optogenetic Cells. JACS AU 2024; 4:1500-1508. [PMID: 38665655 PMCID: PMC11040667 DOI: 10.1021/jacsau.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Diabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration. To overcome these challenges, we present a novel model of antidiabetic management based on printable metallo-nucleotide hydrogels and optogenetic engineering. The conductive hydrogels were self-assembled by bioorthogonal chemistry using oligonucleotides, carbon nanotubes, and glucose oxidase, enabling continuous glucose monitoring in a broad range (0.5-40 mM). The optogenetically engineered cells were enabled glucose regulation in type I diabetic mice via a far-red light-induced transgenic expression of insulin with a month-long avidity. Combining with a microchip-integrated microneedle patch, a prototyped close-loop system was constructed. The glucose levels detected by the sensor were received and converted by a wireless controller to modulate far-infrared light, thereby achieving on-demand insulin expression for several weeks. This study sheds new light on developing next-generation diagnostic and therapy systems for personalized and digitalized precision medicine.
Collapse
Affiliation(s)
- Tiantian Man
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Guiling Yu
- Institute
of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fulin Zhu
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Yueyu Wang
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Yan Su
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Shengyuan Deng
- Key
Laboratory of Metabolic Engineering and Biosynthesis Technology of
Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Pei
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200241, China
| | - Li Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200241, China
| | - Haifeng Ye
- Institute
of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Wan
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| |
Collapse
|
22
|
Patel DK, Won SY, Patil TV, Dutta SD, Lim KT, Han SS. Unzipped carbon nanotubes assisted 3D printable functionalized chitosan hydrogels for strain sensing applications. Int J Biol Macromol 2024; 265:131025. [PMID: 38513895 DOI: 10.1016/j.ijbiomac.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
23
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
24
|
Klar RM, Cox J, Raja N, Lohfeld S. The 3D-McMap Guidelines: Three-Dimensional Multicomposite Microsphere Adaptive Printing. Biomimetics (Basel) 2024; 9:94. [PMID: 38392141 PMCID: PMC10886723 DOI: 10.3390/biomimetics9020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Microspheres, synthesized from diverse natural or synthetic polymers, are readily utilized in biomedical tissue engineering to improve the healing of various tissues. Their ability to encapsulate growth factors, therapeutics, and natural biomolecules, which can aid tissue regeneration, makes microspheres invaluable for future clinical therapies. While microsphere-supplemented scaffolds have been investigated, a pure microsphere scaffold with an optimized architecture has been challenging to create via 3D printing methods due to issues that prevent consistent deposition of microsphere-based materials and their ability to maintain the shape of the 3D-printed structure. Utilizing the extrusion printing process, we established a methodology that not only allows the creation of large microsphere scaffolds but also multicomposite matrices into which cells, growth factors, and therapeutics encapsulated in microspheres can be directly deposited during the printing process. Our 3D-McMap method provides some critical guidelines for issues with scaffold shape fidelity during and after printing. Carefully timed breaks, minuscule drying steps, and adjustments to extrusion parameters generated an evenly layered large microsphere scaffold that retained its internal architecture. Such scaffolds are superior to other microsphere-containing scaffolds, as they can release biomolecules in a highly controlled spatiotemporal manner. This capability permits us to study cell responses to the delivered signals to develop scaffolds that precisely modulate new tissue formation.
Collapse
Affiliation(s)
- Roland M Klar
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - James Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Naren Raja
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Stefan Lohfeld
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
25
|
An C, Zhang S, Xu J, Zhang Y, Dou Z, Shao F, Long C, yang J, Wang H, Liu J. The microparticulate inks for bioprinting applications. Mater Today Bio 2024; 24:100930. [PMID: 38293631 PMCID: PMC10825055 DOI: 10.1016/j.mtbio.2023.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a groundbreaking technology for fabricating intricate and functional tissue constructs. Central to this technology are the bioinks, which provide structural support and mimic the extracellular environment, which is crucial for cellular executive function. This review summarizes the latest developments in microparticulate inks for 3D bioprinting and presents their inherent challenges. We categorize micro-particulate materials, including polymeric microparticles, tissue-derived microparticles, and bioactive inorganic microparticles, and introduce the microparticle ink formulations, including granular microparticles inks consisting of densely packed microparticles and composite microparticle inks comprising microparticles and interstitial matrix. The formulations of these microparticle inks are also delved into highlighting their capabilities as modular entities in 3D bioprinting. Finally, existing challenges and prospective research trajectories for advancing the design of microparticle inks for bioprinting are discussed.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, China
| | - Jiqing Xu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianhua yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
26
|
Sheng L, Song X, Wang M, Zheng S. Thermally reversible hydrogels printing of customizable bio-channels with curvature. Int J Biol Macromol 2024; 257:128595. [PMID: 38056748 DOI: 10.1016/j.ijbiomac.2023.128595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Replicating intricate bio-channels, akin to expansive vascular networks, offers numerous advantages including self-repair, replacing damaged bio-channels, testing drugs, and biomedical devices. But, crafting multi-sized, editable bio-channels with specific curvatures, particularly using natural polymer-based bio-inks, poses a significant challenge. To address this, this study introduces a temperature-driven indirect printing method, exemplified by the diploic vein. Here, K-carrageenan (kca)-silk fiber (SF)-hyaluronic acid (HA)/hFOB 1.19 (SV40 transfection of human osteoblasts) and kca-collagen-HA/HUVECs (human umbilical vein endothelial cells) are employed to fabricate vascular-like walls and lumens, utilizing their thermoreversible properties to create multi-stage bifurcated lumens. Precise spatial curvature was generated by heating the vascular network wrapped in poly(N-isopropyl acrylamide) (PNIPAAm)-poly(ethylene glycol) diacrylate (PEGDA). Since temperature is specific to the thermal material carrying the cells, the rheological properties of bioinks, modeling temperature parameters, and their impact on printing size was explored. Additionally, mechanical properties and curvature response were characterized to determine the necessary process parameters for achieving the desired size. Ultimately, in vitro bioprinting experiments involving HUVECs and hFOB 1.19 demonstrate cell viability, adhesion, proliferation, and migration within the intraluminal hydrogel scaffold. This approach allows for customizing bio-channel content and controlling curvature programming, providing new prospects for in vitro biochannel production, with potential benefits for pathology research.
Collapse
Affiliation(s)
- Lin Sheng
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaofei Song
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Miaomiao Wang
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Shuxian Zheng
- Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
27
|
Lee J, Lee S, Lim JW, Byun I, Jang KJ, Kim JW, Chung JH, Kim J, Seonwoo H. Development of Plum Seed-Derived Carboxymethylcellulose Bioink for 3D Bioprinting. Polymers (Basel) 2023; 15:4473. [PMID: 38231895 PMCID: PMC10708124 DOI: 10.3390/polym15234473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Three-dimensional bioprinting represents an innovative platform for fabricating intricate, three-dimensional (3D) tissue structures that closely resemble natural tissues. The development of hybrid bioinks is an actionable strategy for integrating desirable characteristics of components. In this study, cellulose recovered from plum seed was processed to synthesize carboxymethyl cellulose (CMC) for 3D bioprinting. The plum seeds were initially subjected to α-cellulose recovery, followed by the synthesis and characterization of plum seed-derived carboxymethyl cellulose (PCMC). Then, hybrid bioinks composed of PCMC and sodium alginate were fabricated, and their suitability for extrusion-based bioprinting was explored. The PCMC bioinks exhibit a remarkable shear-thinning property, enabling effortless extrusion through the nozzle and maintaining excellent initial shape fidelity. This bioink was then used to print muscle-mimetic 3D structures containing C2C12 cells. Subsequently, the cytotoxicity of PCMC was evaluated at different concentrations to determine the maximum acceptable concentration. As a result, cytotoxicity was not observed in hydrogels containing a suitable concentration of PCMC. Cell viability was also evaluated after printing PCMC-containing bioinks, and it was observed that the bioprinting process caused minimal damage to the cells. This suggests that PCMC/alginate hybrid bioink can be used as a very attractive material for bioprinting applications.
Collapse
Affiliation(s)
- Juo Lee
- Department of Animal Science & Technology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea;
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sungmin Lee
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Human Harmonized Robotics, College of Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Woon Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Iksong Byun
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Agricultural Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science & Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Jungsil Kim
- Department of Bio-Industrial Machinery Engineering, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hoon Seonwoo
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Convergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
28
|
Du EY, Jung M, Skhinas J, Tolentino MAK, Noy J, Jamshidi N, Houng JL, Tjandra KC, Engel M, Utama R, Tilley RD, Kavallaris M, Gooding JJ. 3D Bioprintable Hydrogel with Tunable Stiffness for Exploring Cells Encapsulated in Matrices of Differing Stiffnesses. ACS APPLIED BIO MATERIALS 2023; 6:4603-4612. [PMID: 37844275 DOI: 10.1021/acsabm.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In vitro cell models have undergone a shift from 2D models on glass slides to 3D models that better reflect the native 3D microenvironment. 3D bioprinting promises to progress the field by allowing the high-throughput production of reproducible cell-laden structures with high fidelity. The current stiffness range of printable matrices surrounding the cells that mimic the extracellular matrix environment remains limited. The work presented herein aims to expand the range of stiffnesses by utilizing a four-armed polyethylene glycol with maleimide-functionalized arms. The complementary cross-linkers comprised a matrix metalloprotease-degradable peptide and a four-armed thiolated polymer which were adjusted in ratio to tune the stiffness. The modularity of this system allows for a simple method of controlling stiffness and the addition of biological motifs. The application of this system in drop-on-demand printing is validated using MCF-7 cells, which were monitored for viability and proliferation. This study shows the potential of this system for the high-throughput investigation of the effects of stiffness and biological motif compositions in relation to cell behaviors.
Collapse
Affiliation(s)
- Eric Y Du
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - MoonSun Jung
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Joanna Skhinas
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - M A Kristine Tolentino
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Janina Noy
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Niloufar Jamshidi
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Jacinta L Houng
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Kristel C Tjandra
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Robert Utama
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2031, Australia
| |
Collapse
|
29
|
Li Y, Wu J, He C, He H, Xie M, Yao K, He J, Duan Y, Zhaung L, Wang P, He Y. 3D Prestress Bioprinting of Directed Tissues. Adv Healthc Mater 2023; 12:e2301487. [PMID: 37249520 DOI: 10.1002/adhm.202301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Many mammalian tissues adopt a specific cellular arrangement under stress stimulus that enables their unique function. However, conventional 3D encapsulation often fails to recapitulate the complexities of these arrangements, thus motivating the need for advanced cellular arrangement approaches. Here, an original 3D prestress bioprinting approach of directed tissues under the synergistic effect of static sustained tensile stress and molecular chain orientation, with an aid of slow crosslinking in bioink, is developed. The semi-crosslinking state of the designed bioink exhibits excellent elasticity for applying stress on the cells during the sewing-like process. After bioprinting, the bioink gradually forms complete crosslinking and keeps the applied stress force to induce cell-orientated growth. More importantly, multiple cell types can be arranged directionally by this approach, while the internal stress of the hydrogel filament is also adjustable. In addition, compared with conventional bioprinted skin, the 3D prestress bioprinted skin results in a better wound healing effect due to promoting the angiogenesis of granulation tissue. This study provides a prospective strategy to engineer skeletal muscles, as well as tendons, ligaments, vascular networks, or combinations thereof in the future.
Collapse
Affiliation(s)
- Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chuanjiang He
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honghui He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhaung
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
30
|
Ding H, Liu J, Shen X, Li H. Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors. Polymers (Basel) 2023; 15:4001. [PMID: 37836050 PMCID: PMC10575238 DOI: 10.3390/polym15194001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The rapid development of tough conductive hydrogels has led to considerable progress in the fields of tissue engineering, soft robots, flexible electronics, etc. Compared to other kinds of traditional sensing materials, tough conductive hydrogels have advantages in flexibility, stretchability and biocompatibility due to their biological structures. Numerous hydrogel flexible sensors have been developed based on specific demands for practical applications. This review focuses on tough conductive hydrogels for flexible sensors. Representative tactics to construct tough hydrogels and strategies to fulfill conductivity, which are of significance to fabricating tough conductive hydrogels, are briefly reviewed. Then, diverse tough conductive hydrogels are presented and discussed. Additionally, recent advancements in flexible sensors assembled with different tough conductive hydrogels as well as various designed structures and their sensing performances are demonstrated in detail. Applications, including the wearable skins, bionic muscles and robotic systems of these hydrogel-based flexible sensors with resistive and capacitive modes are discussed. Some perspectives on tough conductive hydrogels for flexible sensors are also stated at the end. This review will provide a comprehensive understanding of tough conductive hydrogels and will offer clues to researchers who have interests in pursuing flexible sensors.
Collapse
Affiliation(s)
- Hongyao Ding
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Jie Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (H.D.)
| | - Hui Li
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
31
|
Zhou K, Ding R, Tao X, Cui Y, Yang J, Mao H, Gu Z. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models. Acta Biomater 2023; 169:243-255. [PMID: 37572980 DOI: 10.1016/j.actbio.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Despite 3D bioprinting having emerged as an advanced method for fabricating complex in vitro models, developing suitable bioinks that fulfill the opposing requirements for the biofabrication window still remains challenging. Although naturally derived hydrogels can better mimic the extracellular matrix (ECM) of numerous tissues, their weak mechanical properties usually result in architecturally simple shapes and patchy functions of in vitro models. Here, this limitation is addressed by a peptide-dendrimer-reinforced bioink (HC-PDN) which contained the peptide-dendrimer branched PEG with end-grafted norbornene (PDN) and the cysteamine-modified HA (HC). The extensive introduction of ethylene end-groups facilitates the grafting of sufficient moieties and enhances thiol-ene-induced crosslinking, making HC-PDN exhibits improved mechanical and rheological properties, as well as a significant reduction in reactive oxygen species (ROS) accumulation than that of methacrylated hyaluronic acid (HAMA). In addition, HC-PDN can be applied for the bioprinting of numerous complex structures with superior shape fidelity and soft matrix microenvironment. A heterogeneous and biomimetic hepatic tissue is concretely constructed in this work. The HepG2-C3As, LX-2s, and EA.hy.926s utilized with HC-PDN and assisted GelMA bioinks closely resemble the parenchymal and non-parenchymal counterparts of the native liver. The bioprinted models show the endothelium barrier function, hepatic functions, as well as increased activity of drug-metabolizing enzymes, which are essential functions of liver tissue in vivo. All these properties make HC-PDN a promising bioink to open numerous opportunities for in vitro model biofabrication. STATEMENT OF SIGNIFICANCE: In this manuscript, we introduced a peptide dendrimer system, which belongs to the family of hyperbranched 3D nanosized macromolecules that exhibit high molecular structure regularity and various biological advantages. Specifically, norbornene-modified peptide dendrimer was grafted onto PEG, and hyaluronic acid (HA) was selected as a base material for bioink formulation because it is a component of the ECM. Peptide dendrimers confer the following advantages to bioinks: (a) Geometric symmetry can facilitate construction of bioinks with homogeneous networks; (b) abundant surface functional groups allow for abundant crosslinking points; (c) the biological origin can promote biocompatibility. This study shows conceptualization to application of a peptide-dendrimer bioink to extend the Biofabrication Window of natural bioinks and will expand use of 3D bioprinting of in vitro models.
Collapse
Affiliation(s)
- Ke Zhou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Rongjian Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Xiwang Tao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yuwen Cui
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Jiquan Yang
- Jiangsu Key Lab of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210046, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
32
|
Sharma Y, Shankar V. Technologies for the fabrication of crosslinked polysaccharide-based hydrogels and its role in microbial three-dimensional bioprinting - A review. Int J Biol Macromol 2023; 250:126194. [PMID: 37562476 DOI: 10.1016/j.ijbiomac.2023.126194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Three-Dimensional bioprinting has recently gained more attraction among researchers for its wide variety of applicability. This technology involving in developing structures that mimic the natural anatomy, and also aims in developing novel biomaterials, bioinks which have a better printable ability. Different hydrogels (cross-linked polysaccharides) can be used and optimized for good adhesion and cell proliferation. Manufacturing hydrogels with adjustable characteristics allows for fine-tuning of the cellular microenvironment. Different printing technologies can be used to create hydrogels on a micro-scale which will allow regular, patterned integration of cells into hydrogels. Controlling tissue constructions' structural architecture is the important key to ensuring its function as it is designed. The designed tiny hydrogels will be useful in investigating the cellular behaviour within the environments. Three-Dimensional designs can be constructed by modifying their shape and behaviour analogous concerning pressure, heat, electricity, ultraviolet radiation or other environmental elements. Yet, its application in in vitro infection models needs more research and practical study. Microbial bioprinting has become an advancing field with promising potential to develop various biomedical as well as environmental applications. This review elucidates the properties and usage of different hydrogels for Three-Dimensional bioprinting.
Collapse
Affiliation(s)
- Yamini Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore - 14, India
| | - Vijayalakshmi Shankar
- CO(2) Research and Green Technologies Centre, Vellore Institute of Technology, Vellore - 14, India.
| |
Collapse
|
33
|
de Paiva Narciso N, Navarro RS, Gilchrist A, Trigo MLM, Rodriguez GA, Heilshorn SC. Design Parameters for Injectable Biopolymeric Hydrogels with Dynamic Covalent Chemistry Crosslinks. Adv Healthc Mater 2023; 12:e2301265. [PMID: 37389811 PMCID: PMC10638947 DOI: 10.1002/adhm.202301265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Dynamic covalent chemistry (DCC) crosslinks can form hydrogels with tunable mechanical properties permissive to injectability and self-healing. However, not all hydrogels with transient crosslinks are easily extrudable. For this reason, two additional design parameters must be considered when formulating DCC-crosslinked hydrogels: 1) degree of functionalization (DoF) and 2) polymer molecular weight (MW). To investigate these parameters, hydrogels comprised of two recombinant biopolymers: 1) a hyaluronic acid (HA) modified with benzaldehyde and 2) an elastin-like protein (ELP) modified with hydrazine (ELP-HYD), are formulated. Several hydrogel families are synthesized with distinct HA MW and DoF while keeping the ELP-HYD component constant. The resulting hydrogels have a range of stiffnesses, G' ≈ 10-1000 Pa, and extrudability, which is attributed to the combined effects of DCC crosslinks and polymer entanglements. In general, lower MW formulations require lower forces for injectability, regardless of stiffness. Higher DoF formulations exhibit more rapid self-healing. Gel extrusion through a cannula (2 m length, 0.25 mm diameter) demonstrates the potential for minimally invasive delivery for future biomedical applications. In summary, this work highlights additional parameters that influence the injectability and network formation of DCC-crosslinked hydrogels and aims to guide future design of injectable hydrogels.
Collapse
Affiliation(s)
| | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aidan Gilchrist
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Miriam L. M. Trigo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
35
|
Zhou Z, Tang W, Yang J, Fan C. Application of 4D printing and bioprinting in cardiovascular tissue engineering. Biomater Sci 2023; 11:6403-6420. [PMID: 37599608 DOI: 10.1039/d3bm00312d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cardiovascular diseases have remained the leading cause of death worldwide for the past 20 years. The current clinical therapeutic measures, including bypass surgery, stent implantation and pharmacotherapy, are not enough to repair the massive loss of cardiomyocytes after myocardial ischemia. Timely replenishment with functional myocardial tissue via biomedical engineering is the most direct and effective means to improve the prognosis and survival rate of patients. It is widely recognized that 4D printing technology introduces an additional dimension of time in comparison with traditional 3D printing. Additionally, in the context of 4D bioprinting, both the printed material and the resulting product are designed to be biocompatible, which will be the mainstream of bioprinting in the future. Thus, this review focuses on the application of 4D bioprinting in cardiovascular diseases, discusses the bottleneck of the development of 4D bioprinting, and finally looks forward to the future direction and prospect of this revolutionary technology.
Collapse
Affiliation(s)
- Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| |
Collapse
|
36
|
Luo C, Liu X, Zhang Y, Dai H, Ci H, Mou S, Zhou M, Chen L, Wang Z, Russell TP, Sun J. Reconfigurable Magnetic Liquid Building Blocks for Constructing Artificial Spinal Column Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300694. [PMID: 37409801 PMCID: PMC10477840 DOI: 10.1002/advs.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Indexed: 07/07/2023]
Abstract
All-liquid molding can be used to transform a liquid into free-form solid constructs, while maintaining internal fluidity. Traditional biological scaffolds, such as cured pre-gels, are normally processed in solid state, sacrificing flowability and permeability. However, it is essential to maintain the fluidity of the scaffold to truly mimic the complexity and heterogeneity of natural human tissues. Here, this work molds an aqueous biomaterial ink into liquid building blocks with rigid shapes while preserving internal fluidity. The molded ink blocks for bone-like vertebrae and cartilaginous-intervertebral-disc shapes, are magnetically manipulated to assemble into hierarchical structures as a scaffold for subsequent spinal column tissue growth. It is also possible to join separate ink blocks by interfacial coalescence, different from bridging solid blocks by interfacial fixation. Generally, aqueous biomaterial inks are molded into shapes with high fidelity by the interfacial jamming of alginate surfactants. The molded liquid blocks can be reconfigured using induced magnetic dipoles, that dictated the magnetic assembly behavior of liquid blocks. The implanted spinal column tissue exhibits a biocompatibility based on in vitro seeding and in vivo cultivating results, showing potential physiological function such as bending of the spinal column.
Collapse
Affiliation(s)
- Chao Luo
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xubo Liu
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720USA
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yifan Zhang
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Haoyu Dai
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| | - Hai Ci
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shan Mou
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Muran Zhou
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lifeng Chen
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhenxing Wang
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Thomas P. Russell
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720USA
- Polymer Science and Engineering DepartmentUniversity of MassachusettsAmherstMassachusetts01003USA
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiaming Sun
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
37
|
Gillispie GJ, Copus J, Uzun-Per M, Yoo JJ, Atala A, Niazi MKK, Lee SJ. The correlation between rheological properties and extrusion-based printability in bioink artifact quantification. MATERIALS & DESIGN 2023; 233:112237. [PMID: 37854951 PMCID: PMC10583861 DOI: 10.1016/j.matdes.2023.112237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bioinks for cell-based bioprinting face availability limitations. Furthermore, the bioink development process needs comprehensive printability assessment methods and a thorough understanding of rheological factors' influence on printing outcomes. To bridge this gap, our study aimed to investigate the relationship between rheological properties and printing outcomes. We developed a specialized bioink artifact specifically designed to improve the quantification of printability assessment. This bioink artifact adhered to established criteria from extrusion-based bioprinting approaches. Seven hydrogel-based bioinks were selected and tested using the bioink artifact and rheological measurement. Rheological analysis revealed that the high-performing bioinks exhibited notable characteristics such as high storage modulus, low tan(δ), high shear-thinning capabilities, high yield stress, and fast, near-complete recovery abilities. Although rheological data alone cannot fully explain printing outcomes, certain metrics like storage modulus and tan(δ) correlated well (R2 > 0.9) with specific printing outcomes, such as gap-spanning capability and turn accuracy. This study provides a comprehensive examination of bioink shape fidelity across a wide range of bioinks, rheological measures, and printing outcomes. The results highlight the importance of considering the holistic view of bioink's rheological properties and directly measuring printing outcomes. These findings underscore the need to enhance bioink availability and establish standardized methods for assessing printability.
Collapse
Affiliation(s)
- Gregory J. Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, USA
| | - Joshua Copus
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, USA
| | - Meryem Uzun-Per
- Center for Biomedical Informatics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, USA
| | - Muhammad Khalid Khan Niazi
- Center for Biomedical Informatics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, NC 27157, USA
| |
Collapse
|
38
|
Vijayakanth T, Shankar S, Finkelstein-Zuta G, Rencus-Lazar S, Gilead S, Gazit E. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chem Soc Rev 2023; 52:6191-6220. [PMID: 37585216 PMCID: PMC10464879 DOI: 10.1039/d3cs00202k] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/17/2023]
Abstract
The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable. Piezoelectric gels or PiezoGels are a smart crystalline form of gels with polar ordered structures that belongs to the broader family of piezoelectric material, which generate electricity in response to mechanical stress or deformation. Given that PiezoGels are structurally similar to hydrogels, they offer several advantages including intrinsic chirality, crystallinity, degree of ordered structures, mechanical flexibility, biocompatibility, and biodegradability, emphasizing their potential applications ranging from power generation to bio-medical applications. Herein, we describe recent examples of new functional PiezoGel materials employed for energy harvesting, sensing, and wound dressing applications. First, this review focuses on the principles of piezoelectric generators (PEGs) and the advantages of using hydrogels as PiezoGels in energy and biomedical applications. Next, we provide a detailed discussion on the preparation, functionalization, and fabrication of PiezoGel-PEGs (P-PEGs) for the applications of energy harvesting, sensing and wound healing/dressing. Finally, this review concludes with a discussion of the current challenges and future directions of P-PEGs.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sudha Shankar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Gal Finkelstein-Zuta
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Sharon Gilead
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv-6997801, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv-6997801, Israel.
| |
Collapse
|
39
|
Sun T, Wang J, Huang H, Liu X, Zhang J, Zhang W, Wang H, Li Z. Low-temperature deposition manufacturing technology: a novel 3D printing method for bone scaffolds. Front Bioeng Biotechnol 2023; 11:1222102. [PMID: 37622000 PMCID: PMC10445654 DOI: 10.3389/fbioe.2023.1222102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The application of three-dimensional printing technology in the medical field has great potential for bone defect repair, especially personalized and biological repair. As a green manufacturing process that does not involve liquefication through heating, low-temperature deposition manufacturing (LDM) is a promising type of rapid prototyping manufacturing and has been widely used to fabricate scaffolds in bone tissue engineering. The scaffolds fabricated by LDM have a multi-scale controllable pore structure and interconnected micropores, which are beneficial for the repair of bone defects. At the same time, different types of cells or bioactive factor can be integrated into three-dimensional structural scaffolds through LDM. Herein, we introduced LDM technology and summarize its applications in bone tissue engineering. We divide the scaffolds into four categories according to the skeleton materials and discuss the performance and limitations of the scaffolds. The ideas presented in this review have prospects in the development and application of LDM scaffolds.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
40
|
Shokrani H, Shokrani A, Seidi F, Mashayekhi M, Kar S, Nedeljkovic D, Kuang T, Saeb MR, Mozafari M. Polysaccharide-based biomaterials in a journey from 3D to 4D printing. Bioeng Transl Med 2023; 8:e10503. [PMID: 37476065 PMCID: PMC10354780 DOI: 10.1002/btm2.10503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 02/18/2023] [Indexed: 07/22/2023] Open
Abstract
3D printing is a state-of-the-art technology for the fabrication of biomaterials with myriad applications in translational medicine. After stimuli-responsive properties were introduced to 3D printing (known as 4D printing), intelligent biomaterials with shape configuration time-dependent character have been developed. Polysaccharides are biodegradable polymers sensitive to several physical, chemical, and biological stimuli, suited for 3D and 4D printing. On the other hand, engineering of mechanical strength and printability of polysaccharide-based scaffolds along with their aneural, avascular, and poor metabolic characteristics need to be optimized varying printing parameters. Multiple disciplines such as biomedicine, chemistry, materials, and computer sciences should be integrated to achieve multipurpose printable biomaterials. In this work, 3D and 4D printing technologies are briefly compared, summarizing the literature on biomaterials engineering though printing techniques, and highlighting different challenges associated with 3D/4D printing, as well as the role of polysaccharides in the technological shift from 3D to 4D printing for translational medicine.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
- Department of Chemical EngineeringSharif University of TechnologyTehranIran
| | | | - Farzad Seidi
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | | | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle EastKuwait
| | - Dragutin Nedeljkovic
- College of Engineering and Technology, American University of the Middle EastKuwait
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of TechnologyHangzhouChina
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
41
|
Merotto E, Pavan PG, Piccoli M. Three-Dimensional Bioprinting of Naturally Derived Hydrogels for the Production of Biomimetic Living Tissues: Benefits and Challenges. Biomedicines 2023; 11:1742. [PMID: 37371837 DOI: 10.3390/biomedicines11061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Three-dimensional bioprinting is the process of manipulating cell-laden bioinks to fabricate living structures. Three-dimensional bioprinting techniques have brought considerable innovation in biomedicine, especially in the field of tissue engineering, allowing the production of 3D organ and tissue models for in vivo transplantation purposes or for in-depth and precise in vitro analyses. Naturally derived hydrogels, especially those obtained from the decellularization of biological tissues, are promising bioinks for 3D printing purposes, as they present the best biocompatibility characteristics. Despite this, many natural hydrogels do not possess the necessary mechanical properties to allow a simple and immediate application in the 3D printing process. In this review, we focus on the bioactive and mechanical characteristics that natural hydrogels may possess to allow efficient production of organs and tissues for biomedical applications, emphasizing the reinforcement techniques to improve their biomechanical properties.
Collapse
Affiliation(s)
- Elena Merotto
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Piero G Pavan
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
- Department of Industrial Engineering, University of Padova, Via Gradenigo 6a, 35129 Padova, Italy
| | - Martina Piccoli
- Tissue Engineering Lab, Istituto di Ricerca Pediatrica Città della Speranza, Corso Statu Uniti 4, 35127 Padova, Italy
| |
Collapse
|
42
|
Parodi I, Di Lisa D, Pastorino L, Scaglione S, Fato MM. 3D Bioprinting as a Powerful Technique for Recreating the Tumor Microenvironment. Gels 2023; 9:482. [PMID: 37367152 DOI: 10.3390/gels9060482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
In vitro three-dimensional models aim to reduce and replace animal testing and establish new tools for oncology research and the development and testing of new anticancer therapies. Among the various techniques to produce more complex and realistic cancer models is bioprinting, which allows the realization of spatially controlled hydrogel-based scaffolds, easily incorporating different types of cells in order to recreate the crosstalk between cancer and stromal components. Bioprinting exhibits other advantages, such as the production of large constructs, the repeatability and high resolution of the process, as well as the possibility of vascularization of the models through different approaches. Moreover, bioprinting allows the incorporation of multiple biomaterials and the creation of gradient structures to mimic the heterogeneity of the tumor microenvironment. The aim of this review is to report the main strategies and biomaterials used in cancer bioprinting. Moreover, the review discusses several bioprinted models of the most diffused and/or malignant tumors, highlighting the importance of this technique in establishing reliable biomimetic tissues aimed at improving disease biology understanding and high-throughput drug screening.
Collapse
Affiliation(s)
- Ilaria Parodi
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
| | - Donatella Di Lisa
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Laura Pastorino
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
- React4life S.p.A., 16152 Genova, Italy
| | - Marco Massimo Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
| |
Collapse
|
43
|
Hu X, Zhang Z, Wu H, Yang S, Zhao W, Che L, Wang Y, Cao J, Li K, Qian Z. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. BIOMATERIALS ADVANCES 2023; 152:213501. [PMID: 37321007 DOI: 10.1016/j.bioadv.2023.213501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
In recent years, hydrogels have been widely used in the biomedical field as materials with excellent bionic structures and biological properties. Among them, the excellent comprehensive properties of natural polymer hydrogels represented by sodium alginate have attracted the great attention of researchers. At the same time, by physically blending sodium alginate with other materials, the problems of poor cell adhesion and mechanical properties of sodium alginate hydrogels were directly improved without chemical modification of sodium alginate. The composite blending of multiple materials can also improve the functionality of sodium alginate hydrogels, and the prepared composite hydrogel also has a larger application field. In addition, based on the adjustable viscosity of sodium alginate-based hydrogels, sodium alginate-based hydrogels can be loaded with cells to prepare biological ink, and the scaffold can be printed out by 3D printing technology for the repair of bone defects. This paper first summarizes the improvement of the properties of sodium alginate and other materials after physical blending. Then, it summarizes the application progress of sodium alginate-based hydrogel scaffolds for bone tissue repair based on 3D printing technology in recent years. Moreover, we provide relevant opinions and comments to provide a theoretical basis for follow-up research.
Collapse
Affiliation(s)
- Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China; State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Haoming Wu
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Shuhao Yang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Weiming Zhao
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Lanyu Che
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Yao Wang
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 610031, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, School of Mechanical Engineering of Chengdu University, Chengdu 610081, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
44
|
Hao L, Zhao S, Hao S, He Y, Feng M, Zhou K, He Y, Yang J, Mao H, Gu Z. Functionalized gelatin-alginate based bioink with enhanced manufacturability and biomimicry for accelerating wound healing. Int J Biol Macromol 2023; 240:124364. [PMID: 37044319 DOI: 10.1016/j.ijbiomac.2023.124364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Three-dimensional (3D) bioprinting is a promising technique to construct heterogeneous architectures that mimic cell microenvironment. However, the current bioinks for 3D bioprinting usually show some limitations, such as low printing accuracy, unsatisfactory mechanical properties and compromised cytocompatibility. Herein, a novel bioink comprising hydroxyphenyl propionic acid-conjugated gelatin and tyramine-modified alginate is developed for printing 3D constructs. The bioink takes advantage of an ionic/covalent intertwined network that combines covalent bonds formed by photo-mediated redox reaction and ionic bonds formed by chelate effect. Benefiting from the thermosensitivity of gelatin and the double-crosslinking mechanism, the developed bioink shows controllable rheological behaviors, enhanced mechanical behavior, improved printing accuracy and structure stability. Moreover, the printed cell-laden hydrogels exhibit a homogeneous cell distribution and considerable cell survival because the pre-crosslinking of the bioink prevents cellular sedimentation and the visible light crosslinking mechanism preserves cell viability. Further in vivo studies demonstrate that resulting cell-laden hydrogels are beneficial for the reduction of inflammation response and the promotion of collagen deposition and angiogenesis, thereby improving the quality of skin wound healing. This convenient and effective strategy is of great significance for accelerating the development of multifunctional bioinks and broadening the biomedical applications of 3D bioprinting.
Collapse
Affiliation(s)
- Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Shijia Zhao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Shiqi Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yuxin He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Miao Feng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Ke Zhou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing 210000, China
| | - Jiquan Yang
- Jiangsu Key Lab of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210046, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing 210000, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing 210000, China
| |
Collapse
|
45
|
Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology. Int J Biol Macromol 2023; 230:123131. [PMID: 36610570 DOI: 10.1016/j.ijbiomac.2022.123131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
3-D Bioprinting is employed as a novel approach in biofabrication to promote skin regeneration following chronic-wounds and injury. A novel bioink composed of carbohydrazide crosslinked {polyethylene oxide-co- Chitosan-co- poly(methylmethacrylic-acid)} (PEO-CS-PMMA) laden with Nicotinamide and human dermal fibroblast was successfully synthesized via Free radical-copolymerization at 73 °C. The developed bioink was characterized in term of swelling, structural-confirmation by solid state 13C-Nuclear Magnetic Resonance (NMR), morphology, thermal, 3-D Bioprinting via extrusion, rheological and interaction with DNA respectively. The predominant rate of gelation was attributed to the electrostatic interactions between cationic CS and anionic PMMA pendant groups. The morphology of developed bioink presented a porous architecture satisfying the cell and growth-factor viability across the barrier. The thermal analysis revealed two-step degradation with 85 % weight loss in term of decomposition and molecular changes in the bioink moieties By applying low pressure in the range of 25-50 kPa, the optimum reproducibility and printability were determined at 37 °C in the viscosity range of 500-550 Pa. s. A higher survival rate of 92 % was observed for (PEO-CS-PMMA) in comparison to 67 % for pure chitosan built bioink. A binding constant of K ≈ 1.8 × 106 M-1 recognized a thermodynamically stable interaction of (PEO-CS-PMMA) with the Salmon-DNA. Further, the addition of PEO (5.0 %) was addressed with better self-healing and printability to produce skin-tissue constructs to replace the infected skin in human.
Collapse
|
46
|
Zeng J, Xie Z, Dekishima Y, Kuwagaki S, Sakai N, Matsusaki M. "Out-of-the-box" Granular Gel Bath Based on Cationic Polyvinyl Alcohol Microgels for Embedded Extrusion Printing. Macromol Rapid Commun 2023; 44:e2300025. [PMID: 36794543 DOI: 10.1002/marc.202300025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Embedded extrusion printing provides a versatile platform for fabricating complex hydrogel-based biological structures with living cells. However, the time-consuming process and rigorous storage conditions of current support baths hinder their commercial application. This work reports a novel "out-of-the-box" granular support bath based on chemically crosslinked cationic polyvinyl alcohol (PVA) microgels, which is ready to use by simply dispersing the lyophilized bath in water. Notably, with ionic modification, PVA microgels yield reduced particle size, uniform distribution, and appropriate rheological properties, contributing to high-resolution printing. Following by the lyophilization and re-dispersion process, ion-modified PVA baths recover to its original state, with unchanged particle size, rheological properties, and printing resolution, demonstrating its stability and recoverability. Lyophilization facilitates the long-term storage and delivery of granular gel baths, and enables the application of "out-of-the-box" support materials, which will greatly simplify experimental procedures, avoid labor-intensive and time-consuming operations, thus accelerating the broad commercial development of embedded bioprinting.
Collapse
Affiliation(s)
- Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasumasa Dekishima
- Mitsubishi Chemical Corporation, Science and Innovation Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | - Setsuka Kuwagaki
- Mitsubishi Chemical Corporation, Osaka R&D Center, 13-1 Muroyama 2-chome, Ibaraki, Osaka, 567-0052, Japan
| | - Norihito Sakai
- Mitsubishi Chemical Corporation, Osaka R&D Center, 13-1 Muroyama 2-chome, Ibaraki, Osaka, 567-0052, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
47
|
Jongprasitkul H, Turunen S, Parihar VS, Kellomäki M. Sequential Cross-linking of Gallic Acid-Functionalized GelMA-Based Bioinks with Enhanced Printability for Extrusion-Based 3D Bioprinting. Biomacromolecules 2023; 24:502-514. [PMID: 36544430 PMCID: PMC9832479 DOI: 10.1021/acs.biomac.2c01418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The printability of a photocross-linkable methacrylated gelatin (GelMA) bioink with an extrusion-based 3D bioprinter is highly affected by the polymer concentration and printing temperature. In this work, we developed a gallic acid (GA)-functionalized GelMA ink to improve the printability at room and physiological temperatures and to enable tissue adhesion and antioxidant properties. We introduced a sequential cross-linking approach using catechol-Fe3+ chelation, followed by photocross-linking. The results show that the ink formulation with 0.5% (w/v) Fe3+ in GelMA (30% modification) with 10% GA (GelMA30GA-5Fe) provided the optimum printability, shape fidelity, and structural integrity. The dual network inside the printed constructs significantly enhanced the viscoelastic properties. Printed cylinders were evaluated for their printing accuracy. The printed structures of GelMA30GA-5Fe provided high stability in physiological conditions over a month. In addition, the optimized ink also offered good tissue adhesion and antioxidant property. This catechol-based sequential cross-linking method could be adopted for the fabrication of other single-polymer bioinks.
Collapse
Affiliation(s)
- Hatai Jongprasitkul
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland
| | - Sanna Turunen
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland,Brinter
Ltd, Turku20520, Finland
| | - Vijay Singh Parihar
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland,
| | - Minna Kellomäki
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland
| |
Collapse
|
48
|
Wang H, Zhang H, Xie Z, Chen K, Ma M, Huang Y, Li M, Cai Z, Wang P, Shen H. Injectable hydrogels for spinal cord injury repair. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
49
|
Carranza T, Zalba-Balda M, Baraibar MJB, de la Caba K, Guerrero P. Effect of sterilization processes on alginate/gelatin inks for three-dimensional printing. Int J Bioprint 2022; 9:645. [PMID: 36844236 PMCID: PMC9947484 DOI: 10.18063/ijb.v9i1.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
309Sterilization is a crucial step in the process of developing bioinks for tissue engineering applications. In this work, alginate/gelatin inks were subjected to three sterilization methods: ultraviolet (UV) radiation, filtration (FILT), and autoclaving (AUTO). In addition, to simulate the sterilization effect in a real environment, inks were formulated in two different media, specifically, Dulbecco's Modified Eagle's Medium (DMEM) and phosphate-buffered saline (PBS). First, rheological tests were performed to evaluate the flow properties of the inks, and we observed that UV samples showed shear thinning behavior, which was favorable for three-dimensional (3D) printing. Furthermore, the 3D-printed constructs developed with UV inks showed better shape and size fidelity than those obtained with FILT and AUTO. In order to relate this behavior to the material structure, Fourier transform infrared (FTIR) analysis was carried out and the predominant conformation in protein was determined by deconvolution of the amide I band, which confirmed that the prevalence of a-helix structure was greater for UV samples. This work highlights the relevance of sterilization processes, which are essential for biomedical applications, in the research field of bioinks.
Collapse
Affiliation(s)
- Teresa Carranza
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingenieríade Gipuzkoa, Plaza de Europa 1, Donostia-San Sebastián, 20018, Spain,Domotek SL, B° Santa Luzia 17, Tolosa, 20400, Spain
| | - Martin Zalba-Balda
- Tknika, Basque VET Applied Research Centre, Barrio Zamalbide s/n, Errenteria, 20100, Spain,University of Mondragon (MU), Faculty of Engineering (MGEP), Loramendi 4, Arrasate-Mondragon, 20500, Spain
| | | | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingenieríade Gipuzkoa, Plaza de Europa 1, Donostia-San Sebastián, 20018, Spain,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain,Corresponding author: Pedro Guerrero () Koro de la Caba ()
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingenieríade Gipuzkoa, Plaza de Europa 1, Donostia-San Sebastián, 20018, Spain,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain,Proteinmat Materials SL, Avenida de Tolosa 72, Donostia-San Sebastián, 20018, Spain,Corresponding author: Pedro Guerrero () Koro de la Caba ()
| |
Collapse
|
50
|
Ding X, Yu Y, Shang L, Zhao Y. Histidine-Triggered GO Hybrid Hydrogels for Microfluidic 3D Printing. ACS NANO 2022; 16:19533-19542. [PMID: 36269119 DOI: 10.1021/acsnano.2c09850] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) hydrogels have provided tremendous opportunities in designing and fabricating complex constructs for diverse applications, while their 3D printing without photocuring is still a challenging task due to their low viscosity, uncontrollable gelation, and low interfacial tension. Here, we report a histidine-assisted printing strategy to prepare GO hybrid hydrogels through the microfluidic 3D printing technique. We found that the GO additive could significantly hamper the Knoevenagel condensation (KC) reaction between benzaldehyde and cyanoacetate group-functionalized polymers to form a hydrogel, while these GO mixed solutions were rapidly solidified into a hydrogel when histidine was added. This fascinating phenomenon enabled us to prepare low-viscosity GO mixed polymer solutions as printable inks and generate hydrogel microfibers in histidine solutions. The hydrogel fibers could support cell survival and be further constructed into complex 3D structures through microfluidic 3D printing techniques. Moreover, due to the addition of GO, the microfibers exhibited excellent electrical conductivity and could sense the motion changes and convert these stimuli as electrical resistance signals. This strategy adds an option for the design and application of 3D printable aqueous GO inks in many fields.
Collapse
Affiliation(s)
- Xiaoya Ding
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yunru Yu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|