1
|
Ejnik M, Bruździak P, Gutmańska K, Ciborska A, Malik M, Gudat D, Brillowska-Dąbrowska A, Dołęga A. Gold(III) complexes with chloride and cyanopyridines: Facilitated hydrolysis of nitrile ligand to amide and antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125055. [PMID: 39232315 DOI: 10.1016/j.saa.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
A range of novel simple gold(III) compounds has been synthesized in their monocrystalline form, including two previously unknown chloro-complexes of Au3+ with 2-cyanopyridine or 3-cyanopyridine, respectively. Our investigations have revealed the intricate nature of the reaction between 2-cyanopyridine and tetrachloroauric acid, yielding at least three distinct products. The main product, obtained in high yield, is a salt featuring a tetrachloroauric anion and a pyridinium cation stabilized by a hydrogen bond to a further 2-cyanopyridine molecule. Moreover, we observed the in-situ formation of a 2-cyanopyridine-AuCl3 complex, which undergoes hydrolysis of the nitrile bond to yield a picolinamide-Au(III) complex. The complexes were characterized by IR and Raman spectroscopies, NMR spectroscopy, and single-crystal XRD studies. Additional computational studies were conducted to explain unusual spectral features, the observed disparities in the complexation reactions of the three isomeric cyanopyridine ligands and the distinct reactivity of the complex with 2-cyanopyridine. Based on these studies, we propose a mechanism for the catalyzed hydrolysis of the nitrile bond within the Au(III) complex. Finally, we assessed the antimicrobial efficacy of the synthesized gold(III) complexes against a spectrum of bacteria and fungi.
Collapse
Affiliation(s)
- Maciej Ejnik
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St, 11/12, 80-233 Gdańsk, Poland
| | - Piotr Bruździak
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St, 11/12, 80-233 Gdańsk, Poland
| | - Karolina Gutmańska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St, 11/12, 80-233 Gdańsk, Poland
| | - Anna Ciborska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St, 11/12, 80-233 Gdańsk, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dietrich Gudat
- Institut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany
| | - Anna Brillowska-Dąbrowska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St, 11/12, 80-233 Gdańsk, Poland
| | - Anna Dołęga
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St, 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
2
|
Youssef Z, El Eter M, Albela B, Bonneviot L. Revisited UV- spectra of chlorohydroxoaurate anions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124736. [PMID: 39137706 DOI: 10.1016/j.saa.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024]
Abstract
The most important ionic precursor of gold, [AuCl4]-, is used in aqueous solution leading to chlorohydroxoaurates species, [AuCl4-x(OH)x]- (x = 1-4) due to partial hydrolysis. Their UV spectral signatures are still relatively unknown though very useful in many domains of application. Individual spectra of each of them are determined for the first time thanks to a thorough experimental investigation comprising the range 200-250 nm, surpringly ignored up to now. New isosbestic points useful for species partition analysis are evidenced. Electronic transition attribution is obtained from quantum chemical calculations based on TD-DFT. The prediction of the experimental blueshifted bands of the [AuCl4-x(OH)x]-1 anions was possible only after applying energy corrections calibrated on the full UV range two-band spectrum of the [AuCl4]- complex.
Collapse
Affiliation(s)
- Zeina Youssef
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 15 Parvis René Descartes, UMR-CNRS 5182, 69342 Lyon Cedex 07, France.
| | - Mohamad El Eter
- Laboratoire de Chimie Pure et Appliquée, Lebanese University, Lebanon, Tripoli El-Kobbe, Lebanon; College of Arts and Sciences, American University of Iraq, Baghdad, Iraq.
| | - Belen Albela
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 15 Parvis René Descartes, UMR-CNRS 5182, 69342 Lyon Cedex 07, France.
| | - Laurent Bonneviot
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 15 Parvis René Descartes, UMR-CNRS 5182, 69342 Lyon Cedex 07, France.
| |
Collapse
|
3
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
4
|
Arojojoye AS, Holmes J, Obisesan OA, Parkin S, Awuah SG. Stoichiometry effect on the structure, coordination and anticancer activity of gold(I/III) bisphosphine complexes. Dalton Trans 2024. [PMID: 39688257 DOI: 10.1039/d4dt01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Rationalizing the impact of oxidation states of Au-based complexes on function require synthetic strategies that allow for conserved molecular formula in Au(I) and their Au(III) counterparts. Oftentimes achieving Au(I) and Au(III) coordination complexes with the same ligand system is challenging due to the reactivity and stability of the starting Au(I) or Au(III) starting materials. Thus, attempts to study the impact of oxidation state on biological function has been elusive. We posit that Au complexes with the same ligand framework but different oxidation states will affect complex geometry and hence elicit differences in biological function or mechanism. In this work, we reacted 1,2-bis(diphenylphosphino)benzene with respective Au starting materials in different mole ratios to facilitate the synthesis of structurally distinct Au(I) or Au(III) complexes. Briefly, by reacting two stoichiometric equivalents of HAuCl4·3H2O or AuCl3(tht) with one equivalent of 1,2-bis(diphenylphosphino)benzene, we obtained dicationic bis-[1,2-bis-(diphenylphosphino)benzene]gold(III) chloride whereas an equimolar ratio of HAuCl4·3H2O and 1,2-bis(diphenylphosphino)benzene gave the monocationic bis-[1,2-bis-(diphenylphosphino)benzene]gold(I) complex in moderate yield. The complexes were characterized spectroscopically by HRMS, RP-HPLC-MS, NMR and the purity ascertained by elemental analysis. The 31P NMR showed characteristic singlet peak at ∼22 ppm for the Au(I) complexes and ∼57 ppm for the Au(III) complexes. The structure of the Au(III) complexes was further confirmed by X-ray crystallography as a 5-coordinate Au(III) complex. Although both Au(I) and Au(III) complexes showed promising anticancer activity in MDA-MB-231 (breast cancer) and BT-333 (glioblastoma) cancer cell lines and inhibited maximal mitochondria respiration in MDA-MB-231 cells, the Au(III) complexes further induce ROS accumulation and facilitate depolarization of the mitochondria membrane potential in MDA-MB-231 cells. Taken together, the synthetic approach provides a way to elucidate the effect of Au(I)/Au(III) oxidation states on structure, activity, and potential mechanism with respect to the same ligand.
Collapse
Affiliation(s)
| | - Justin Holmes
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Centre, University of Kentucky, Lexington, KY, 50536, USA
| |
Collapse
|
5
|
Landrini M, Navarro M, Campos J, Rocchigiani L. Enhanced reactivity of cationic Au(μ-H) 2MCp 2 complexes (M = Mo and W) enabled by bulky tris-biaryl phosphines. Dalton Trans 2024. [PMID: 39688665 DOI: 10.1039/d4dt03150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
[(L1)Au(μ-H)2MCp2][BF4] complexes (M = Mo and W) featuring cavity-shaped tris-2-(4,4'-di-tert-butylbi-phenylyl)phosphine (L1) have been isolated. The tungsten derivative showed a remarkably fast reactivity in photolytic hydride transfer to generate the mononuclear gold hydride (L1)AuH. Both bimetallic adducts trap Ag+ cations, forming unprecedented {Au(μ-H)M(μ-H)Ag} trimetallic assemblies with destabilized Au-M interactions.
Collapse
Affiliation(s)
- Martina Landrini
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123, Perugia, Italy.
- Instituto de Investigaciones Quimicas (IIQ), Departamento de Quimica Inorganica and Centro de Innovacion en Quimica Avanzada (ORFEO-CINQA), CSIC-Universidad de Sevilla, Sevilla 41092, Spain.
| | - Miquel Navarro
- Instituto de Investigaciones Quimicas (IIQ), Departamento de Quimica Inorganica and Centro de Innovacion en Quimica Avanzada (ORFEO-CINQA), CSIC-Universidad de Sevilla, Sevilla 41092, Spain.
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jesús Campos
- Instituto de Investigaciones Quimicas (IIQ), Departamento de Quimica Inorganica and Centro de Innovacion en Quimica Avanzada (ORFEO-CINQA), CSIC-Universidad de Sevilla, Sevilla 41092, Spain.
| | - Luca Rocchigiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123, Perugia, Italy.
| |
Collapse
|
6
|
Galdi G, Costabile C. Tuning the Steric and Electronic Properties of Hemilabile NHC ligands for Gold(I/III) Catalyzed Oxyarylation of Ethylene: A Computational Study. Chemistry 2024; 30:e202402774. [PMID: 39282892 DOI: 10.1002/chem.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 11/06/2024]
Abstract
Mechanistic studies on 1,2-oxyarylation of ethylene promoted by gold catalysts bearing hemilabile N-Heterocyclic Carbene (NHC^X) ligands were conducted by DFT calculations, exploring the whole catalytic cycle. After highest energy transition state (TS) barriers were located for NHC^N gold catalyst, and experimental results with different iodoarenes and alcohols rationalized, the study was extended to modified NHC^X catalysts, to observe how electronic and steric effects could affect the rate determining step TS. Electronic effects were investigated on NHC^X (X=H, N, O, P, and S), whereas steric effects emerged when comparing catalysts with different N-R groups (R=Dipp, Mes, tBu and Me). Finally, we suggest a different catalyst design based on N-aryl N-o-donor-aryl NHC, with different donors and NHC backbones to search for better performing systems.
Collapse
Affiliation(s)
- Gaetano Galdi
- Department of Chemistry and Biology "A.Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Chiara Costabile
- Department of Chemistry and Biology "A.Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
7
|
Sun T, Ge B, Huang S, Wang X, Tian Y, Cai X, Ding W, Zhu Y. Heterogeneous Catalysis of Molecular-Like Au 8M(PPh 3) 8 n+ Clusters Cultivated in Mesoporous SBA-15. Angew Chem Int Ed Engl 2024:e202420274. [PMID: 39620864 DOI: 10.1002/anie.202420274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
It is a dream of researchers to be able to tailor the catalytic performances by adjusting heterogeneous catalysts at the atomic level. Atomically precise metal clusters provide us with the possibility to achieve this challenge. Here, we design a push-and-pull synthesis strategy coupled with TiOx coating to prepare the heterogeneous catalysts denoted as TiOx/Au8M@SBA via cultivating atomically precise Au8M(PPh3)8 n+ (M=Pd, Pt or Au; n=2 for Pd/Pt and 3 for Au) clusters in mesoporous molecular sieve. The catalysts are made up of the three functional units, which include Au8M(PPh3)8 n+ clusters that can act as the active sites, the pore environment of the SBA-15 that can announce a catalysis show for the clusters with precise number of atoms maintained during the chemical reactions, and the TiOx coating that can further inhibit the migration of the clusters under reaction conditions. The selective hydrogenation of acetylene performed in the fixed-bed reactor taken, for example, we learn how the atom-by-atom tailoring of a heterogeneous catalyst can switch on elusive heterogeneous mechanisms with cluster catalysis. This work sheds light on the fundamental insight into catalysis origin of heterogeneous catalysts and achieves a distinguished level of detail for cluster catalysis.
Collapse
Affiliation(s)
- Tianqi Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Bingqing Ge
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | - Xiuwen Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yiqi Tian
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Budzelaar PHM, Bochmann M, Landrini M, Rocchigiani L. Gold-Catalysed Heck Reaction: Fact or Fiction? Correspondence on "Unlocking the Chain Walking Process in Gold Catalysis". Angew Chem Int Ed Engl 2024; 63:e202317774. [PMID: 38695675 DOI: 10.1002/anie.202317774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 11/12/2024]
Abstract
Two recent high-profile publications reported the formation of Heck-type arylated alkenes catalysed by MeDalPhosAuCl/AgOTf (J. Am. Chem. Soc. 2023, 145, 8810) and their cyclisation to tetralines (Angew. Chem. Int. Ed. 2023, e202312786). It was claimed that these were the first demonstrations in gold catalysis of alkene insertion into Au-aryl bonds, β-H elimination and chain-walking by Au-H dications. We show here that in fact this chemistry is a two-stage process. Only the first step, the production of an alkyl triflate ester as the primary organic product by the well-known alkene heteroarylation sequence, involves gold. The subsequent formation of Heck-type olefins and their cyclisation to tetralines represent classical H+-triggered carbocationic chemistry. These steps proceed in the absence of gold with identical results. Literature claims of new gold reactivity such as chain walking by the putative [LAuH]2+ dication have no basis in fact.
Collapse
Affiliation(s)
- Peter H M Budzelaar
- Department of Chemistry, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, United Kingdom
| | - Martina Landrini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, I-06134, Perugia, Italy
| | - Luca Rocchigiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, I-06134, Perugia, Italy
| |
Collapse
|
9
|
Li X, Waser J. Forging 1,1'-Bicyclopropenyls by Synergistic Au/Ag Dual-Catalyzed Cyclopropenyl Cross-Coupling. J Am Chem Soc 2024; 146:29712-29719. [PMID: 39424282 PMCID: PMC11528445 DOI: 10.1021/jacs.4c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
1,1'-Bicyclopropenyl is a constitutional isomer of benzene comprising two coupled cyclopropene units with the endocyclic double bonds in conjugation. Due to the intrinsic high strain energy, it remains a long-standing challenge to prepare 1,1'-bicyclopropenyl derivatives, particularly multisubstituted, nonsymmetrical ones, in an efficient and modular manner. Herein a straightforward Au/Ag bimetallic-catalyzed cyclopropenyl cross-coupling has been developed, providing a robust and versatile strategy for the rapid assembly of symmetrical and unsymmetrical 1,1'-bicyclopropenyl derivatives from cyclopropenyl benziodoxoles (CpBXs) and terminal cyclopropenes. Advantages of this strategy include tolerance to a wide range of synthetically useful functional groups, mild reaction conditions, and a simple catalytic system. The obtained 1,1'-bicyclopropenyl derivatives were shown to be valuable synthetic intermediates through selective downstream manipulations.
Collapse
Affiliation(s)
- Xiangdong Li
- Laboratory of Catalysis and
Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and
Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
10
|
Valdés H, Alpuente N, Salvador P, Hashmi ASK, Ribas X. CCC-NHC Au(iii) pincer complexes as a reliable platform for isolating elusive species. Chem Sci 2024:d4sc02999b. [PMID: 39386905 PMCID: PMC11459386 DOI: 10.1039/d4sc02999b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
The reactivity of unprecedented CCC-NHC Au(iii) pincer complexes has been investigated, employing a novel methodology for their preparation. Notably, this marks the inaugural case of CCC-NHC Au(iii) pincer complexes with a central aryl moiety where the two arms of the pincer ligand consist of N-heterocyclic carbenes (NHC). The stability conferred by the CCC-NHC ligand facilitated the isolation of elusive Au(iii) species, encompassing Au(iii)-formate, Au(iii)-F, Au(iii)-Me, and Au(iii)-alkynyl. Our study also unveiled the elusive Au(iii)-H species, offering valuable insights into its formation, stability, and reactivity. While the CCC-NHC Au(iii)-H complex remains stable at room temperature, its decomposition becomes conspicuous at elevated temperatures (>60 °C), exhibiting a more pronounced tendency under acidic conditions compared to basic ones. Through comprehensive experiments, we indirectly demonstrated the potential of Au(iii)-formate to undergo β-hydride elimination, becoming a key step in the dehydrogenation of formic acid. Theoretical calculations revealed variations in the reactivity of Au(iii)-H species towards sodium hydride and formic acid, highlighting a link between σ-donation from the pincer ligand and reaction energetics. Pincers with lower electron donation favored the reaction with sodium hydride but impeded the reaction with formic acid, whereas those with higher electron donation exhibited the opposite behavior. Additionally, the CCC-NHC Au(iii) pincer complex exhibited Lewis acid behavior, catalyzing the synthesis of phenols. In summary, the CCC-NHC Au(iii) pincer complex emerges as a versatile platform for isolating reactive species and unraveling elementary catalytic steps.
Collapse
Affiliation(s)
- Hugo Valdés
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Facultad de Farmacia, Universidad de Alcalá Alcalá de Henares 28805 Madrid Spain
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Nora Alpuente
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| |
Collapse
|
11
|
Ramos M, Solà M, Poater A. Hydrophenoxylation of alkynes by gold catalysts: a mini review. J Mol Model 2024; 30:357. [PMID: 39348033 PMCID: PMC11442519 DOI: 10.1007/s00894-024-06152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT The field of chemistry has significantly evolved, with catalysis playing a crucial role in transforming chemical processes. From Valerius' use of sulfuric acid in the sixteenth century to modern advancements, catalysis has driven innovations across various industries. The introduction of gold as a catalyst marked a pivotal shift, expanding its applications beyond ornamentation to homogeneous catalysis. Gold's unique properties, such as its electrophilic nature and flexibility, have enabled its use in synthesizing complex molecules, including those in nanomedicine and sustainable chemical processes. The development of gold-based complexes, particularly in hydroalkoxylation and hydroamination reactions, showcases their efficiency in forming carbon-oxygen bonds under mild conditions. Recent studies on dual gold catalysis and heterobimetallic complexes further highlight gold's versatility in achieving high turnover rates and selectivity. This evolution underscores the potential of gold catalysis in advancing environmentally sustainable methodologies and enhancing the scope of modern synthetic chemistry. The debate about the nature of monogold and dual-gold catalysis is open. METHODS DFT calculations have played a key role in promoting the activation of alkynes, in particular the hydrophenoxylation of alkynes by metal-based catalysts. They not only help identify the most efficient and selective catalysts but also aid in screening for those capable of performing a dual metal catalytic mechanism. The most commonly used functionals are BP86 and B3LYP, with the SVP and 6-31G(d) basis sets employed for geometry optimizations, and M06 with TZVP or 6-311G(d,p) basis sets used for single-point energy calculations in a solvent. Grimme dispersion correction has been explicitly added either in the solvent single point energy calculations or in the gas phase geometry optimizations or in both. To point out that M06 implicitly includes part of this dispersion scheme.
Collapse
Affiliation(s)
- Miguel Ramos
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
12
|
Zheng D, Kashif MF, Piscopo L, Collard L, Ciracì C, De Vittorio M, Pisanello F. Tunable Nanoislands Decorated Tapered Optical Fibers Reveal Concurrent Contributions in Through-Fiber SERS Detection. ACS PHOTONICS 2024; 11:3774-3783. [PMID: 39310299 PMCID: PMC11413926 DOI: 10.1021/acsphotonics.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology. Ultimately, this limits the design of the best-performance remote SERS sensing probe. Here we employ a tunable solid-state dewetting method to create densely packed monolayer Au nanoislands with varied geometric parameters in direct contact with the silica TF surface. These patterns exhibit analyzable nanoparticle sizes, densities, and uniform distribution across the entire taper surface, enabling a systematic investigation of particle size, density, and analyte effects on the SERS performance of the through-fiber detection system. The study is focused on the SERS response of a widely employed benchmark molecule, rhodamine 6G (R6G), and serotonin, a highly relevant neurotransmitter for the neuroscience field. The numerical simulations and limit of detection (LOD) experiments on R6G show that the increase of the total near-field enhancement volume promotes the SERS sensitivity of the probe. However, we observed a different behavior for serotonin linked to its interaction with the nanoparticle's surface. The obtained LOD is as low as 10-7 M, a value not achieved so far in a through-fiber detection scheme. Therefore, our work offers a strategy to design nanoparticle-based remote SERS sensing probes and provides new clues to discover and understand intricate plasmonic-driven chemical reactions.
Collapse
Affiliation(s)
- Di Zheng
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- State
Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Fayyaz Kashif
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Linda Piscopo
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
| | - Liam Collard
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Cristian Ciracì
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Ferruccio Pisanello
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| |
Collapse
|
13
|
León F, García-Rodeja Y, Mallet-Ladeira S, Miqueu K, Szalóki G, Bourissou D. Catechol/ o-benzoquinone exchange at gold(iii). Chem Sci 2024:d4sc04374j. [PMID: 39309082 PMCID: PMC11414447 DOI: 10.1039/d4sc04374j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024] Open
Abstract
Although gold(iii) chemistry has tremendously progressed in the past 2 decades, gold(iii) catecholate complexes remain extremely scarce and underdeveloped. Upon preparation and full characterization of P^C-cyclometalated gold(iii) complexes, we serendipitously uncovered an intriguing catechol exchange process at gold(iii). Electron-rich catecholates turned out to be readily displaced by electron-poor o-benzoquinones. DFT calculations revealed an original path for this transformation involving two consecutive Single Electron Transfer events between the catecholate and o-benzoquinone moieties while gold maintains its +III oxidation state. This catechol/o-benzoquinone exchange at gold(iii) represents a new path for the exchange of X-type ligands at transition metals.
Collapse
Affiliation(s)
- Félix León
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Yago García-Rodeja
- CNRS/Université de Pau et des Pays de l'Adour. E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc 2 Avenue du Président Angot 64053 Pau Cedex 09 France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour. E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc 2 Avenue du Président Angot 64053 Pau Cedex 09 France
| | - György Szalóki
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|
14
|
Curtis CJ, Habenšus I, Conradie J, Bardin AA, Nannenga BL, Ghosh A, Tomat E. Gold Tripyrrindione: Redox Chemistry and Reactivity with Dichloromethane. Inorg Chem 2024; 63:17188-17197. [PMID: 39215706 PMCID: PMC11583832 DOI: 10.1021/acs.inorgchem.4c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The identification of ligands that stabilize Au(III) centers has led to the isolation of complexes for applications in catalysis, gold-based therapeutics, and functional materials. Herein, we report the coordination of gold by tripyrrin-1,14-dione, a linear tripyrrole with the scaffold of naturally occurring metabolites of porphyrin-based protein cofactors (e.g., heme). Tripyrrindione H3TD2 binds Au(III) as a trianionic tridentate ligand to form square planar complex [Au(TD2)(H2O)], which features an adventitious aqua ligand. Two reversible ligand-based oxidations of this complex allow access to the other known redox states of the tripyrrindione framework. Conversely, (spectro)electrochemical measurements and DFT analysis indicate that the reduction of the complex is likely metal-based. The chemical reduction of [Au(TD2)(H2O)] leads to a reactive species that utilizes dichloromethane in the formation of a cyclometalated organo-Au(III) complex. Both the aqua and the organometallic Au(III) complexes were characterized in the solid state by microcrystal electron diffraction (MicroED) methods, which were critical for the analysis of the microcrystalline sample of the organo-gold species. Overall, this study illustrates the synthesis of Au(III) tripyrrindione as well as its redox profile and reactivity leading to gold alkylation chemistry.
Collapse
Affiliation(s)
- Clayton J. Curtis
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Iva Habenšus
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, Republic of South Africa
- Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Andrey A. Bardin
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Brent L. Nannenga
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Abhik Ghosh
- Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Ruiz-Almoguera D, Ventura-Espinosa D, Pérez-Bitrián A, Martín A, Mata JA, Baya M. Gold Trifluoromethyl Complexes as Efficient Regioselective Catalysts in Alkyne Hydration. Chemistry 2024; 30:e202401753. [PMID: 38924636 DOI: 10.1002/chem.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Gold(III) complexes containing trifluoromethyl ligands are efficient catalysts in the hydration of alkynes, operating at low catalyst loadings, without additives, using environmentally friendly solvents and at mild conditions (60 °C). Hydration of terminal and internal alkynes provides the corresponding ketones in quantitative yields without special precautions as dry solvents or inert atmospheres. Remarkably, hydration of asymmetric internal alkynes proceeds with moderate to notable regioselectivities, providing mixtures of the two possible isomers with ratios up to 90 : 10.
Collapse
Affiliation(s)
- David Ruiz-Almoguera
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Sos Baynat s/n, 12006, Castellón, Spain
| | - David Ventura-Espinosa
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Sos Baynat s/n, 12006, Castellón, Spain
| | - Alberto Pérez-Bitrián
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Current address: Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - José A Mata
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avda. Sos Baynat s/n, 12006, Castellón, Spain
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
16
|
Chan KHA, O WY, Jiang JJ, Cui JF, Wong MK. Consecutive chirality transfer: efficient synthesis of chiral C,O-chelated BINOL/gold(iii) complexes for asymmetric catalysis and chiral resolution of disubstituted BINOLs. Chem Sci 2024:d4sc04221b. [PMID: 39323523 PMCID: PMC11420890 DOI: 10.1039/d4sc04221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
A novel approach for efficient synthesis of chiral C,O-chelated BINOL/gold(iii) complexes by diastereomeric resolution using enantiopure BINOL as a chiral resolving agent was demonstrated. The BINOL/gold(iii) diastereomers with different solubility were separated by simple filtration, providing optically pure BINOL/gold(iii) complexes with up to >99 : 1 dr. By combining this with an efficient BINOL ligand dissociation process, a simple and column-free method for chiral resolution of racemic gold(iii) dichloride complexes on a gram scale was established, affording their enantiopure forms in good yields. Conversely, the resolved enantiopure gold(iii) dichloride complexes could serve as chiral resolving agents to resolve disubstituted BINOL derivatives, achieving both BINOLs and gold(iii) complexes in good to excellent yields (overall 77-96% and 76-95%, respectively) with a high optical purity of up to 99% ee. Through a consecutive chirality transfer process, the chiral information from an inexpensive chiral source was transferred to highly valuable gold(iii) complexes, followed by sterically bulky BINOL derivatives. This work would open a new synthetic strategy facilitating the development of structurally diverse chiral gold(iii) complexes and gold(iii)-mediated chiral resolution of BINOL derivatives. In addition, this new class of C,O-chelated BINOL/gold(iii) complexes achieved asymmetric carboalkoxylation of ortho-alkynylbenzaldehydes with an excellent enantioselectivity of up to 99% ee.
Collapse
Affiliation(s)
- Kwok-Heung Aries Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Jia-Jun Jiang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Jian-Fang Cui
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
17
|
Zhao J, Qiao Z, He Y, Zhang R, Li H, Song X, Cao D, Wang S. Anion-Regulated Ionic Covalent Organic Frameworks for Highly Selective Recovery of Gold from E-Waste. Angew Chem Int Ed Engl 2024:e202414366. [PMID: 39245853 DOI: 10.1002/anie.202414366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
The existing electronic waste (e-waste) and leaching solutions generated by industries accumulate significant amounts of gold (Au), even in excess of those in natural minerals. Therefore, the recycling of Au is extremely significant for the potential sustainability of chemical industry. By designing ionic covalent organic frameworks (COFs), here we synthesize a series of Ionic-COF-X (X=Cl-, Br-, AcO-, and SO4 2-) by anion regulation strategy and further explore their adsorption performance towards Au recovery. All these ionic COFs exhibit ultrahigh gold adsorption efficiency and excellent regeneration. Moreover, anion regulation could indeed affect the Au capture performance. In particular, when Cl- ions serve as counter ions, the Au capacity of Ionic-COF-Cl could reach 1270.8 mg g-1. Moreover, in the actual CPU leaching solution test, the selectivity of Ionic-COF-Cl towards Au3+ ion hits 39000 and 4600 times higher than that of Cu2+ and Ni2+ ions, respectively, suggesting that the Ionic-COF-Cl is a promising material for highly selective recovering gold from actual e-waste. DFT calculations further reveal that counter ions can regulate the adsorption affinity of ionic COF framework toward Au. In short, this work provides a useful anion regulation strategy to design ionic COFs as a promising platform for gold selective recovery from actual e-waste.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuncheng He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Han Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuezhen Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
18
|
Thushara R, Koga N, Suresh CH. Gold(I) Catalysis in Alkyne-Alkene Reactions: A Systematic Exploration through Molecular Electrostatic Potential Analysis. Inorg Chem 2024. [PMID: 39226218 DOI: 10.1021/acs.inorgchem.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Gold catalysis enables selective chemical transformations with catalytic activity tunable through ligand selection. This study uses the density functional theory (DFT) to explore the impact of phosphine ligands (PR3) on gold(I)-catalyzed alkyne-alkene cyclobutene formation. We analyze the following key steps: (i) PR3-Au+ complexation, (ii) alkyne binding, (iii) alkene binding, (iv) C-C coupling transition state, (v) cyclobutene formation transition state, and (vi) cyclobutene dissociation. Molecular electrostatic potential (MESP) analysis provided a deeper understanding of electronic effects and revealed a strong correlation between the change in MESP at the gold nucleus (ΔNVAu+) upon complex formation with various ligands and the corresponding complexation energy, as well as between the change in MESP at the alkyne carbon (ΔVC) and the C-C coupling step activation barrier. This establishes MESP as a powerful tool for understanding ligand influence on catalysis. Our findings suggest that electron-donating phosphine ligands, combined with electron-withdrawing alkyne substituents, enhance catalyst turnover, promote cyclobutene product dissociation from the gold(I) complex, and facilitate catalyst regeneration. Solvent effects also play a crucial role. Bulky XPhos, JohnPhos, and CyJohnPhos ligands enhance gold(I) catalysis via steric protection, electron donation, and catalyst regeneration efficiency. In conclusion, this study provides insights into ligand effects in gold(I)-catalyzed cyclobutene formation, guiding future catalyst design.
Collapse
Affiliation(s)
- Ramakrishnan Thushara
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
González JA, Arribas A, Tian P, Díaz-Alonso S, Mascareñas JL, López F, Nevado C. Gold(III) Auracycles Featuring C(sp 3)-Au-C(sp 2) Bonds: Synthesis and Mechanistic Insights into the Cycloauration Step. Angew Chem Int Ed Engl 2024; 63:e202402798. [PMID: 38776235 DOI: 10.1002/anie.202402798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
The direct auration of arenes is a key step in numerous gold-catalyzed reactions. Although reported more than 100 years ago, understanding of its underlying mechanism has been hampered by the difficulties in the isolation of relevant intermediates given the propensity of gold(III) species to undergo reductive elimination. Here, we report the synthesis and isolation of a new family of intriguing zwitterionic [C(sp3)^C(sp2)]-auracyclopentanes, as well as of their alkyl-gold(III) precursors and demonstrate their value as mechanistic probes to study the C(sp2)-Au bond-forming event. Experimental investigations employing Kinetic Isotope Effects (KIE), Hammett plot, and Eyring analysis provided important insights into the formation of the auracycle. The data suggest a SEAr mechanism wherein the slowest step might be the π-coordination between the arene and the gold(III) center, en route to the Wheland intermediate. We also show that these auracyclopentanes can work as catalysts in several gold-promoted transformations.
Collapse
Affiliation(s)
- Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Puyang Tian
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sergio Díaz-Alonso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
20
|
Suzuki W, Mizuhata Y, Tokitoh N, Teranishi T. Dioxygen Activation by Gold(I)-Distorted Porphyrin Dinuclear Complexes. Chemistry 2024; 30:e202401242. [PMID: 38888030 DOI: 10.1002/chem.202401242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Interactions between gold-based materials and dioxygen (O2) have motivated researchers to understand reaction mechanisms for O2 activation by homo- and heterogeneous gold catalysts. In this work, gold(I) porphyrin dinuclear complexes were synthesized with a saddle-distorted porphyrin ligand. The gold(I) porphyrin complexes showed unprecedented O2 activation in the presence of protic solvents to form gold(III) tetradentate porphyrin complexes. Mechanistic insights into the O2 activation by the gold(I) center were elucidated by spectroscopic measurements and theoretical calculations, revealing that dissociation of halides on the gold(I) center by alcohol solvents and hydrogen bonding of an N-H proton in the distorted porphyrin with dioxygen played important roles in establishing the unique reactivities of gold(I) complexes.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, University of Hyogo, 2167 Shosha Himeji, Hyogo, 671-2280, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
- Graduate School of Science, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
21
|
Wu J, Du W, Zhang L, Li G, Yang R, Xia Z. Photosensitized Reductive Elimination of Gold(III) to Enable Esterification of Aryl Iodides with Carboxylic Acids. JACS AU 2024; 4:3084-3093. [PMID: 39211587 PMCID: PMC11350571 DOI: 10.1021/jacsau.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Compared to the well-established transition metal-catalyzed cross-coupling reactions, Au(I)/Au(III)-catalyzed cross-coupling reactions have lagged behind. Despite some advancements, achieving gold-catalyzed C-O coupling with carboxylic acids via an Au(III) carboxylate intermediate remains challenging due to the thermal unfavorability of the critical reductive elimination step. Here, we present the first photosensitized reductive elimination of gold(III) to enable esterification of aryl iodides with carboxylic acids. In the presence of a (P, N)-gold(I) catalyst and a photosensitizer benzophenone under blue LED irradiation, esterification derivatives were obtained from aryl iodides with both aryl and alkyl (1°, 2°, 3°) carboxylic acids. Mechanistic and modeling studies support that energy transfer (EnT) from a photosensitizer produces an excited-state gold(III) complex that couples aryl iodides with carboxylic acids. This photoinduced energy-transfer strategy has been applied in several other photosensitized gold catalysis reactions, indicating its potential for further applications.
Collapse
Affiliation(s)
- Jiawen Wu
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenqian Du
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lizhu Zhang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gang Li
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rongjie Yang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhonghua Xia
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Landrini M, Patel R, Tyrrell-Thrower J, Macchioni A, Hughes DL, Tensi L, Hrobárik P, Rocchigiani L. Exploring Ligand Effects on Structure, Bonding, and Photolytic Hydride Transfer of Cationic Gold(I) Bridging Hydride Complexes of Molybdocene and Tungstenocene. Inorg Chem 2024; 63:13525-13545. [PMID: 38989543 DOI: 10.1021/acs.inorgchem.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A diverse family of heterobimetallic bridging hydride adducts of the type [LAu(μ-H)2MCp2][X] (L = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, IPr; 1,3-bis(1-adamantyl)imidazole-2-ylidene, IAd; 1,3-bis(2,6-di-iso-propylphenyl)-5,5-dimethyl-4,6-diketopyrimidinyl-2-ylidene, DippDAC; triphenylphosphine, PPh3; 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl, tBuXPhos; X = SbF6-, BF4- or TfO-) was synthesized by reacting group VI metallocene dihydrides Cp2MH2 (Cp = cyclopentadienyl anion; M = Mo, W) with cationic gold(I) complexes [LAu(NCMe)][X]. Trimetallic [L'Au2(μ-H)2WCp2][X]2 and tetrametallic [L'Au2{(μ-H)2WCp2}2] [X]2 complexes (L' = rac-2,2'-bis(diphenylphosphino)-1,1'-binaphthalene or bis(diphenylphosphinomethane)) were obtained by reacting digold [L'{Au(NCMe)}2][X]2 with Cp2WH2 in a 1:1 and a 1:2 stoichiometry. Accessing such a broad structural diversity allowed us to pinpoint roles played by the ancillary ligands and group VI metals on the bonding properties of this family of bridging hydrides. In particular, a clear effect of the ligand on the interaction energy and electronic structure was observed, with important implications on photolytic reactivity. UV or visible light irradiation, indeed, leads to the selective cleavage of the heterobimetallic Au(μ-H)2M arrangement and formation of molecular gold hydrides. The photolysis was found to be chromoselective (wavelength-dependent), which can be ascribed to different charge redistributions upon excitation to the first (Kasha's reactivity) and higher (anti-Kasha's reactivity) excited states.
Collapse
Affiliation(s)
- Martina Landrini
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Rohan Patel
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Joshua Tyrrell-Thrower
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Luca Rocchigiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, 06123 Perugia, Italy
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K
| |
Collapse
|
23
|
Díaz-Salazar H, Osorio-Ocampo G, Porcel S. Straightforward Access to Isoindoles and 1,2-Dihydrophthalazines Enabled by a Gold-Catalyzed Three-Component Reaction. J Org Chem 2024; 89:10163-10174. [PMID: 38989839 DOI: 10.1021/acs.joc.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We describe herein a gold-catalyzed three-component reaction of o-alkynylbenzaldehydes, aryldiazonium salts, and trimethoxybenzene. This process enables the one-pot formation of valuable isoindoles and 1,2-dihydrophathalazines. The regioselectivity of the reaction is dictated by the nature of the aryldiazonium salt. Noticeably, the reaction is performed at room temperature under mild conditions and tolerates a variety of functional groups on both the o-alkynylbenzaldehyde and the aryldiazonium salt. Experimental mechanistic studies suggest that it is catalyzed by arylAu(III) species.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Gabriel Osorio-Ocampo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
24
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
25
|
Font P, Valdés H, Ribas X. Consolidation of the Oxidant-Free Au(I)/Au(III) Catalysis Enabled by the Hemilabile Ligand Strategy. Angew Chem Int Ed Engl 2024; 63:e202405824. [PMID: 38687322 DOI: 10.1002/anie.202405824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
In this minireview we survey the challenges and strategies in gold redox catalysis. Gold's reluctance to oxidative addition reactions due to its high redox potential limits its applicability. Initial attempts to overcome this problem focused on the use of sacrificial external oxidants in stoichiometric amounts to bring Au(I) compounds to Au(III) reactive species. Recently, innovative approaches focused on employing hemilabile ligands, which are capable of coordinating to Au(I) and stabilizing square-planar Au(III) intermediates, thus facilitating oxidative addition steps and enabling oxidant-free catalysis. Notable examples include the use of the (P^N) bidendate MeDalphos ligand to achieve various cross-coupling reactions via oxidative addition Au(I)/Au(III). Importantly, hemilabile ligand-enabled catalysis allows merging oxidative addition with π-activation, such as oxy- and aminoarylation of alkenols and alkenamines using organohalides, expanding gold's versatility in C-C and C-heteroatom bond formations and unprecedented cyclizations. Moreover, recent advancements in enantioselective catalysis using chiral hemilabile (P^N) ligands are also surveyed. Strikingly, versatile bidentate (C^N) hemilabile ligands as competitors of MeDalphos have appeared recently, by designing scaffolds where phosphine groups are substituted by N-heterocyclic or mesoionic carbenes. Overall, these approaches highlight the evolving landscape of gold redox catalysis and its tremendous potential in a broad scope of transformations.
Collapse
Affiliation(s)
- Pau Font
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| | - Hugo Valdés
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
- Current address: Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| |
Collapse
|
26
|
Wang X, Lv R, Li X. Kinetic resolution of 1-(1-alkynyl)cyclopropyl ketones via gold-catalyzed divergent (4 + 4) cycloadditions: stereoselective access to furan fused eight-membered heterocycles. Chem Sci 2024; 15:9361-9368. [PMID: 38903218 PMCID: PMC11186327 DOI: 10.1039/d4sc02763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Chiral eight-membered heterocycles comprise a diverse array of natural products and bioactive compounds, yet accessing them poses significant challenges. Here we report a gold-catalyzed stereoselective (4 + 4) cycloaddition as a reliable and divergent strategy, enabling readily accessible precursors (anthranils and ortho-quinone methides) to be intercepted by in situ generated gold-furyl 1,4-dipoles, delivering previously inaccessible chiral furan/pyrrole-containing eight-membered heterocycles with good results (56 examples, all >20 : 1 dr, up to 99% ee). Moreover, we achieve a remarkably efficient kinetic resolution (KR) process (s factor up to 747). The scale-up synthesis and diversified transformations of cycloadducts highlight the synthetic potential of this protocol. Computational calculations provide an in-depth understanding of the stereoselective cycloaddition process.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- Suzhou Research Institute of Shandong University NO. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 China
| |
Collapse
|
27
|
Pérez-Ramos P, Mateo MA, Elorriaga D, García-Vivó D, Soengas RG, Rodríguez-Solla H. Coordination of azol(in)ium dithiocarboxylate ligands to Au(III): unexpected formation of a novel family of cyclometallated Au(III) complexes, DFT calculations and catalytic studies. Dalton Trans 2024; 53:9433-9440. [PMID: 38758133 DOI: 10.1039/d4dt01184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A series of cyclometallated gold(III) complexes 21-27 of general formula [Au(dppta)(azdtc)Cl] (dppta = N,N-diisopropyl-P,P-diphenylphosphinothioic amide-κ2C,S; azdtc = azol(in)ium-2-dithiocarboxylate-κ1S) were prepared and characterized by spectroscopic and diffractometric techniques. Treatment of [Au(dppta)(azdtc)Cl] complexes with methanol led to their quantitative transformation into a novel family of (C^S, S^S)-cyclometallated gold(III) complexes of general formula [Au(dppta)(azmtd)] (azmdt = azol(in)ium-2-(methoxy)methanedithiol-κ2S,S) 28-34. All the [Au(dppta)(azdtc)Cl] complexes 21-27 catalyzed the alkylation of indoles, whereas [Au(dppta)(azmtd)] complexes 28-34 were inactive. Among the synthesized derivatives, complex 22 displayed the highest catalytic activity, leading to a series of functionalized indoles in excellent yields.
Collapse
Affiliation(s)
- Paula Pérez-Ramos
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - María A Mateo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - David Elorriaga
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Raquel G Soengas
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Humberto Rodríguez-Solla
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
28
|
Li X, Wodrich MD, Waser J. Accessing elusive σ-type cyclopropenium cation equivalents through redox gold catalysis. Nat Chem 2024; 16:901-912. [PMID: 38783040 PMCID: PMC11164686 DOI: 10.1038/s41557-024-01535-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Cyclopropenes are the smallest unsaturated carbocycles. Removing one substituent from cyclopropenes leads to cyclopropenium cations (C3+ systems, CPCs). Stable aromatic π-type CPCs were discovered by Breslow in 1957 by removing a substituent on the aliphatic position. In contrast, σ-type CPCs-formally accessed by removing one substituent on the alkene-are unstable and relatively unexplored. Here we introduce electrophilic cyclopropenyl-gold(III) species as equivalents of σ-type CPCs, which can then react with terminal alkynes and vinylboronic acids. With catalyst loadings as low as 2 mol%, the synthesis of highly functionalized alkynyl- or alkenyl-cyclopropenes proceeded under mild conditions. A class of hypervalent iodine reagents-the cyclopropenyl benziodoxoles (CpBXs)-enabled the direct oxidation of gold(I) to gold(III) with concomitant transfer of a cyclopropenyl group. This protocol was general, tolerant to numerous functional groups and could be used for the late-stage modification of complex natural products, bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Xiangdong Li
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
29
|
Parte LG, Fernández S, Sandonís E, Guerra J, López E. Transition-Metal-Catalyzed Transformations for the Synthesis of Marine Drugs. Mar Drugs 2024; 22:253. [PMID: 38921564 PMCID: PMC11204618 DOI: 10.3390/md22060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Transition metal catalysis has contributed to the discovery of novel methodologies and the preparation of natural products, as well as new chances to increase the chemical space in drug discovery programs. In the case of marine drugs, this strategy has been used to achieve selective, sustainable and efficient transformations, which cannot be obtained otherwise. In this perspective, we aim to showcase how a variety of transition metals have provided fruitful couplings in a wide variety of marine drug-like scaffolds over the past few years, by accelerating the production of these valuable molecules.
Collapse
Affiliation(s)
- Lucía G. Parte
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Sergio Fernández
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London (QMUL), Mile End Road, London E1 4NS, UK;
| | - Eva Sandonís
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Javier Guerra
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Enol López
- Department of Organic Chemistry, ITAP, School of Engineering (EII), University of Valladolid (UVa), Dr Mergelina, 47002 Valladolid, Spain
| |
Collapse
|
30
|
Barwise L, Moon LJ, Dhakal B, Hogan CF, White KF, Dutton JL. An extremely electron poor Au(III) trication bearing acetonitrile ligands. Chem Commun (Camb) 2024; 60:5586-5589. [PMID: 38699786 DOI: 10.1039/d4cc00818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The synthesis and structural characterization of an electron poor Au(III) trication bearing 2 imidazole and 2 acetonitrile ligands is described. The new complex is capable of aryl C-H metalation with the formation of a monomesitylene complex and also demonstrated to be highly oxidizing in the rapid room temperature conversion of cyclohexene to benzene.
Collapse
Affiliation(s)
- Lachlan Barwise
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Lachlan J Moon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Bibidh Dhakal
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Conor F Hogan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Keith F White
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Martín J, Schörgenhumer J, Biedrzycki M, Nevado C. (P^N^C) Ligands to Stabilize Gold(III): A Straightforward Access to Hydroxo, Formate, and Hydride Complexes. Inorg Chem 2024; 63:8390-8396. [PMID: 38657169 PMCID: PMC11080065 DOI: 10.1021/acs.inorgchem.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
A novel class of (P^N^C) pincer ligands capable of stabilizing elusive gold(III) species is reported here. Straightforward access to (P^N^C)gold(III) hydroxo, formate, and hydride complexes has been streamlined by first incorporating a cycloauration step devoid of toxic metals or harsh conditions. The resulting gold complexes exhibit remarkable stability in solution as well as in the solid state under ambient conditions, which enabled their characterization by X-ray diffraction analyses. Interestingly, the influence of the ligand allowed the preparation of gold(III)-hydrides using mild hydride donors such as H-Bpin, which contrasts with sensitive super hydrides or strong acids and cryogenic conditions employed in previous protocols. A detailed bonding characterization of these species is complemented by reactivity studies.
Collapse
Affiliation(s)
- Jaime Martín
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Johannes Schörgenhumer
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Michał Biedrzycki
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| |
Collapse
|
32
|
Watson BT, Dias HVR. Going for gold - the chemistry of structurally authenticated gold(I)-ethylene complexes. Chem Commun (Camb) 2024; 60:4872-4889. [PMID: 38567496 DOI: 10.1039/d4cc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gold coordination chemistry and catalysis involving unsaturated hydrocarbons such as olefins have experienced a remarkable growth during the last few decades. Despite the importance, isolable and well-characterized molecules with ethylene, the simplest and the most widely produced olefin, on gold are still limited. This review aims to cover features of, and strategies utilized to stabilize, gold-ethylene complexes and their diverse use in chemical transformations and homogeneous catalytic processes. Isolable and well-authenticated gold-ethylene complexes are important not only for structural, spectroscopic, and bonding studies but also as models for likely intermediates in gold mediated reactions of alkenes and gold-alkene species observed in the gas phase. There has also been development on AuI/III catalytic cycles. Nitrogen based ligands have been the most widely utilized ligand supports thus far for the successful stabilization of gold-ethylene adducts. Gold has a bright future in olefin chemistry and with ethylene.
Collapse
Affiliation(s)
- Brandon T Watson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
33
|
Vesseur D, Li S, Mallet-Ladeira S, Miqueu K, Bourissou D. Ligand-Enabled Oxidative Fluorination of Gold(I) and Light-Induced Aryl-F Coupling at Gold(III). J Am Chem Soc 2024. [PMID: 38607393 DOI: 10.1021/jacs.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
MeDalphos Au(I) complexes featuring aryl, alkynyl, and alkyl groups readily react with electrophilic fluorinating reagents such as N-fluorobenzenesulfonimide and Selectfluor. The ensuing [(MeDalphos)Au(R)F]+ complexes have been isolated and characterized by multinuclear NMR spectroscopy as well as X-ray diffraction. They adopt a square-planar contra-thermodynamic structure, with F trans to N. DFT/IBO calculations show that the N lone pair of MeDalphos assists and directs the transfer of F+ to gold. The [(MeDalphos)Au(Ar)F]+ (Ar = Mes, 2,6-F2Ph) complexes smoothly engage in C-C cross-coupling with PhCCSiMe3 and Me3SiCN, providing direct evidence for the oxidative fluorination/transmetalation/reductive elimination sequence proposed for F+-promoted gold-catalyzed transformations. Moreover, direct reductive elimination to forge a C-F bond at Au(III) was explored and substantiated. Thermal means proved unsuccessful, leading mostly to decomposition, but irradiation with UV-visible light enabled efficient promotion of aryl-F coupling (up to 90% yield). The light-induced reductive elimination proceeds under mild conditions; it works even with the electron-deprived 2,6-difluorophenyl group, and it is not limited to the contra-thermodynamic form of the aryl Au(III) fluoride complexes.
Collapse
Affiliation(s)
- David Vesseur
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Shuo Li
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599) , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Karinne Miqueu
- E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), CNRS/Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau, Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , CNRS/Université Paul Sabatier , 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| |
Collapse
|
34
|
Li Y, Zhang Z, Wang R, Tang A, Ma C, Lian C, Tian H, Li H. Suppressing the Conductance of Single-Molecule Junctions Fabricated by sp 2 C-H Bond Metalation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497376 DOI: 10.1021/acsami.3c16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-conducting single-molecule junctions have attracted a great deal of attention, but insulating single-molecule junctions, which are critical in molecular circuits, have been less investigated due to the long-standing challenges. Herein, the in situ formation of a Au-C linker via electrical-potential-mediated sp2 C-H bond metalation of polyfluoroarenes with the assistance of scanning tunneling microscope-based break junction technique is reported. This metalation process is bias-dependent and occurs with an electropositive electrode, and the formed junction is highly oriented. Surprisingly, these polyfluoroarenes exhibit unexpected low conductance even under short molecular lengths and are superior molecular insulators. Flicker noise analysis and DFT calculations confirm that the insulating properties of polyfluoroarenes are ascribed to their multiple fluorine substituents. Our results pave a way for constructing oriented asymmetric molecular junctions and provide an efficient strategy to suppress the single-molecule conductance, which will aid in the design of molecular insulators and advance the development of self-integrating functional molecular circuits.
Collapse
Affiliation(s)
- Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zekai Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
35
|
Nakahata DH, Kanavos I, Zubiria-Ulacia M, Inague A, Salassa L, Lobinski R, Miyamoto S, Matxain JM, Ronga L, de Paiva REF. Gold-Promoted Biocompatible Selenium Arylation of Small Molecules, Peptides and Proteins. Chemistry 2024; 30:e202304050. [PMID: 38197477 DOI: 10.1002/chem.202304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2 ], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77 Se NMR), and LC-MS. Diphenyl diselenide (Ph-Se)2 and selenocystine, (Sec)2 , were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se-Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C-Se coupling reaction, a combination that makes the reaction biocompatible. The C-Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se-Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C-Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).
Collapse
Affiliation(s)
- Douglas H Nakahata
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| | - Ioannis Kanavos
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux - IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - Maria Zubiria-Ulacia
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| | - Alex Inague
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, SP, Brazil
| | - Luca Salassa
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Euskadi, Bizkaia, Spain
| | - Ryszard Lobinski
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux - IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - Sayuri Miyamoto
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000, SP, Brazil
| | - Jon Mattin Matxain
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| | - Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux - IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053, Pau, France
| | - Raphael E F de Paiva
- Donostia International Physics Center - DIPC, Paseo Manuel de Lardizabal 4, 20018, Donostia, Euskadi, Gipuzkoa, Spain
| |
Collapse
|
36
|
Bernt F, Leonhardt CM, Schatz D, Wegner HA. Synthesis and investigation of a meta[6]cycloparaphenylene gold(I) N-heterocyclic carbene complex. Chem Commun (Camb) 2024; 60:3055-3058. [PMID: 38381535 DOI: 10.1039/d3cc06225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Meta[n]cycloparaphenylenes (m[n]CPPs) as well as N-heterocyclic carbene (NHC) gold(I)-complexes are intriguing building blocks for material and life sciences due to their extraordinary structures resulting in unique photophysical properties. Herein, we report the combination of a m[6]CPP with a N-heterocyclic carbene serving as a ligand in a linear gold(I)-complex possessing the form [AuBr(NHC)]. Solid-state structures of both the precursor and the complex are presented and discussed. Moreover, we investigated the luminescence properties of both the imidazolium intermediate and the corresponding gold(I)-complex.
Collapse
Affiliation(s)
- Felix Bernt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Christopher M Leonhardt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| |
Collapse
|
37
|
Si WD, Zhang C, Zhou M, Wang Z, Feng L, Tung CH, Sun D. Arylgold nanoclusters: Phenyl-stabilized Au 44 with thermal-controlled NIR single/dual-channel phosphorescence. SCIENCE ADVANCES 2024; 10:eadm6928. [PMID: 38354237 PMCID: PMC10866543 DOI: 10.1126/sciadv.adm6928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Arylation of gold holds paramount importance in the domain of organometallic chemistry; however, the exploration of arylgold nanoclusters remains in its infancy primarily due to the synthetic challenge. Here, we present a facile and effective arylation strategy to directly synthesize two arylgold nanoclusters (Au44a and Au44b), by using tetraarylborates, capable of transferring aryl fragments to metal centers. X-ray crystallography reveals that both Au44 nanoclusters contain an Au44 kernel co-protected by six aryl groups, two tetrahydrothiophene, and 16 alkynyl-ether ligands, the latter is generated in situ through Williamson ether reaction during the assembly processes. Notably, Au44 nanoclusters exhibit near-infrared (NIR) phosphorescence (λmax = 958 nm) and microsecond radiative relaxation at ambient condition, which is a thermal-controlled single/dual-channel phosphorescent emission revealed by temperature-dependent NIR, time-resolved emission, and femtosecond/nanosecond transition absorption spectra. This work represents a breakthrough in using aryl as protective ligands for the construction of gold nanoclusters, which is poised to have a transformative impact on organometallic nanoclusters.
Collapse
Affiliation(s)
- Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People’s Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
38
|
Dos Santos HF, Paschoal DFS. S-Se oxidative addition to auranofin derivatives: a DFT study. Phys Chem Chem Phys 2024; 26:5517-5528. [PMID: 38284132 DOI: 10.1039/d3cp04913b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Oxidative addition of the S-Se bond to Au(I) complexes is discussed for a series of 26 auranofin (AF) derivatives. AF and its analogues are Au(I) complexes with recognized anticancer activity that act by binding and inhibiting the thioredoxin reductase (TrxR) enzyme. Generally, the oxidative addition to Au(I) is a sluggish reaction under mild conditions (i.e., a high activation barrier - ΔH‡), which is also verified here for AF, ΔH‡ = 33.0 kcal mol-1. However, we predicted that subtle changes in the AF ligands can make the process feasible under standard conditions. For instance, the exchange of -PEt3 by -P(Et2)(OEt), which is a weaker electron σ-donor, reduced the activation barrier to 17.1 kcal mol-1. Furthermore, substitution of the -SAtg ligand by -Cl- leads to a ΔH‡ value of 22.5 kcal mol-1. Overall, the reaction is driven by the nucleophilic attack of the S-Se bond on the Au(I) center, attributed mainly to the charge transfer (4p)Se → (6p)Au, which characterizes the addition step. At the transition state (TS) point, the (5d)Au → σ*(S-Se) charge transfer becomes relevant, facilitating the S-Se bond breakage and the oxidation step. In addition to the electron transfers, the strain energy to deform the linear Au(I) geometry to the tetracoordinated Au(III) arrangement in the TS structure plays a primary role in explaining the trends in the activation barriers. Finally, the activation barrier (ΔH‡) and reaction energy (ΔH°) were correlated for most of the complexes studied, which suggests that the reaction passes through a late or product-like TS and, therefore, the steric and electronic factors affecting ΔH‡ also act on ΔH°. Overall, the results presented here might open up a new field of investigation for interactions between AF derivatives and TrxR, which contributes to a full understanding of the biological mechanism of action of these species.
Collapse
Affiliation(s)
- Hélio F Dos Santos
- NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900, Juiz de Fora, MG, Brazil.
| | - Diego F S Paschoal
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, 27.971-525, Macaé, RJ, Brazil
| |
Collapse
|
39
|
Scaccaglia M, Pinelli S, Manini L, Ghezzi B, Nicastro M, Heinrich J, Kulak N, Mozzoni P, Pelosi G, Bisceglie F. Gold(III) complexes with thiosemicarbazone ligands: insights into their cytotoxic effects on lung cancer cells. J Inorg Biochem 2024; 251:112438. [PMID: 38029536 DOI: 10.1016/j.jinorgbio.2023.112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Cancer continues to pose a global threat, underscoring the urgent need for more effective and safer treatment options. Gold-based compounds have recently emerged as promising candidates due to their diverse range of biological activities. In this study, three gold(III) complexes derived from thiosemicarbazone ligands have been synthesized, fully characterized, including their X-ray crystal structures. We conducted initial mode-of-action studies on DNA and BSA, followed by a comprehensive investigation into the cytotoxic effects of these novel gold(III) complexes on lung cancer cells (A549, H2052, and H28). The results demonstrated a concentration-dependent cytotoxic response, with H28 cells exhibiting the highest sensitivity to the treatment. Furthermore, the analysis of the cell cycle revealed that these compounds induce cell cycle arrest and promote apoptosis as a response to treatment. We also observed distinct morphological changes and increased oxidative stress, contributing significantly to cell death. Notably, these complexes exhibited the ability to suppress interleukin-6 production in mesothelioma cell lines, and this highlights their anti-inflammatory potential. To gain an initial understanding of cytotoxicity on healthy cells, hemolysis tests were conducted against human blood cells, with no evidence of hemolysis. Furthermore, a toxicity assessment through the in vivo Galleria mellonella model underscored the absence of detectable toxicity. These findings prove that these complexes are promising novel therapeutic agents for lung cancer.
Collapse
Affiliation(s)
- Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Luca Manini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Benedetta Ghezzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126 Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maria Nicastro
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Julian Heinrich
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Nora Kulak
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Golm, Germany
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; CERT, Centre of Excellence for Toxicological Research, University of Parma, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; CERT, Centre of Excellence for Toxicological Research, University of Parma, 43124 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; CERT, Centre of Excellence for Toxicological Research, University of Parma, 43124 Parma, Italy
| |
Collapse
|
40
|
Chan AKH, Chau MH, Ren Y, Jiang JJ, Wong MK, Leung FKC. Controlled Supramolecular Assemblies of Chiral Cyclometalated Gold (III) Amphiphiles in Aqueous Media. Chempluschem 2024; 89:e202300316. [PMID: 37493184 DOI: 10.1002/cplu.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
Gold (III) cyclometalated based amphiphiles in aqueous media have been revealed with excellent supramolecular transformations to external stimuli to open new pathways for soft functional material fabrications. Herein, we report a new chiral cyclometalated gold (III) amphiphile (GA) assembling into lamellar nanostructures in aqueous media confirmed with transmission electron microscopy (TEM). Counterion exchange with D-, L-, or racemic-camphorsulfonates features the significant supramolecular helicity enhancements, enabling transformations of GA from lamellar structure to vesicles and to nanotubes with multi-equivalents of counterion. The limited cytotoxicity of GA in aqueous media exhibits good biocompatibility.
Collapse
Affiliation(s)
- Aries Kwok-Heung Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ming-Hin Chau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yikun Ren
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jia-Jun Jiang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
41
|
Shiri F, Ho CC, Bissember AC, Ariafard A. Advancing Gold Redox Catalysis: Mechanistic Insights, Nucleophilicity-Guided Transmetalation, and Predictive Frameworks for the Oxidation of Aryl Gold(I) Complexes. Chemistry 2024; 30:e202302990. [PMID: 37967304 DOI: 10.1002/chem.202302990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 11/17/2023]
Abstract
Gold redox catalysis, often facilitated by hypervalent iodine(III) reagents, offers unique reactivity but its progress is mainly hindered by an incomplete mechanistic understanding. In this study, we investigated the reaction between the gold(I) complexes [(aryl)Au(PR3 )] and the hypervalent iodine(III) reagent PhICl2 , both experimentally and computationally and provided an explanation for the formation of divergent products as the ligands bonded to the gold(I) center change. We tackled this essential question by uncovering an intriguing transmetalation mechanism that takes place between gold(I) and gold(III) complexes. We found that the ease of transmetalation is governed by the nucleophilicity of the gold(I) complex, [(aryl)Au(PR3 )], with greater nucleophilicity leading to a lower activation energy barrier. Remarkably, transmetalation is mainly controlled by a single orbital - the gold dx 2 -y 2 orbital. This orbital also has a profound influence on the reactivity of the oxidative addition step. In this way, the fundamental mechanistic basis of divergent outcomes in reactions of aryl gold(I) complexes with PhICl2 was established and these observations are reconciled from first principles. The theoretical model developed in this study provides a conceptual framework for anticipating the outcomes of reactions involving [(aryl)Au(PR3 )] with PhICl2 , thereby establishing a solid foundation for further advancements in this field.
Collapse
Affiliation(s)
- Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
42
|
Holmsen MSM, Nova A, Tilset M. Cyclometalated (N,C) Au(III) Complexes: The Impact of Trans Effects on Their Synthesis, Structure, and Reactivity. Acc Chem Res 2023; 56:3654-3664. [PMID: 38051910 PMCID: PMC10734256 DOI: 10.1021/acs.accounts.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
ConspectusThe early years of gold catalysis were dominated by Au(I) complexes and inorganic Au(III) salts. Thanks to the development of chelating ligands, more sophisticated Au(III) complexes can now be easily prepared and handled. The choice of the ancillary ligand has great consequences for the synthesis, properties, and reactivity of the Au(III) complex in question. Among the major factors controlling reactivity are the "trans effect" and the "trans influence" that a ligand imparts at the ligand trans to itself. The kinetic trans effect manifests itself with an increased labilization of the ligand trans to a given ligand and arises from an interplay between ground-state and transition-state effects. The term trans influence, on the other hand, is a ground-state effect only, describing the tendency of a given ligand to weaken the metal-ligand bond trans to itself. Herein, we will use the term "trans effect" to describe both the kinetic and the thermodynamic properties, whereas the term "trans influence" will refer only to thermodynamic properties. We will describe how these trans effects strongly impact the chemistry of the commonly encountered cyclometalated (N,C) Au(III) complexes, a class of complexes we have studied for more than a decade. We found that the outcome of reactions like alkylation, arylation, and alkynylation as well as halide metathesis are dictated by the different trans influence of the two termini of the chelating tpy ligand in (tpy)Au(OAcF)2 (tpy = 2-(p-tolyl)pyridine, OAcF = OCOCF3, tpy-C > tpy-N). There is a strong preference for high trans influence ligands to end up trans to tpy-N, whereas the lower trans influence ligands end up trans to tpy-C. Taking advantage of these preferences, tailor-made (N,C)Au(III) complexes could be prepared. For the functionalization of alkenes at (tpy)Au(OAcF)2, the higher trans effect of tpy-C would suggest that the coordination site trans to tpy-C would be kinetically more available than the one trans to tpy-N. However, due to the thermodynamic preference of having the σ-bonded ligand, resulting from the nucleophilic addition to alkenes, trans to tpy-N, functionalization of alkenes was only observed trans to tpy-N. However, for a catalytic process, the reaction should happen trans to tpy-C, as was observed for the trifluoroacetoxylation of acetylene. When functionalizing acetylene in the coordination site trans to tpy-N, protolytic cleavage of the Au-C(vinyl) bond to release the product did not occur at all, whereas trans to tpy-C protolytic cleavage of the Au-C(vinyl) bond occurred readily, in agreement with the higher trans influence of tpy-C over tpy-N. The large impact of the trans effects in Au(III) complexes is finally exemplified with the synthesis of [(tpy)Au(π-allyl)]+[NTf2]-, which resulted in a highly asymmetric π + σ bonding of the allyl moiety. Here, the bonding is such that the most thermodynamically favorable situation is achieved, with the carbon trans to tpy-N bonded in a σ-fashion and the π-allyl double bond being coordinated trans to tpy-C.
Collapse
Affiliation(s)
- Marte Sofie Martinsen Holmsen
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Centre
for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126, Blindern, N-0316 Oslo, Norway
| | - Ainara Nova
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Centre
for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126, Blindern, N-0316 Oslo, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- UiT-The
Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mats Tilset
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Centre
for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126, Blindern, N-0316 Oslo, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
43
|
Xia S, Li W, Chen H, Zhu C, Han J, Xie J. Gold-Manganese Bimetallic Redox Coupling with Light. J Am Chem Soc 2023. [PMID: 38039269 DOI: 10.1021/jacs.3c08796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The classical Au(I)/Au(III) redox couple chemistry has been limited to constructing C-C and C-X bonds, and thus, the exploration of the elementary reaction of gold redox coupling is very significant to enrich its organometallic features. Herein, we report the first visible-light-mediated, external oxidant-free Au(I)/Au(III) redox couple using commercially available Mn2(CO)10 to generate Mn-Au(III)-Mn intermediates for bimetallic redox coupling. A wide range of structurally diverse heterodinuclear and polynuclear L-Au(I)-Mn-L' complexes (19 examples, up to >99% yields) are readily constructed, providing a robust strategy for the concise construction of Au-Mn complexes under mild reaction conditions. The mechanistic studies together with DFT calculations support the radical oxidative addition of •Mn(CO)5 to gold and bimetallic reductive elimination mechanisms from highly active Mn-Au(III)-Mn species, representing an important step toward an elementary reaction in gold chemistry research. Furthermore, the resulting Au-Mn complexes exhibit unique catalytic activity, with which divergent reductive coupling of nitroarenes can readily afford azoxybenzenes, azobenzenes, and hydrazobenzenes in moderate to good yields.
Collapse
Affiliation(s)
- Siyu Xia
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongliang Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
44
|
Regnacq M, Lesage D, Holmsen MSM, Miqueu K, Bourissou D, Gimbert Y. Energetics of key Au(III)-substrate adducts relevant to catalytic hydroarylation of alkynes. Dalton Trans 2023; 52:13528-13536. [PMID: 37721177 DOI: 10.1039/d3dt02393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
(P,C)-cyclometalated Au(III) complexes have shown remarkable ability to catalyze the intermolecular hydroarylation of alkynes. Evidence of an outer-sphere mechanism has been provided in a previous study and is confirmed here by analysing the experimental data and DFT calculations. In this work, we propose evaluation of critical energies of dissociation of Au(III) complexes with different substrates via energy-resolved mass spectrometry (ERMS) experiments and kinetic modelling. The kinetic model is based on a multi-collisional approach. On the one hand, the classification confirms the mechanism previously proposed; on the other hand, it supports the collisional model and its application to particularly fragile adducts.
Collapse
Affiliation(s)
- Matthieu Regnacq
- Institut Parisien de Chimie Moléculaire - IPCM UMR 8232, CNRS/Sorbonne Université, 75252 Paris Cedex 05, France.
| | - Denis Lesage
- Institut Parisien de Chimie Moléculaire - IPCM UMR 8232, CNRS/Sorbonne Université, 75252 Paris Cedex 05, France.
| | - Marte S M Holmsen
- Laboratoire Hétérochimie Fondamentale et Appliquée - LHFA UMR 5069, CNRS/Université de Toulouse, UPS, 31062 Toulouse Cedex 09, France.
- Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126 Blindern, N-0316 Oslo, Norway
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - IPREM UMR 5254, 64053 Pau Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée - LHFA UMR 5069, CNRS/Université de Toulouse, UPS, 31062 Toulouse Cedex 09, France.
| | - Yves Gimbert
- Institut Parisien de Chimie Moléculaire - IPCM UMR 8232, CNRS/Sorbonne Université, 75252 Paris Cedex 05, France.
- Département de Chimie Moléculaire - DCM UMR 5250, CNRS/Université Grenoble Alpes, UGA, 38000 Grenoble, France
| |
Collapse
|
45
|
Hussein AA, Ariffin A. Remote Steric and Electronic Effects of N-Heterocyclic Carbene Ligands on Alkene Reactivity and Regioselectivity toward Hydrocupration Reactions: The Role of Expanded-Ring N-Heterocyclic Carbenes. J Org Chem 2023; 88:13009-13021. [PMID: 37649423 DOI: 10.1021/acs.joc.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The remote groups in N-heterocyclic carbene (NHC) ligands have a significant influence on metal-catalyzed reactions. We examine how remote bulkiness, electronic groups, and expanded-ring NHCs (ER-NHCs) influence alkene reactivity and regioselectivity toward hydrocupration using density functional theory calculations. The impact of remote steric bulkiness on the Cu-H insertion rate is analyzed, revealing a strong correlation between the steric substituent constant and rate ratio, where a bulky group increases the rate due to reduced steric effects in the transition state (TS). The steric properties of the examined catalysts (with a remote group R2 = CPh3, CHPh2, CH2Ph, CH3, and H) and their corresponding TSs are found to be modulated greatly by the remote steric substitution group and the ring size of the NHC ligand. Enhanced bulkiness enhances the nucleophilic Cu-H moiety. The remote electronic groups have a smaller impact on insertion barrier compared to that of steric hindrance. Furthermore, ER-NHC exploration indicates that NHCs with over five-membered rings have a significantly negative influence on the reaction rate. Finally, with a highly bulky group (R2 = CPh3), anti-Markovnikov insertion preference is attributed to high interaction energy and improved steric properties. Overall, our findings here provide valuable insights for the development of a more effective catalyst in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Aqeel A Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region 46001, Iraq
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qassim, Babylon 51013, Iraq
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
46
|
Nasser N, Puddephatt RJ. Chemistry of Gold(III) with a Pyridine-Oxaziridine Ligand: Competition between C-O and N-O bond Activation. Chempluschem 2023; 88:e202300274. [PMID: 37639223 DOI: 10.1002/cplu.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
The oxaziridine derivative 2-t-butyl-3-(2-pyridinyl)oxaziridine reacted with Na[AuCl4 ].2H2 O to give, after recrystallization from a solvent mixture containing methanol, a mixture of gold(III) complexes which were characterized crystallographically as the amide complex [AuCl2 {κ2 -N,N'-2-C5 H4 NC(=O)N(t-Bu)] and the aldolate complex [AuCl2 {κ2 -N,O-2-C5 H4 NCH(OMe)O)]. It is suggested that these products arise after initial O-N or C-N bond cleavage respectively of the strained oxaziridine ring, after coordination to the gold(III) center. Monitoring of reactions by NMR spectroscopy showed that O-N bond cleavage of the oxaziridine ring was favoured in the presence of a protic solvent.
Collapse
Affiliation(s)
- Nasser Nasser
- Department of Chemistry, University of Western Ontario, London, N6 A 5B7, Canada
| | - Richard J Puddephatt
- Department of Chemistry, University of Western Ontario, London, N6 A 5B7, Canada
| |
Collapse
|
47
|
Bourehil L, Soep C, Seng S, Dutrannoy S, Igoudjil S, Forté J, Gontard G, Lesage D, Bertrand B, Dossmann H. Bond-Dissociation Energies to Probe Pyridine Electronic Effects on Organogold(III) Complexes: From Methodological Developments to Application in π-Backdonation Investigation and Catalysis. Inorg Chem 2023; 62:13304-13314. [PMID: 37560906 DOI: 10.1021/acs.inorgchem.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this work, we report on the synthesis of several organogold(III) complexes based on 4,4'-diterbutylbiphenyl (C^C) and 2,6-bis(4-terbutylphenyl)pyridine (C^N^C) ligands and bond with variously substituted pyridine ligands (pyrR). Altogether, 33 complexes have been prepared and studied with mass spectrometry using higher-energy collision dissociation (HCD) in an Orbitrap mass spectrometer. A complete methodology including the kinetic modeling of the dissociation process based on the Rice-Ramsperger-Kassel-Marcus (RRKM) statistical method is proposed to obtain critical energies E0 of the pyrR loss for all complexes. The capacity of these E0 values to describe the pyridine ligand effect is further explored, at the same time as more classical descriptors such as 1H pyridinic NMR shift variation upon coordination and Au-NpyrR bond length measured by X-ray diffraction. An extensive theoretical work, including density functional theory (DFT) and domain-based local pair natural orbital coupled-cluster theory (DLPNO-CCSD(T)) methods, is also carried out to provide bond-dissociation energies, which are compared to experimental results. Results show that dissociation energy outperforms other descriptors, in particular to describe ligand effects over a large electronic effect range as seen by confronting the results to the pyrR pKa values. Further insights into the Au-NpyrR bond are obtained through an energy decomposition analysis (EDA) study, which confirms the isolobal character of Au+ with H+. Finally, the correlation between the lability of the pyridine ligands toward the catalytic efficiency of the complexes could be demonstrated in an intramolecular hydroarylation reaction of alkyne. The results were rationalized considering both pre-catalyst activation and catalyst reactivity. This study establishes the possibility of correlating dissociation energy, which is a gas-phase descriptor, with condensed-phase parameters such as catalysis efficiency. It therefore holds great potential for inorganic and organometallic chemistry by opening a convenient and easy way to evaluate the electronic influence of a ligand toward a metallic center.
Collapse
Affiliation(s)
- Lyna Bourehil
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, St Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | - Clément Soep
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Sopheak Seng
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Sarah Dutrannoy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Stacy Igoudjil
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Denis Lesage
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Benoît Bertrand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
48
|
Deng G, Lu Y, Stüker T, Riedel S. Nitrogen Trifluoride Complexes of Group 10 Transition Metals M(NF 3) (M = Pd, Pt). Chem Sci 2023; 14:8592-8597. [PMID: 37593001 PMCID: PMC10430601 DOI: 10.1039/d3sc02313c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The group 10 transition metal atoms Pd and Pt react with nitrogen trifluoride (NF3) forming N-coordination M(NF3) complexes in solid neon and argon matrices. The M(NF3) complexes isomerize to more stable fluoronitrenoid FNMF2 isomers via fluorine migration upon blue LED (λ = 470 nm) light irradiation. These products are characterized on the basis of infrared absorption spectroscopy with isotopic substitutions and theoretical frequency calculations. The analysis of the electronic structure of nitrogen trifluoride complexes indicates that the bonding between metal and nitrogen trifluoride can be described as σ donation from the HOMO of nitrogen trifluoride to the empty metal dz2 orbital and π back-donation from the metal dxz/yz orbitals to the LUMO of nitrogen trifluoride, the latter of which stabilized the metal ligand bond and destabilized the ligand N-F bond. In FNMF2, the FN ligand doubly bonded to the metal and bear imido character.
Collapse
Affiliation(s)
- Guohai Deng
- Department of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Yan Lu
- Department of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Tony Stüker
- Department of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Sebastian Riedel
- Department of Chemistry and Biochemistry, Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
49
|
Gukathasan S, Obisesan OA, Saryazdi S, Ratliff L, Parkin S, Grossman RB, Awuah SG. A Conformationally Restricted Gold(III) Complex Elicits Antiproliferative Activity in Cancer Cells. Inorg Chem 2023; 62:13118-13129. [PMID: 37530672 PMCID: PMC11268950 DOI: 10.1021/acs.inorgchem.3c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Diamine ligands are effective structural scaffolds for tuning the reactivity of transition-metal complexes for catalytic, materials, and phosphorescent applications and have been leveraged for biological use. In this work, we report the synthesis and characterization of a novel class of cyclometalated [C^N] Au(III) complexes bearing secondary diamines including a norbornane backbone, (2R,3S)-N2,N3-dibenzylbicyclo[2.2.1]heptane-2,3-diamine, or a cyclohexane backbone, (1R,2R)-N1,N2-dibenzylcyclohexane-1,2-diamine. X-ray crystallography confirms the square-planar geometry and chirality at nitrogen. The electronic character of the conformationally restricted norbornane backbone influences the electrochemical behavior with redox potentials of -0.8 to -1.1 V, atypical for Au(III) complexes. These compounds demonstrate promising anticancer activity, particularly, complex 1, which bears a benzylpyridine organogold framework, and supported by the bicyclic conformationally restricted diaminonorbornane, shows good potency in A2780 cells. We further show that a cellular response to 1 evokes reactive oxygen species (ROS) production and does not induce mitochondrial dysfunction. This class of complexes provides significant stability and reactivity for different applications in protein modification, catalysis, and therapeutics.
Collapse
Affiliation(s)
| | | | - Setareh Saryazdi
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Libby Ratliff
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Robert B. Grossman
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
50
|
Zhang J, Hu W, Qian B, Li H, Sudduth B, Engelhard M, Zhang L, Hu J, Sun J, Zhang C, He H, Wang Y. Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands. Nat Commun 2023; 14:3944. [PMID: 37402751 DOI: 10.1038/s41467-023-39478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Noble metals have been extensively employed in a variety of hydrotreating catalyst systems for their featured functionality of hydrogen activation but may also bring side reactions such as undesired deep hydrogenation. It is crucial to develop a viable approach to selectively inhibit side reactions while preserving beneficial functionalities. Herein, we present modifying Pd with alkenyl-type ligands that forms homogeneous-like Pd-alkene metallacycle structure on the heterogeneous Pd catalyst to achieve the selective hydrogenolysis and hydrogenation. Particularly, a doped alkenyl-type carbon ligand on Pd-Fe catalyst is demonstrated to donate electrons to Pd, creating an electron-rich environment that elongates the distance and weakens the electronic interaction between Pd and unsaturated C of the reactants/products to control the hydrogenation chemistry. Moreover, high H2 activation capability is maintained over Pd and the activated H is transferred to Fe to facilitate C-O bond cleavage or directly participate in the reaction on Pd. The modified Pd-Fe catalyst displays comparable C-O bond cleavage rate but much higher selectivity (>90%) than the bare Pd-Fe (<50%) in hydrotreating of diphenyl ether (DPE, modelling the strongest C-O linkage in lignin) and enhanced ethene selectivity (>90%) in acetylene hydrogenation. This work sheds light on the controlled synthesis of selective hydrotreating catalysts via mimicking homogeneous analogues.
Collapse
Affiliation(s)
- Jianghao Zhang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenda Hu
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Binbin Qian
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224002, China
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Houqian Li
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Berlin Sudduth
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Mark Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lian Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Jianzhi Hu
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Junming Sun
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Wang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|