1
|
Kotnik T, Debuigne A, De Winter J, Huš M, Pintar A, Kovačič S. Unlocking the potential of azide-phosphine Staudinger reaction for the synthesis of poly(arylene iminophosphorane)s and materials therefrom. Commun Chem 2025; 8:15. [PMID: 39820781 PMCID: PMC11739626 DOI: 10.1038/s42004-024-01362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025] Open
Abstract
Iminophosphoranes with the general formula (R3P═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported. The azide-phosphine Staudinger polycondensation is used, and the reaction conditions are carefully studied, including consideration of light and air, the influence of solvent and temperature, and investigation of the electronic and steric effects of multiazides. The newly defined reaction conditions appear to be highly versatile, allowing the use of both electron-rich and electron-deficient arylazides for reaction with phosphines to synthesize a library of poly(arylene iminophosphorane) networks that exhibit exceptional thermal and oxidative stability. Interestingly, despite the ylidic-form of the iminophosphorane linkage as shown by theoretical calculations, these newly developed poly(arylene-iminophosphorane) networks exhibit semiconducting properties, such as absorption band edges up to 800 nm and optical band gaps in the range of 1.70 to 2.40 eV. Finally, we demonstrate the broad applicability of these polymers by processing them into glassy films, creating foam-like structures and synthesizing metallo-polymer hybrids.
Collapse
Affiliation(s)
- Tomaž Kotnik
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Antoine Debuigne
- Chemistry Department, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege (ULiege), Quartier Agora, 13 Allée du Six Août (Bldg B6a), Sart-Tilman, B-4000, Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons-UMONS, Mons, 7000, Belgium
| | - Matej Huš
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, SI-1000, Ljubljana, Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia (ZVKDS), Poljanska 40, SI-1000, Ljubljana, Slovenia
| | - Albin Pintar
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Sebastijan Kovačič
- National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
- Catalysis and Organic Synthesis Research Group, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000, Maribor, Slovenia.
| |
Collapse
|
2
|
Singh S, Singh S, Budakoti A, Kumari N, Verma RS, Negi AS, Shanker K, Tandon S, Kalra A, Gupta A. An environmentally benign process to synthesize vanillin and other substituted phenyl aldehydes using natural phenylpropenes. Food Chem 2025; 463:141320. [PMID: 39340905 DOI: 10.1016/j.foodchem.2024.141320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The limited vanillin (3a) production from plant sources requires identifying some renewable and sustainable approaches for its synthesis. This study aimed to develop an efficient, eco-friendly process for synthesizing vanillin (3a) from eugenol (1a) and eugenol-rich essential oils. The chemical methodology for vanillin (3a) synthesis involved base-mediated isomerization of eugenol (1a) to isoeugenol (2a), followed by OsO4/NaIO4 mediated oxidation of isoeugenol to vanillin (3a) using different additives such 1,4-diazabicyclo[2.2.2]octane (DABCO) and substituted pyridines in reusable environment-friendly solvents. Use of 2,6-dimethylpyridine and 2,6-dimethylpyridine N-oxide as additives in the oxidation step offered a significantly higher product yield (vanillin 3a, 70 %). The process synthesized vanillin (3a) irrespective of the cis/ trans stereochemistry of isoeugenol (2a). The peculiarity of the method relates to converting eugenol (1a) to vanillin (3a) without phenolic group protection, which offers step economy. Besides efficient vanillin (3a) synthesis, the process's general implications involve converting other naturally occurring phenylpropenes or phenylpropenes-enriched oils to the corresponding phenyl aldehydes (59-82 % yield).
Collapse
Affiliation(s)
- Sarita Singh
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Swati Singh
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Asha Budakoti
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Neha Kumari
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Ram Swaroop Verma
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Arvind Singh Negi
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Karuna Shanker
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Sudeep Tandon
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Alok Kalra
- Crop Production & Protection Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India
| | - Atul Gupta
- Phytochemistry Division CSIR- Central Institute of Medicinal and Aromatic Plants, PO.CIMAP, Kukrail Road, Lucknow 226015, India.
| |
Collapse
|
3
|
Charalampous N, Antonopoulou M, Chasapis CT, Vlastos D, Dormousoglou M, Dailianis S. New insights into the oxidative and cytogenotoxic effects of Tetraglyme on human peripheral blood cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176484. [PMID: 39322075 DOI: 10.1016/j.scitotenv.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The present study investigated the oxidative and cytogenotoxic potential of Tetraethylene glycol dimethyl ether (known as Tetraglyme) on healthy human peripheral blood lymphocytes, widely used as an in vitro model for assessing the human health risk posed by different chemical compounds. In a first step, Nuclear Magnetic Resonance (1H NMR) spectroscopy, and Ultra-High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) were employed to estimate Tetraglyme's stability under a wide range of pH values (4-12), and thus to identify potential by-products. Thereafter, isolated lymphocytes were treated with different concentrations of Tetraglyme (0.02-20 mg L-1) for assessing its oxidative (using the DCFH-DA staining), and cytogenotoxic potential (using the trypan blue exclusion test for estimating cell viability, Comet assay, as well as the cytokinesis-block micronucleus assay, with or without the addition of S9 metabolic activation system). According to the results, Tetraglyme remains stable at pH 4, but two additional derivatives (i.e. 1-[2-(2-ethoxyethoxy)ethoxy]-2-methoxyethane [C9H20O4] and 1-ethoxy-2-(2-ethoxyethoxy)ethane (Diethylene glycol diethyl ether) [C8H18O3]) were found in traces, under alkaline conditions (pH ≥7). Moreover, although Tetraglyme (and/or its derivatives) showed negligible alterations of cell viability (>92 %) in all cases, the pronounced ROS formation, DNA damage, cell proliferation arrest, and MN frequencies in challenged cells are indicative of its oxidative and cytogenotoxic potential. The significant alterations of Cytokinesis-Block Proliferation Index (CBPI) and Micronucleus (MN) frequencies in S9 challenged cells give further evidence for the potential involvement of Tetraglyme's metabolites in the observed cytogenotoxic mode of action. Although not conclusive, the present findings give rise to further research, utilizing different cell types and biological models, for elucidating Tetraglyme's toxic mode of action, as well as its environmental and human risk.
Collapse
Affiliation(s)
- Nikolina Charalampous
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, School of Agricultural Sciences, University of Patras, GR-30131 Agrinio, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Margarita Dormousoglou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece.
| |
Collapse
|
4
|
Ghosh A, Das B, Biswas T, Hansda B, Mondal TK, Mishra S, Mandal B, Barman K, Mondal R. Immobilized Horseradish Peroxidase on Enriched Diazo-Activated Silica Gel Harnessed High Biocatalytic Performance at a Steady State in Organic Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25173-25192. [PMID: 39546424 DOI: 10.1021/acs.langmuir.4c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Dimethyldichlorosilane (DMDCS), an efficient silane coupling reagent appearing between the -OH groups of silica gel (SG) and picric acid, instantaneously produces a derivative enriched with nitro groups. The nitro group acting as an end-cap terminates the reaction and subsequently was converted into diazo to couple tyrosine's phenol ring via its O-carbon, the inert center to immobilize horseradish peroxidase (HRP) in a multipoint mode. It maintains the status quo of the native enzyme's protein folding and the entire protein groups' chemistry. The molecular formula of the synthesized material was verified and appeared as {Si(OSi)4 (H2O)x}n{-O-Si(CH3)2-O-C6H2(N+≡N)3(HRP)}4·yH2O; the parameters were evaluated as x = 0.5, n = 1158, and y = 752. The immobilized biocatalyst's activity in organic solvents was 1.5 times better than that in an aqueous medium; it worked smoothly, wherein the activity in both solvents stabilized at six months and continued up to nine months at 63 ± 3% compared to the initial.
Collapse
Affiliation(s)
- Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
- Department of Chemistry, Katwa College, Katwa, Purba Bardhaman, West Bengal, India 713130
| | - Tanay Kumar Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Kaushik Barman
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Rahul Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
5
|
Chaudhary S, Pan Q, Wu Y, Bibi Z, Li X, Jia Q, Sun Y. The Efficient and Environmentally Friendly Chlorination of Arene, Alcohol, Halobenzene, and Peroxide Catalyzed by Fe-Ba Binary Oxides Using Hydrochloric Acid as Chlorine Source and Aqueous H 2O 2 as Oxidant. Molecules 2024; 29:5451. [PMID: 39598840 PMCID: PMC11597577 DOI: 10.3390/molecules29225451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
A series of Fe-Ba mixed oxides, including a pure Fe-containing sample as a reference, have been synthesized via a sol-gel process using Fe3+ or Fe2+ salts and BaSO4 as raw materials, with Pluronic P123 serving as a template. These oxides have been thoroughly characterized and subsequently utilized as catalysts for the chlorination of various organic molecules. Commercial hydrochloric acid, known for its relative safety, and environmentally friendly aqueous hydrogen peroxide were employed as the chlorine source and oxidant, respectively. The pure Fe-containing catalyst displays excellent thermal stability between 600 and 800 °C and exhibited moderate to high conversions in the chlorination of toluene, benzene, and tert-butyl hydroperoxide, with remarkable ortho-selectivity in chlorination of toluene. The combination of Fe3+ salt with BaSO4 in the sol-gel process results in a Fe-Ba mixed oxide catalyst composed of BaO2, BaFe4O7, and Fe2O3, significantly enhancing the chlorination activity compared to that displayed by the pure Fe catalyst. Notably, the chlorination of tert-butyl hydroperoxide (TBHP) does not require additional oxidants such as H2O2, and involves both electrophilic substitution and nucleophilic addition. Notably, the chlorination of bromobenzene yields chlorobenzene as the sole product, a transformation that has not been previously reported. Overall, this catalytic chlorination system holds promise for advancing the chlorination industry and enhancing pharmaceutical production.
Collapse
Affiliation(s)
- Sidra Chaudhary
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Qin Pan
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Yong Wu
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Zainab Bibi
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
| | - Xiaoyong Li
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Qinxiang Jia
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| | - Yang Sun
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China; (S.C.); (Q.P.); (Y.W.); (Z.B.); (X.L.); (Q.J.)
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28, Xianning West Road, Xi’an 710049, China
| |
Collapse
|
6
|
Li ZT, Zhao HP. Sulfate-driven microbial collaboration for synergistic remediation of chloroethene-heavy metal pollution. WATER RESEARCH 2024; 268:122738. [PMID: 39504699 DOI: 10.1016/j.watres.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The treatment of heavy metal(loid) (HM) composite pollution has long posed a challenge for the bioremediation of organohalide-contaminated sites. Given the prevalent cohabitation of sulfate-reducing bacteria (SRB) with organohalide-respiring bacteria (OHRB), we proposed a sulfate-amendment strategy to achieve synergistic remediation of trichloroethene and diverse HMs [50μM of As(III), Ni(II), Cu(II), Pb(II)]. Correspondingly, 50-75 μM sulfate was introduced to HM inhibitory batches to investigate the enhancement effect of sulfate amendment on bio-dechlorination. Dechlorination kinetics and MATLAB modeling indicated that sulfate amendment comprehensively improved the reductive dechlorination performance in the presence of As(III), Ni(II), Pb(II) and mixed HMs, while no enhancement was observed under Cu(II) exposure. Additionally, sulfate introduction effectively accelerated the detoxification of Ni(II), Pb(II), Cu(II), and As(III), achieving removal efficiencies of 76.87 %, 64.01 %, 86.37 %, and 95.50 % within the first three days, respectively. Meanwhile, propionate dynamics and acetogenesis indicated enhanced carbon source and e-donor supply. 16S rRNA gene sequencing and metagenomic analysis results demonstrated that HM sequestration was accomplished jointly by SRB and HM-resistant bacteria via extracellular precipitation (metal sulfide) and intracellular sequestration, while their contribution depended on the specific coexisting HM species present. This study highlights the critical role of sulfate in the concurrent bioremediation of HM-organohalide composite contamination and provides insights for developing a cost-effective in-situ bioremediation strategy.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
7
|
Chen D, Zhao J, Xu S, Wu L. Detection of Short-Chain Chlorinated Aliphatic Hydrocarbons through an Engineered Biosensor with Tailored Ligand Specificity. Anal Chem 2024; 96:15614-15623. [PMID: 39292503 DOI: 10.1021/acs.analchem.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Short-chain chlorinated aliphatic hydrocarbons (SCAHs), commonly used as industrial reagents and solvents, pose a significant threat to ecosystems and human health as they infiltrate aquatic environments due to extensive usage and accidental spills. Whole-cell biosensors have emerged as cost-effective, rapid, and real-time analytical tools for environmental monitoring and remediation. While the broad ligand specificity of transcriptional factors (TFs) often prohibits the application of such biosensors. Herein, we exploited a semirational transition ligand approach in conjunction with a positive/negative fluorescence-activated cell sorting (FACS) strategy to develop a biosensor based on the TF AlkS, which is highly specific for SCAHs. Furthermore, through promoter-directed evolution, the performance of the biosensor was further enhanced. Mutation in the -10 region of constitutive promoter PalkS resulted in reduced AlkS leakage expression, while mutation in the -10 region of inducible promoter PalkB increased its accessibility to the AlkS-SCAHs complex. This led to an 89% reduction in background fluorescence leakage of the optimized biosensor, M2-463, further enhancing its response to SCAHs. The optimized biosensor was highly sensitive and exhibited a broader dynamic response range with a 150-fold increase in fluorescence output after 1 h of induction. The detection limit (LOD) reached 0.03 ppm, and the average recovery rate of SCAHs in actual water samples ranged from 95.87 to 101.20%. The accuracy and precision of the proposed biosensor were validated using gas chromatography-mass spectrometry (GC-MS), demonstrating the promising application for SCAH detection in an actual environment sample.
Collapse
Affiliation(s)
- Dongdong Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiadi Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Ayafor C, Burton T, George N, Morose G, Wong HW. Safer Solvents for Active Pharmaceutical Ingredient Purification Using Column Chromatography. ACS ENVIRONMENTAL AU 2024; 4:236-247. [PMID: 39309977 PMCID: PMC11413887 DOI: 10.1021/acsenvironau.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 09/25/2024]
Abstract
Column chromatography is a technique widely used for the purification of active pharmaceutical ingredients (APIs). One of the common solvent systems used by this technique is blends of dichloromethane (DCM) and methanol (MeOH), thereby exposing workers to health and safety risks and making the pharmaceutical sector one of the major contributors to chlorinated solvent waste. In this work, API separation and purification using several alternative safer solvent blends in column chromatography were evaluated and compared to DCM/MeOH. Ibuprofen and acetaminophen were used as model APIs, and caffeine was used as a model additive. Overall, some of the safer solvent blends tested provided better performance, with higher API recovery and purity compared to DCM/MeOH, in addition to potential health, safety, and environmental benefits. Specifically, blends of heptane/ethyl acetate and heptane/methyl acetate showed the most promise. Our work demonstrates the potential of these safer solvent blends as possible replacements for DCM/MeOH in API purification, thereby addressing a critical safety concern in the pharmaceutical industry.
Collapse
Affiliation(s)
- Christian Ayafor
- Energy
Engineering Program, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Toren Burton
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Nathaniel George
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Gregory Morose
- Massachusetts
Toxics Use Reduction Institute, Lowell, Massachusetts 01854, United States
| | - Hsi-Wu Wong
- Department
of Chemical Engineering, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
10
|
Zhang X, Zhang R, Ren P, Zhou J, Li W, Yang X. Carbon dioxide radical anion mediated dehalogenation kinetics and mechanisms of halogenated alkanes. WATER RESEARCH 2024; 259:121799. [PMID: 38815336 DOI: 10.1016/j.watres.2024.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Carbon dioxide radical anion (CO2•-) recently becomes appreciated in halogenated contaminants elimination; nevertheless, its application has been restricted by insufficient mechanistic understanding. Herein, we provided a quantitative insight into the kinetics and mechanisms of CO2•- mediated dehalogenation of halogenated alkanes. A CO2•- dominated UV254/H2O2/HCOO- system has been successfully established and demonstrated for effective elimination of 7 kinds of halogenated alkanes (71.3 % to 100 % of removal). Using a laser flash photolysis technology, the second-order rate constants of CO2•- ( [Formula: see text] ) reacting with CCl4, CHCl3 and CH2Cl2 were firstly reported, to be 2.5 × 108, 6.2 × 107 and 5.8 × 106 M-1s-1, respectively. [Formula: see text] presented a significant negative correlation with the lowest unoccupied molecular orbital energy (ELUMO) of chlorinated alkanes, proving that the enhanced dehalogenation of CO2•- was attributed by direct electron transfer mechanism. A fitting model was developed accordingly for [Formula: see text] prediction. This study also demonstrated that the CO2•- mediated ARP effectively removed halogenated alkanes regardless of pH condition (6.0∼9.0) and bicarbonate concentrations. These findings are significant in advancing the scientific understanding of CO2•- mediated ARP. This reductive process a promising control strategy for halogenated contaminants, such as polyfluoroalkyl substances (PFAS) and halogenated pharmaceuticals.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518052, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rui Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Pengfei Ren
- Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, PR China
| | - Jianhua Zhou
- Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
11
|
Takahashi JA, de Queiroz LL, Vidal DM. A Close View of the Production of Bioactive Fungal Metabolites Mediated by Chromatin Modifiers. Molecules 2024; 29:3536. [PMID: 39124942 PMCID: PMC11314158 DOI: 10.3390/molecules29153536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Secondary metabolites produced by fungi are well known for their biological properties, which play important roles in medicine. These metabolites aid in managing infections and treating chronic illnesses, thereby contributing substantially to human health improvement. Despite this extensive knowledge, the vast biodiversity and biosynthetic potential of fungi is still largely unexplored, highlighting the need for further research in natural products. In this review, several secondary metabolites of fungal origin are described, emphasizing novel structures and skeletons. The detection and characterization of these metabolites have been significantly facilitated by advancements in analytical systems, particularly modern hyphenated liquid chromatography/mass spectrometry. These improvements have primarily enhanced sensitivity, resolution, and analysis flow velocity. Since the in vitro production of novel metabolites is often lower than the re-isolation of known metabolites, understanding chromatin-based alterations in fungal gene expression can elucidate potential pathways for discovering new metabolites. Several protocols for inducing metabolite production from different strains are discussed, demonstrating the need for uniformity in experimental procedures to achieve consistent biosynthetic activation.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.L.d.Q.); (D.M.V.)
| | | | | |
Collapse
|
12
|
Heeley J, Boobier S, Hirst JD. Solvent flashcards: a visualisation tool for sustainable chemistry. J Cheminform 2024; 16:60. [PMID: 38807181 PMCID: PMC11134644 DOI: 10.1186/s13321-024-00854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Selecting greener solvents during experiment design is imperative for greener chemistry. While many solvent selection guides are currently used in the pharmaceutical industry, these are often paper-based guides which can make it difficult to identify and compare specific solvents. This work presents a stand-alone version of the solvent flashcards that were developed as part of the AI4Green electronic laboratory notebook. The functionality is an intuitive and interactive interface for the visualisation of data from CHEM21, a pharmaceutical solvent selection guide that categorises solvents according to "greenness". This open-source software is written in Python, JavaScript, HTML and CSS and allows users to directly contrast and compare specific solvents by generating colour-coded flashcards. It can be installed locally using pip, or alternatively the source code is available on GitHub: https://github.com/AI4Green/solvent_flashcards . The documentation can also be found on GitHub or on the corresponding Python Package Index webpage: https://pypi.org/project/solvent-guide/ . SCIENTIFIC CONTRIBUTION: This simple and easy-to-use digital tool provides a visualisation of solvent greenness data through a novel intuitive interface and encourages green chemistry. It offers numerous advantages over traditional solvent selection guides, allowing users to directly customise the solvent list and generate side-by-side comparisons of only the most important solvents. The release as a standalone package will maximise the benefit of this software.
Collapse
Affiliation(s)
- Joseph Heeley
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Samuel Boobier
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
13
|
Liu M, Wu X, Dyson PJ. Tandem catalysis enables chlorine-containing waste as chlorination reagents. Nat Chem 2024; 16:700-708. [PMID: 38396160 PMCID: PMC11087255 DOI: 10.1038/s41557-024-01462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Chlorinated compounds are ubiquitous. However, accumulation of chlorine-containing waste has a negative impact on human health and the environment due to the inapplicability of common disposal methods, such as landfill and incineration. Here we report a sustainable approach to valorize chlorine-containing hydrocarbon waste, including solids (chlorinated polymers) and liquids (chlorinated solvents), based on copper and palladium catalysts with a NaNO3 promoter. In the process, waste is oxidized to release the chlorine in the presence of N-directing arenes to afford valuable aryl chlorides, such as the FDA-approved drug vismodegib. The remaining hydrocarbon component is mineralized to afford CO, CO2 and H2O. Moreover, the CO and CO2 generated could be further utilized directly. Thus, chlorine-containing hydrocarbon waste, including mixed waste, can serve as chlorination reagents that neither generate hazardous by-products nor involve specialty chlorination reagents. This tandem catalytic approach represents a promising method for the viable management of a wide and diverse range of chlorine-containing hydrocarbon wastes.
Collapse
Affiliation(s)
- Mingyang Liu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xinbang Wu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
14
|
Jordan A. Upcycling chlorinated trash into synthetic organic treasure. Nat Chem 2024; 16:676-677. [PMID: 38641680 DOI: 10.1038/s41557-024-01515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Andrew Jordan
- Group Leader, Chemical Development, Charnwood Discovery, Loughborough, UK.
| |
Collapse
|
15
|
Li ZT, Song X, Yuan S, Zhao HP. Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: Kinetics and microbial responses. WATER RESEARCH 2024; 253:121328. [PMID: 38382292 DOI: 10.1016/j.watres.2024.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Chromium and organochlorine solvents, particularly trichloroethene (TCE), are pervasive co-existing contaminants in subsurface aquifers due to their extensive industrial use and improper disposal practices. In this study, we investigated the microbial dechlorination kinetics under different TCE-Cr(Ⅲ/VI) composite pollution conditions and elucidated microbial response mechanisms based on community shift patterns and metagenomic analysis. Our results revealed that the reductive dechlorinating consortium had high resistance to Cr(III) but extreme sensitivity to Cr(VI) disturbance, resulting in a persistent inhibitory effect on subsequent dechlorination. Interestingly, the vinyl chloride-respiring organohalide-respiring bacteria (OHRB) was notably more susceptible to Cr(III/VI) exposure than the trichloroethene-respiring one, possibly due to inferior competition for growth substrates, such as electron donors. In terms of synergistic non-OHRB populations, Cr(III/VI) exposure had limited impacts on lactate fermentation but significantly interfered with H2-producing acetogenesis, leading to inhibited microbial dechlorination due to electron donor deficiencies. However, this inhibition can be effectively mitigated by the amendment of exogenous H2 supply. Furthermore, being the predominant OHRB, Dehalococcoides have inherent Cr(VI) resistance defects and collaborate with synergistic non-OHRB populations to achieve concurrent bio-detoxication of Cr(VI) and TCE. Our findings expand the understanding of the response patterns of different functional populations towards Cr(III/VI) stress, and provide valuable insights for the development of in situ bioremediation strategies for sites co-contaminated with chloroethene and chromium.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
16
|
Widdifield CM, Zakeri F. Can simple 'molecular' corrections outperform projector augmented-wave density functional theory in the prediction of 35 Cl electric field gradient tensor parameters for chlorine-containing crystalline systems? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:156-168. [PMID: 37950622 DOI: 10.1002/mrc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Many-body expansion (MBE) fragment approaches have been applied to accurately compute nuclear magnetic resonance (NMR) parameters in crystalline systems. Recent examples demonstrate that electric field gradient (EFG) tensor parameters can be accurately calculated for 14 N and 17 O. A key additional development is the simple molecular correction (SMC) approach, which uses two one-body fragment (i.e., isolated molecule) calculations to adjust NMR parameter values established using 'benchmark' projector augmented-wave (PAW) density functional theory (DFT) values. Here, we apply a SMC using the hybrid PBE0 exchange-correlation (XC) functional to see if this can improve the accuracy of calculated 35 Cl EFG tensor parameters. We selected eight organic and two inorganic crystal structures and considered 15 chlorine sites. We find that this SMC improves the accuracy of computed values for both the 35 Cl quadrupolar coupling constant (CQ ) and the asymmetry parameter ( η Q ) by approximately 30% compared with benchmark PAW DFT values. We also assessed a SMC that offers local improvements not only in terms of the quality of the XC functional but simultaneously in the quality of the description of relativistic effects via the inclusion of spin-orbit effects. As the inorganic systems considered contain heavy atoms bonded to the chlorine atoms, we find further improvements in the accuracy of calculated 35 Cl EFG tensor parameters when both a hybrid functional and spin-orbit effects are included in the SMC. On the contrary, for chlorine-containing organics, the inclusion of spin-orbit relativistic effects using a SMC does not improve the accuracy of computed 35 Cl EFG tensor parameters.
Collapse
Affiliation(s)
- Cory M Widdifield
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Fatemeh Zakeri
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
17
|
van der Westhuizen D, Castro AC, Hazari N, Gevorgyan A. Bulky, electron-rich, renewable: analogues of Beller's phosphine for cross-couplings. Catal Sci Technol 2023; 13:6733-6742. [PMID: 38026730 PMCID: PMC10680433 DOI: 10.1039/d3cy01375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
In recent years, considerable progress has been made in the conversion of biomass into renewable chemicals, yet the range of value-added products that can be formed from biomass remains relatively small. Herein, we demonstrate that molecules available from biomass serve as viable starting materials for the synthesis of phosphine ligands, which can be used in homogeneous catalysis. Specifically, we prepared renewable analogues of Beller's ligand (di(1-adamantyl)-n-butylphosphine, cataCXium® A), which is widely used in homogeneous catalysis. Our new renewable phosphine ligands facilitate Pd-catalysed Suzuki-Miyaura, Stille, and Buchwald-Hartwig coupling reactions with high yields, and our catalytic results can be rationalized based on the stereoelectronic properties of the ligands. The new phosphine ligands generate catalytic systems that can be applied for the late-stage functionalization of commercial drugs.
Collapse
Affiliation(s)
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo 0315 Oslo Norway
| | - Nilay Hazari
- Department of Chemistry, Yale University New Haven Connecticut 06520 USA
| | - Ashot Gevorgyan
- Department of Chemistry, UiT The Arctic University of Norway 9037 Tromsø Norway
| |
Collapse
|
18
|
Laze L, Quevedo-Flores B, Bosque I, Gonzalez-Gomez JC. Alkanes in Minisci-Type Reaction under Photocatalytic Conditions with Hydrogen Evolution. Org Lett 2023. [PMID: 37819209 DOI: 10.1021/acs.orglett.3c02619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We report herein a protocol for the selective activation of C(sp3)-H bonds based on the interplay of two readily available organic catalysts and their successful implementation in cross-coupling azaarenes with alkanes. This Minisci-like reaction is promoted by visible light at room temperature and is free from chemical oxidants, metals, and chlorinated solvents. A wide range of substrates are compatible, including some bioactive molecules. Mechanistic studies support a dual catalytic cycle with H2 evolution.
Collapse
Affiliation(s)
- Loris Laze
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Beatriz Quevedo-Flores
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Irene Bosque
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Jose C Gonzalez-Gomez
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| |
Collapse
|
19
|
Recent Advances in Greener Asymmetric Organocatalysis Using Bio-Based Solvents. Catalysts 2023. [DOI: 10.3390/catal13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Efficient synthetic methods that avoid the extensive use of hazardous reagents and solvents, as well as harsh reaction conditions, have become paramount in the field of organic synthesis. Organocatalysis is notably one of the best tools in building chemical bonds between carbons and carbon-heteroatoms; however, most examples still employ toxic volatile organic solvents. Although a portfolio of greener solvents is now commercially available, only ethyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, supercritical carbon dioxide, ethyl lactate, and diethyl carbonate have been explored with chiral organocatalysts. In this review, the application of these bio-based solvents in asymmetric organocatalytic methods reported in the last decade is discussed, highlighting the proposed mechanism pathway for the transformations.
Collapse
|
20
|
Yin X, Hua H, Dyer J, Landis R, Fennell D, Axe L. Degradation of chlorinated solvents with reactive iron minerals in subsurface sediments from redox transition zones. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130470. [PMID: 36493644 DOI: 10.1016/j.jhazmat.2022.130470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Reactive iron (Fe) mineral coatings found in subsurface reduction-oxidation transition zones (RTZs) contribute to the attenuation of contaminants. An 18.3-m anoxic core was collected from the site, where constituents of concern (COCs) in groundwater included chlorinated solvents. Reactive Fe mineral coatings were found to be abundant in the RTZs. This research focused on evaluating reaction kinetics with anoxic sediments bearing ferrous mineral nano-coatings spiked with either tetrachloroethylene (PCE), trichloroethylene (TCE), or 1,4-dichlorobenzene (1,4-DCB). Reaction kinetics with RTZ sediments followed pseudo-first-order reactions for the three contaminants with 90% degradation achieved in less than 39 days. The second-order rate constants for the three COCs ranged from 6.20 × 10-4 to 1.73 × 10-3 Lg-1h-1 with pyrite (FeS2), 4.97 × 10-5 to 1.24 × 10-3 Lg-1h-1with mackinawite (FeS), 1.25 × 10-4 to 1.89 × 10-4 Lg-1h-1 with siderite (FeCO3), and 1.79 × 10-4 to 1.10 × 10-3 Lg-1h-1 with magnetite (Fe3O4). For these three chlorinated solvents, the trend for the rate constants followed: Fe(II) sulfide minerals > magnetite > siderite. The high reactivity of Fe mineral coatings is hypothesized to be due to the large surface areas of the nano-mineral coatings. As a result, these surfaces are expected to play an important role in the attenuation of chlorinated solvents in contaminated subsurface environments.
Collapse
Affiliation(s)
- Xin Yin
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07032, USA
| | - Han Hua
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07032, USA; Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - James Dyer
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | | | - Donna Fennell
- Rutgers University, Department of Environmental Sciences, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Lisa Axe
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technzhaology, Newark, NJ 07032, USA.
| |
Collapse
|
21
|
van der Loo CHM, Schim van der Loeff R, Martín A, Gomez-Sal P, Borst MLG, Pouwer K, Minnaard AJ. π-Facial selectivity in the Diels-Alder reaction of glucosamine-based chiral furans and maleimides. Org Biomol Chem 2023; 21:1888-1894. [PMID: 36607338 DOI: 10.1039/d2ob02221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Furans derived from carbohydrate feedstocks are a versatile class of bio-renewable building blocks and have been used extensively to access 7-oxanorbornenes via Diels-Alder reactions. Due to their substitution patterns these furans typically have two different π-faces and therefore furnish racemates in [4 + 2]-cycloadditions. We report the use of an enantiopure glucosamine derived furan that under kinetic conditions predominantly affords the exo-product with a high π-face selectivity of 6.5 : 1. The structure of the product has been resolved unequivocally by X-ray crystallography, and a multi-gram synthesis (2.8 g, 58% yield) confirms the facile accessibility of this multifunctional enantiopure building block.
Collapse
Affiliation(s)
- Cornelis H M van der Loo
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Rutger Schim van der Loeff
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Avelino Martín
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Pilar Gomez-Sal
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Mark L G Borst
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Kees Pouwer
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
22
|
Battula H, Nath M, Mishra S, Jayanty S. Spirocyclic rhodamine B benzoisothiazole derivative: a multi-stimuli fluorescent switch manifesting ethanol-responsiveness, photo responsiveness, and acidochromism. RSC Adv 2023; 13:5134-5148. [PMID: 36777943 PMCID: PMC9910283 DOI: 10.1039/d2ra08022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Multi-stimuli fluorescent switching materials have been extensively employed in chemistry, biochemistry, physics, and materials science. Although rhodamine-based spirolactams have been specifically considered for metal ion sensing by photoluminescence, only some of them manifest photochromic behavior, and further development of rhodamine B (RHB)-based photochromic materials is required. RHB and its cyclic amides are advantageous in various sensing applications owing to their colorimetric responses to external stimulation. Hence, the current work reports a novel multifunctional active molecular material (3',6'-bis(diethylamino))-2-(5-nitrobenzo[c]isothiazol-3-yl)spiro[isoindoline-1,9'-xanthen]-3-one (RHBIT) by linking rhodamine B with 3-amino,5-nitro[2,1]benzoisothiazole (ANB) in a facile synthetic pathway; that perceives both emission color change and switching between off-on states. RHBIT shows acidochromism, photochromism, and pH sensitivity accompanied by unique ethanol responsiveness, with potential applications in anti-counterfeiting and drug delivery. Notably, RHBIT is highly acid sensitive and reverts to the ring-closed form on treatment with triethylamine (base), visible with the naked eye amidst colorless-pink-colorless transformations. On short UV irradiation, RHBIT provides a two-fold rise in the lifetime for the ring-open form in CHCl3 and DCM compared to the spirolactam (closed form). DFT and TDDFT studies provide electronic characterization for the absorption spectra of the open and closed forms. Using the photoresponsive feature of RHBIT, an information protection application has been enacted via a rewritable platform.
Collapse
Affiliation(s)
- Himabindu Battula
- Department of Chemistry, Birla Institute of Technology and Science Pilani-Hyderabad Campus, Jawaharnagar, Shameerpet, Kapra Mandal, Medchal Dist. Hyderabad-500078 Telangana State India +91-040-66303998 +91-40-66303561
| | - Moromi Nath
- Department of Chemistry, Indian Institute of TechnologyKharagpur-721302India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of TechnologyKharagpur-721302India
| | - Subbalakshmi Jayanty
- Department of Chemistry, Birla Institute of Technology and Science Pilani-Hyderabad Campus, Jawaharnagar, Shameerpet, Kapra Mandal, Medchal Dist. Hyderabad-500078 Telangana State India +91-040-66303998 +91-40-66303561
| |
Collapse
|
23
|
Lynch J, Sherwood J, McElroy CR, Murray J, Shimizu S. Dichloromethane replacement: towards greener chromatography via Kirkwood-Buff integrals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:596-605. [PMID: 36637024 DOI: 10.1039/d2ay01266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dichloromethane (DCM) is a useful and advantageous solvent used in pharmaceutical development due to its low cost, miscibility with other organic solvents, high volatility, and ability to solubilize drug molecules of variable polarities and functionalities. Despite this favourable behaviour, efforts to identify safer and more sustainable alternatives to hazardous, halogenated solvents is imperative to the expansion of green chemistry. In this work, bio-derived esters tert-butyl acetate, sec-butyl acetate, ethyl isobutyrate, and methyl pivalate are experimentally identified as safe and sustainable alternatives to directly replace DCM within thin-layer chromatography (TLC) in the analysis of small, common drug molecules. To elucidate the intermolecular interactions influencing retardation factors (Rf) a statistical thermodynamic framework, which quantifies the driving molecular interactions that yield empirical TLC measurements, is presented. Within this framework, we are able to deduce Rf dependence on polar eluent concentration, in the presence of a low-polar mediating solvent, between the stationary and mobile phases. The strength of competitive analyte-eluent (and analyte-solvent interactions) are quantified through Kirkwood-Buff integrals (KBIs); resulting KBI terms at the dilute eluent limit provide a theoretical foundation for the observed suitability of alternative green solvents for the replacement of dichloromethane in TLC.
Collapse
Affiliation(s)
- Julie Lynch
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, UK.
| | - James Sherwood
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, UK.
| | - C Rob McElroy
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, North Yorkshire YO10 5DD, UK.
| | - Jane Murray
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
24
|
Brumovský M, Micić V, Oborná J, Filip J, Hofmann T, Tunega D. Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129988. [PMID: 36155299 DOI: 10.1016/j.jhazmat.2022.129988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Sulfidation and, more recently, nitriding have been recognized as promising modifications to enhance the selectivity of nanoscale zero-valent iron (nZVI) particles for trichloroethene (TCE). Herein, we investigated the performance of iron nitride (FexN) nanoparticles in the removal of a broader range of chlorinated ethenes (CEs), including tetrachloroethene (PCE), cis-1,2-dichloroethene (cis-DCE), and their mixture with TCE, and compared it to the performance of sulfidated nZVI (S-nZVI) prepared from the same precursor nZVI. Two distinct types of iron nitride (FexN) nanoparticles, containing γ'-Fe4N and ε-Fe2-3N phases, exhibited substantially higher PCE and cis-DCE dechlorination rates compared to S-nZVI. A similar effect was observed with a CE mixture, which was completely dechlorinated by both types of FexN nanoparticles within 10 days, whereas S-nZVI was able to remove only about half of the amount, most of which being TCE. Density functional theory calculations further revealed that the cleavage of the first C-Cl bond was the rate-limiting step for all CEs dechlorinated on the γ'-Fe4N(001) surface, with the reaction barriers of PCE and cis-DCE being 29.9, and 40.8 kJ mol-1, respectively. FexN nanoparticles proved to be highly effective in the remediation of PCE, cis-DCE, and mixed CE contamination.
Collapse
Affiliation(s)
- Miroslav Brumovský
- University of Natural Resources and Life Sciences, Vienna, Department of Forest, and Soil Sciences, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria; Department of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090 Vienna, Austria; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Vesna Micić
- Department of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090 Vienna, Austria
| | - Jana Oborná
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Thilo Hofmann
- Department of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090 Vienna, Austria
| | - Daniel Tunega
- University of Natural Resources and Life Sciences, Vienna, Department of Forest, and Soil Sciences, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| |
Collapse
|
25
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
26
|
Gorbachev I, Smirnov A, Ivanov G, Avramov I, Datsuk E, Venelinov T, Bogdanova E, Anisimkin V, Kolesov V, Kuznetsova I. Langmuir-Blodgett Films of Arachidic and Stearic Acids as Sensitive Coatings for Chloroform HF SAW Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010100. [PMID: 36616699 PMCID: PMC9824238 DOI: 10.3390/s23010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/12/2023]
Abstract
Properties of the Langmuir-Blodgett (LB) films of arachidic and stearic acids, versus the amount of the films' monolayers were studied and applied for chloroform vapor detection with acoustoelectric high-frequency SAW sensors, based on an AT quartz two-port Rayleigh type SAW resonator (414 MHz) and ST-X quartz SAW delay line (157.5 MHz). Using both devices, it was confirmed that the film with 17 monolayers of stearic acid deposited on the surface of the SAW delay line at a surface pressure of 30 mN/m in the solid phase has the best sensitivity towards chloroform vapors, compared with the same films with other numbers of monolayers. For the SAW resonator sensing using slightly longer arachidic acid molecules, the optimum performance was reached with 17 LB film layers due to a sharper decrease in the Q-factor with mass loading. To understand the background of the result, Atomic Force Microscopy (AFM) in intermittent contact mode was used to study the morphology of the films, depending on the number of monolayers. The presence of the advanced morphology of the film surface with a maximal average roughness (9.3 nm) and surface area (29.7 µm2) was found only for 17-monolayer film. The effects of the chloroform vapors on the amplitude and the phase of the acoustic signal for both SAW devices at 20 °C were measured and compared with those for toluene and ethanol vapors; the largest responses were detected for chloroform vapor. For the film with an optimal number of monolayers, the largest amplitude response was measured for the resonator-based device. Conversely, the largest change in the acoustic phase produced by chloroform adsorption was measured for delay-line configuration. Finally, it was established that the gas responses for both devices coated with the LB films are completely restored 60 s after chamber cleaning with dry air.
Collapse
Affiliation(s)
- Ilya Gorbachev
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| | - Andrey Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| | - George Ivanov
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria
| | - Ivan Avramov
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Elizaveta Datsuk
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| | - Tony Venelinov
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria
| | - Evgenija Bogdanova
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria
| | - Vladimir Anisimkin
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| | - Vladimir Kolesov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
| |
Collapse
|
27
|
Vortex-assisted dispersive liquid–liquid microextraction using thymol based natural deep eutectic solvent for trace analysis of sulfonamides in water samples: Assessment of the greenness profile using AGREE metric, GAPI and analytical eco-scale. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Nguyen T, Sreekumar S, Wang S, Jiang Q, Montel F, Buono F. Enantioselective Synthesis of trans-Disubstituted Cyclopropyltrifluoroborate Building Blocks through Ru-Catalyzed Cyclopropanation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thach Nguyen
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Sanil Sreekumar
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Shuai Wang
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Qi Jiang
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Florian Montel
- Discovery Research, Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 65 Birkendorfer Strasse, Biberach an der Riss 88400, Germany
| | - Frederic Buono
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| |
Collapse
|
29
|
Dalla Torre D, Annatelli M, Aricò F. Acid catalyzed synthesis of dimethyl isosorbide via dimethyl carbonate chemistry. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Almeida LD, Delolo FG, Costa AP, Gusevskaya EV, Robles-Azocar PA. Catalytic aerobic epoxidation of bio-renewable alkenes using organic carbonates as green solvents. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Jensen DL, Trinderup HH, Skovbo F, Jensen HH. Solvent free, catalytic and diastereoselective preparation of aryl and alkyl thioglycosides as key components for oligosaccharide synthesis. Org Biomol Chem 2022; 20:4915-4925. [PMID: 35678647 DOI: 10.1039/d2ob00939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and environmentally friendly protocol for the conversion of sugar per-acetates into thioglycosides under solvent free and catalytic conditions is presented. The procedure involves heating in the presence of InCl3 and various aryl thiols. For alkyl thioglycoside synthesis, cyclohexane thiol was found to give good results and yield a glycosyl donor with reactivity similar to a thioethyl congener. The established optimum reaction conditions were found to provide the desired thioglycoside products in an easy and highly diastereoselective manner even when conducted on a multigram scale.
Collapse
Affiliation(s)
- Daniel L Jensen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Helle H Trinderup
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Frederik Skovbo
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Henrik H Jensen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
32
|
Lou F, Cao Q, Zhang C, Ai N, Wang Q, Zhang J. Continuous synthesis of benzaldehyde by ozonolysis of styrene in a micro-packed bed reactor. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Verma A, Dolui P, Hazra S, Elias AJ. Directing group enabled ‘On-Water’ C-H bond functionalization of ferrocene derivatives. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
35
|
Lane MKM, Garedew M, Deary EC, Coleman CN, Ahrens-Víquez MM, Erythropel HC, Zimmerman JB, Anastas PT. What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory. Chem Res Toxicol 2022; 35:163-198. [PMID: 35130693 PMCID: PMC8864617 DOI: 10.1021/acs.chemrestox.1c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Pregnancy presents a unique risk
to chemical researchers due to
their occupational exposures to chemical, equipment, and physical
hazards in chemical research laboratories across science, engineering,
and technology disciplines. Understanding “risk” as
a function of hazard, exposure, and vulnerability, this review aims
to critically examine the state of the science for the risks and associated
recommendations (or lack thereof) for pregnant researchers in chemical
laboratories (labs). Commonly encountered hazards for pregnant lab
workers include chemical hazards (organic solvents, heavy metals,
engineered nanomaterials, and endocrine disruptors), radiation hazards
(ionizing radiation producing equipment and materials and nonionizing
radiation producing equipment), and other hazards related to the lab
environment (excessive noise, excessive heat, psychosocial stress,
strenuous physical work, and/or abnormal working hours). Lab relevant
doses and routes of exposure in the chemical lab environment along
with literature and governmental recommendations or resources for
exposure mitigation are critically assessed. The specific windows
of vulnerability based on stage of pregnancy are described for each
hazard, if available. Finally, policy gaps for further scientific
research are detailed to enhance future guidance to protect pregnant
lab workers.
Collapse
Affiliation(s)
- Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mahlet Garedew
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Emma C Deary
- Department of Anthropology, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Cherish N Coleman
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221, United States
| | - Melissa M Ahrens-Víquez
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Paul T Anastas
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States.,School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
36
|
Velez C, Acevedo O. Simulation of deep eutectic solvents: Progress to promises. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caroline Velez
- Department of Chemistry University of Miami Coral Gables Florida USA
| | - Orlando Acevedo
- Department of Chemistry University of Miami Coral Gables Florida USA
| |
Collapse
|
37
|
Wang Q, Zang Z, Jie M, Luo L, Yang D, Zhou C, Cai G. Ligand‐Controlled, Tunable Copper‐Catalyzed Radical Divergent Trifluoromethylation of Unactivated Cycloalkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qi Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Zhong‐Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Mi Jie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Li‐Hua Luo
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Dan Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Gui‐Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| |
Collapse
|
38
|
Winterton N. The green solvent: a critical perspective. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2021; 23:2499-2522. [PMID: 34608382 PMCID: PMC8482956 DOI: 10.1007/s10098-021-02188-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Solvents are important in most industrial and domestic applications. The impact of solvent losses and emissions drives efforts to minimise them or to avoid them completely. Since the 1990s, this has become a major focus of green chemistry, giving rise to the idea of the 'green' solvent. This concept has generated a substantial chemical literature and has led to the development of so-called neoteric solvents. A critical overview of published material establishes that few new materials have yet found widespread use as solvents. The search for less-impacting solvents is inefficient if carried out without due regard, even at the research stage, to the particular circumstances under which solvents are to be used on the industrial scale. Wider sustainability questions, particularly the use of non-fossil sources of organic carbon in solvent manufacture, are more important than intrinsic 'greenness'. While solvency is universal, a universal solvent, an alkahest, is an unattainable ideal. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10098-021-02188-8.
Collapse
Affiliation(s)
- Neil Winterton
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD UK
| |
Collapse
|
39
|
Tseke K, Lennon C, O'Mahony J, Kinsella M. A Continuous‐Flow Route to Enantioenriched 3‐Substituted‐3‐Hydroxyoxindoles: Organocatalytic Aldol Reactions of Isatin with Acetone. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kavnen Tseke
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| | - Claire Lennon
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| | - Joseph O'Mahony
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| | - Michael Kinsella
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| |
Collapse
|
40
|
Crowley DC, Brouder TA, Kearney AM, Lynch D, Ford A, Collins SG, Maguire AR. Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. J Org Chem 2021; 86:13955-13982. [PMID: 34379975 PMCID: PMC8524431 DOI: 10.1021/acs.joc.1c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Generation and use
of triflyl azide in flow enables efficient synthesis
of a range of α-diazocarbonyl compounds, including α-diazoketones,
α-diazoamides, and an α-diazosulfonyl ester, via both
Regitz-type diazo transfer and deacylative/debenzoylative diazo-transfer
processes with excellent yields and offers versatility in the solvent
employed, in addition to addressing the hazards associated with handling
of this highly reactive sulfonyl azide. Telescoping the generation
of triflyl azide and diazo-transfer process with highly enantioselective
copper-mediated intramolecular aromatic addition and C–H insertion
processes demonstrates that the reaction stream containing the α-diazocarbonyl
compound can be obtained in sufficient purity to pass directly over
the immobilized copper bis(oxazoline) catalyst without detrimentally
impacting the catalyst enantioselectivity.
Collapse
Affiliation(s)
- Daniel C Crowley
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Thomas A Brouder
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Aoife M Kearney
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Denis Lynch
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Alan Ford
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Stuart G Collins
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Anita R Maguire
- School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Zhang Y, Ozcer P, Ghoshal S. A comprehensive assessment of the degradation of C1 and C2 chlorinated hydrocarbons by sulfidated nanoscale zerovalent iron. WATER RESEARCH 2021; 201:117328. [PMID: 34171646 DOI: 10.1016/j.watres.2021.117328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) is a promising reductant for trichloroethylene in groundwater, yet a comprehensive understanding of its degradation efficiency for other chlorinated hydrocarbons (CHCs) is lacking. In this study, we assessed the benefits of using S-nZVI for the degradation of two chlorinated methanes, three chlorinated ethanes, and four chlorinated ethenes compared to unamended nZVI, by analyzing the degradation rate constants, the maximum degradation quantity, and the degradation pathways and products under both stoichiometrically electron excess and limited conditions. The improvement in rate constants induced by sulfidation was compound specific and was more significant for chlorinated ethenes (57-707 folds) than for the other CHCs (1.0-17 folds). This is likely because of the different reduction mechanisms of each CHC and sulfidation may favor specific mechanisms associated with the reduction of chlorinated ethenes more than the others. Sulfidation of nZVI enabled either higher (3.1-24.4 folds) or comparable (0.78-0.91) maximum degradation quantity, assessed under electron limited conditions, for all the CHCs investigated, indicating the promise of S-nZVI for remediation of groundwater contaminated by CHC mixtures. Furthermore, we proposed the degradation pathways of various CHCs based on the observed degradation intermediates and products and found that sulfidation suppressed the generation of partially dechlorinated products, particularly for chlorinated methanes and ethanes, and favor degradation pathways leading to the non-chlorinated benign products. This is the first comprehensive study on the efficacy of sulfidation in improving the degradation of a suite of CHCs and the results provide valuable insight to the assessment of applicability and benefits of S-nZVI for CHC remediation.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pinar Ozcer
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
42
|
Manujyothi R, Aneeja T, Anilkumar G. Solvent-free synthesis of propargylamines: an overview. RSC Adv 2021; 11:19433-19449. [PMID: 35479216 PMCID: PMC9033675 DOI: 10.1039/d1ra03324g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Propargylamines are a class of compounds with many pharmaceutical and biological properties. A green approach to synthesize such compounds is very relevant. This review aims to describe the solvent-free synthetic approaches towards propargylamines via A3 and KA2 coupling reactions covering the literature up to 2021.
Collapse
Affiliation(s)
- Ravi Manujyothi
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India +91-481-2731036
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 India
| |
Collapse
|
43
|
Annatelli M, Dalla Torre D, Musolino M, Aricò F. Dimethyl isosorbide via organocatalyst N-methyl pyrrolidine: scaling up, purification and concurrent reaction pathways. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00465d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-yielding methylation of isosorbide via DMC chemistry promoted by N-methyl pyrrolidine is herein reported. This study addresses: DMI purification, scale-up tests, insights on the catalyst role and on the reaction pathways leading to DMI.
Collapse
Affiliation(s)
- Mattia Annatelli
- Department of Environmental Sciences, Informatics and Statistics
- University of Ca’ Foscari
- 30172 Venezia Mestre
- Italy
| | - Davide Dalla Torre
- Department of Environmental Sciences, Informatics and Statistics
- University of Ca’ Foscari
- 30172 Venezia Mestre
- Italy
| | - Manuele Musolino
- Department of Environmental Sciences, Informatics and Statistics
- University of Ca’ Foscari
- 30172 Venezia Mestre
- Italy
| | - Fabio Aricò
- Department of Environmental Sciences, Informatics and Statistics
- University of Ca’ Foscari
- 30172 Venezia Mestre
- Italy
| |
Collapse
|
44
|
Polterauer D, Roberge DM, Hanselmann P, Elsner P, Hone CA, Kappe CO. Process intensification of ozonolysis reactions using dedicated microstructured reactors. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00264c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dedicated microreactor system ensures exquisite control over mass and heat transfer for performing very fast ozonolysis.
Collapse
Affiliation(s)
- Dominik Polterauer
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | - Paul Hanselmann
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Petteri Elsner
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Christopher A. Hone
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|