1
|
Chen X, Zhang B, Jiang X, Liu Z, Zheng Y. Improvement of 9α-hydroxyandrost-4-ene-3,17-dione production in Mycolicibacterium neoaurum by regulation of cell wall formation and transcriptional regulator PadR. J Biotechnol 2024; 396:10-17. [PMID: 39396643 DOI: 10.1016/j.jbiotec.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The biotransformation of phytosterol into high value steroid intermediates such as 9α-hydroxyandrost-4-ene-3,17-dione (9-OHAD) in Mycolicibacterium is the cornerstone of the steroid pharmaceuticals. However, the limited permeability of the dense mycobacterial cell wall severely hinders the efficient transportation of phytosterol and their bioconversion to 9-OHAD. In this study, we disrupted the genetic pathways involved in trehalose biosynthesis, trehalose recycle and by-product formation, leading to alterations in cell wall formation, cell permeability and 9-OHAD productivity. This manipulation led to an increase of 63.7% in the yield of 9-OHAD, reaching 10.8 g/L at a phytosterol concentration of 20 g/L in shake flask. The enhancement of cell permeability and 9-OHAD production were achieved through the deletion of genes TreS, TreY, OtsA, LpqY, and SugC, as well as the inactivation of regulator PadR. Notably, it was found that the increase in TMM content of cell wall components via TLC analysis directly affected the distribution of 9-OHAD within and outside the cell, ultimately leading to an increase in extracellular production of 9-OHAD from 12% to 32.1%. Therefore, this study provides with an effective strategy for enhancing 9-OHAD production by increasing cell permeability while minimizing by-product 4-AD formation.
Collapse
Affiliation(s)
- Xinxin Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiaohan Jiang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
2
|
Faboro T, Daniel J. Biofilm formation and polar lipid biosynthesis in Mycobacterium abscessus are inhibited by naphthylmethylpiperazine. PLoS One 2024; 19:e0311669. [PMID: 39531471 PMCID: PMC11556751 DOI: 10.1371/journal.pone.0311669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mycobacterium abscessus is a biofilm-forming, non-tuberculous mycobacterium that is highly resistant to antibiotics. Bacterial efflux pumps contribute to biofilm formation, export of biofilm-associated lipids and antibiotic tolerance. The Resistance Nodulation Cell Division (RND) and ATP-Binding Cassette (ABC) families of efflux pumps export lipids to the mycobacterial cell surface. 1-(1-naphthyl methyl)-piperazine (NMP) is a chemosensitizer that causes membrane destabilization and is an inhibitor of RND efflux pumps. The effects of NMP on biofilm formation and lipid metabolism in M. abscessus biofilms have not been investigated. Plumbagin (PLU) is an inhibitor of ABC efflux pumps that has not been studied for its effects on antibiotic tolerance in M. abscessus biofilms. In this study, we report that the efflux pump inhibitors NMP and PLU inhibit biofilm formation by 50% at sub-MIC levels. We show that NMP inhibits the incorporation of the radiolabeled long-chain fatty acid 14C-palmitate into glycopeptidolipids in cell surface lipids of log-phase M. abscessus. NMP also inhibits the utilization of the radiolabel in the biosynthesis of phosphatidylethanolamine in the cell surface and cellular lipids of M. abscessus cells in log-phase and in biofilms. Incorporation of the radiolabel into cardiolipin in the cellular lipids of M. abscessus biofilms was inhibited by NMP. The incorporation of 14C-acetate into cell surface phosphatidylethanolamine in log-phase and biofilm cells was also inhibited by NMP. Triacylglycerol biosynthesis using 14C-palmitate and 14C-acetate in cellular lipids of log-phase and biofilm cells was increased several folds by NMP. Efflux pump activity in M. abscessus cells was inhibited by 97% and 68% by NMP and PLU respectively. NMP and PLU caused 5-fold decreases in the minimum inhibitory concentrations of ciprofloxacin and clarithromycin against M. abscessus. Our results demonstrate that NMP and PLU affect important physiological processes in M. abscessus associated with its pathogenesis.
Collapse
Affiliation(s)
- Timilehin Faboro
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Jaiyanth Daniel
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
3
|
Mendes S, Gonçalves MCP, Aiex VAP, Batista RD, Zorzete P, Leite LCC, Gonçalves VM. Comparison Between Simple Batch and Fed-Batch Bioreactor Cultivation of Recombinant BCG. Pharmaceutics 2024; 16:1433. [PMID: 39598556 PMCID: PMC11597571 DOI: 10.3390/pharmaceutics16111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Tuberculosis continues to be a significant global health concern, causing 1.3 million deaths in 2022, particularly affecting children under 5 years old. The Bacillus Calmette-Guérin (BCG) vaccine, developed in 1921, remains the primary defense against tuberculosis but requires modernized production methods. The recombinant BCG-pertussis strain shows potential in providing dual protection against tuberculosis and whooping cough, especially for vulnerable newborns, and enhanced efficacy against bladder cancer. Implementing submerged cultivation techniques for rBCG-pertussis production can offer increased productivity and standardization. Methods: This study explores a fed-batch cultivation strategy with pH-stat control to feed L-glutamic acid through the acid pump into 1 L bioreactor. Three pH values were evaluated for fed-batch and a simple batch without pH control was done for comparison. The viable cell concentration was compared before and after freeze-drying samples harvested during the cultures. Results: L-glutamic acid was identified as the preferred substrate for rBCG-pertussis. While the fed-batch strategy did not enhance the maximum specific growth rate compared to simple batch cultivation, it did improve the specific growth rate after day 4 in the pH 7.4-controlled fed-batch cultures, thereby reducing the cultivation time. Fed-batch cultures controlled at three pH levels exhibited lower optical density than the simple batch, although the viable cell counts were similar. Notably, samples harvested after day 8 from the simple batch cultures showed a reduction in CFU/mL after freeze-drying, whereas all fed-batch samples exhibited high recovery of viable cell counts post lyophilization. Conclusions: The additional glutamate supplied to the fed-batch cultures may have protected the cells during the lyophilization process.
Collapse
Affiliation(s)
- Sarah Mendes
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
- Interunits Graduate Program in Biotechnology (PPIB), University of São Paulo, São Paulo 05508-220, Brazil
| | - Maria C. P. Gonçalves
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Vitoria A. P. Aiex
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Ryhára D. Batista
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
- Interunits Graduate Program in Biotechnology (PPIB), University of São Paulo, São Paulo 05508-220, Brazil
| | - Patrícia Zorzete
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Luciana C. C. Leite
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Viviane M. Gonçalves
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| |
Collapse
|
4
|
Babii S, Li W, Yang L, Grzegorzewicz AE, Jackson M, Gumbart JC, Zgurskaya HI. Allosteric coupling of substrate binding and proton translocation in MmpL3 transporter from Mycobacterium tuberculosis. mBio 2024; 15:e0218324. [PMID: 39212407 PMCID: PMC11481577 DOI: 10.1128/mbio.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Mycobacterium spp. are very challenging to treat, and multidrug-resistant strains rapidly spread in human populations. Major contributing factors include the unique physiological features of these bacteria, drug efflux, and the low permeability barrier of their outer membrane. Here, we focus on MmpL3 from Mycobacterium tuberculosis, an essential inner membrane transporter of the resistance-nodulation-division superfamily required for the translocation of mycolic acids in the form of trehalose monomycolates (TMM) from the cytoplasm or plasma membrane to the periplasm or outer membrane. The MmpL3-dependent transport of TMM is essential for the growth of M. tuberculosis in vitro, inside macrophages, and in M. tuberculosis-infected mice. MmpL3 is also a validated target for several recently identified anti-mycobacterial agents. In this study, we reconstituted the lipid transport activity of the purified MmpL3 using a two-lipid vesicle system and established the ability of MmpL3 to actively extract phospholipids from the outer leaflet of a lipid bilayer. In contrast, we found that MmpL3 lacks the ability to translocate the same phospholipid substrate across the plasma membrane indicating that it is not an energy-dependent flippase. The lipid extraction activity was modulated by substitutions in critical charged and polar residues of the periplasmic substrate-binding pocket of MmpL3, coupled to the proton transfer activity of MmpL3 and inhibited by a small molecule inhibitor SQ109. Based on the results, we propose a mechanism of allosteric coupling wherein substrate translocation by MmpL3 is coupled to the energy provided by the downhill transfer of protons. The reconstituted activities will facilitate understanding the mechanism of MmpL3-dependent transport of lipids and the discovery of new therapeutic options for Mycobacterium spp. infections.IMPORTANCEMmpL3 from Mycobacterium tuberculosis is an essential transporter involved in the assembly of the mycobacterial outer membrane. It is also an important target in undergoing efforts to discover new anti-tuberculosis drugs effective against multidrug-resistant strains spreading in human populations. The recent breakthrough structural studies uncovered features of MmpL3 that suggested a possible lipid transport mechanism. In this study, we reconstituted and characterized the lipid transport activity of MmpL3 and demonstrated that this activity is blocked by MmpL3 inhibitors and substrate mimics. We further uncovered the mechanism of how the binding of a substrate in the periplasmic domain is communicated to the transmembrane proton relay of MmpL3. The uncovered mechanism and the developed assays provide new opportunities for mechanistic analyses of MmpL3 function and its inhibition.
Collapse
Affiliation(s)
- Svitlana Babii
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna E. Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
5
|
Chen X, Zhang B, Jiang X, Liu Z, Zheng Y. Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis. World J Microbiol Biotechnol 2024; 40:350. [PMID: 39404941 DOI: 10.1007/s11274-024-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.
Collapse
Affiliation(s)
- Xinxin Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaohan Jiang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
6
|
Campos DL, Canales CSC, Demarqui FM, Fernandes GFS, dos Santos CG, Prates JLB, da Silva IGM, Barros-Cordeiro KB, Báo SN, de Andrade LN, Abichabki N, Zacharias LV, de Campos MMA, dos Santos JL, Pavan FR. Screening of novel narrow-spectrum benzofuroxan derivatives for the treatment of multidrug-resistant tuberculosis through in silico, in vitro, and in vivo approaches. Front Microbiol 2024; 15:1487829. [PMID: 39464394 PMCID: PMC11502347 DOI: 10.3389/fmicb.2024.1487829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis remains a serious global health threat, exacerbated by the rise of resistant strains. This study investigates the potential of two benzofuroxan (Bfx) derivatives, 5n and 5b, as targeted treatments for MDR-TB using in silico, in vitro, and in vivo methodologies. In vitro analyses showed that Bfx compounds have significant activity against Mtb H37Rv, with Bfx 5n standing out with a MIC90 of 0.09 ± 0.04 μM. Additionally, their efficacy against MDR and pre-XDR strains was superior compared to commercial drugs. These Bfx compounds have a narrow spectrum for mycobacteria, which helps avoid dysbiosis of the gut microbiota, and they also exhibit high selectivity and low toxicity. Synergism studies indicate that Bfx derivatives could be combined with rifampicin to enhance treatment efficacy and reduce its duration. Scanning electron microscopy revealed severe damage to the morphology of Mtb following treatment with Bfx 5n, showing significant distortions in the bacillary structures. Whole-genome sequencing of the 5n-resistant isolate suggests resistance mechanisms mediated by the Rv1855c gene, supported by in silico studies. In vivo studies showed that the 5n compound reduced the pulmonary load by 3.0 log10 CFU/mL, demonstrating superiority over rifampicin, which achieved a reduction of 1.23 log10 CFU/mL. In conclusion, Bfx derivatives, especially 5n, effectively address resistant infections caused by Mtb, suggesting they could be a solid foundation for future therapeutic developments against MDR-TB.
Collapse
Affiliation(s)
- Débora Leite Campos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Christian Shleider Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, Biochemistry and Biotechnology, Santa Maria Catholic University, Arequipa, Peru
| | - Fernanda Manaia Demarqui
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Guilherme F. S. Fernandes
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, University College London, London, United Kingdom
| | - Camila Gonçalves dos Santos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - João Lucas B. Prates
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leonardo Neves de Andrade
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Nathália Abichabki
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Luísa Vieira Zacharias
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jean Leandro dos Santos
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
7
|
Liu L, Wen C, Cai X, Gong W. A Novel Bi-Directional Channel for Nutrient Uptake across Mycobacterial Outer Envelope. Microorganisms 2024; 12:1827. [PMID: 39338501 PMCID: PMC11434571 DOI: 10.3390/microorganisms12091827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Nutrients are absorbed by special transport proteins on the cell membrane; however, there is less information regarding transporters across the mycobacterial outer envelope, which comprises dense and intricate structures. In this study, we focus on the model organism Mycolicibacterium smegmatis, which has a cell envelope similar to that of Mycobacterium tuberculosis, as well as on the TiME protein secretion tube across the mycobacterial outer envelope. We present transcriptome results and analyze the protein compositions of a mycobacterial surface envelope, determining that more transporters and porins are induced to complement the deletion of the time gene in Mycolicibacterium smegmatis. The TiME protein is essential for nutrient utilization, as demonstrated in the uptake experiments and growth on various monosaccharides or with amino acids as the sole carbon source. Its deletion caused bacteria to be more sensitive to anti-TB drugs and to show a growth defect at an acid pH level, indicating that TiME promotes the survival of M. smegmatis in antibiotic-containing and acidic environments. These results suggest that TiME tubes facilitate bi-directional processes for both protein secretion and nutrient uptake across the mycobacterial outer envelope.
Collapse
Affiliation(s)
- Lei Liu
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chongzheng Wen
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoying Cai
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Weimin Gong
- Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Chauhan M, Barot R, Yadav R, Joshi K, Mirza S, Chikhale R, Srivastava VK, Yadav MR, Murumkar PR. The Mycobacterium tuberculosis Cell Wall: An Alluring Drug Target for Developing Newer Anti-TB Drugs-A Perspective. Chem Biol Drug Des 2024; 104:e14612. [PMID: 39237482 DOI: 10.1111/cbdd.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
The Mycobacterium cell wall is a capsule-like structure comprising of various layers of biomolecules such as mycolic acid, peptidoglycans, and arabinogalactans, which provide the Mycobacteria a sort of cellular shield. Drugs like isoniazid, ethambutol, cycloserine, delamanid, and pretomanid inhibit cell wall synthesis by inhibiting one or the other enzymes involved in cell wall synthesis. Many enzymes present across these layers serve as potential targets for the design and development of newer anti-TB drugs. Some of these targets are currently being exploited as the most druggable targets like DprE1, InhA, and MmpL3. Many of the anti-TB agents present in clinical trials inhibit cell wall synthesis. The present article covers a systematic perspective of developing cell wall inhibitors targeting various enzymes involved in cell wall biosynthesis as potential drug candidates for treating Mtb infection.
Collapse
Affiliation(s)
- Monica Chauhan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rahul Barot
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rasana Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Karan Joshi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sadaf Mirza
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rupesh Chikhale
- The Cambridge Crystallography Data Center, Cambridge, UK
- School of Pharmacy, University College London, London, UK
| | | | - Mange Ram Yadav
- Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
9
|
McGowen K, Funck T, Wang X, Zinga S, Wolf ID, Akusobi CC, Denkinger CM, Rubin EJ, Sullivan MR. Efflux pumps and membrane permeability contribute to intrinsic antibiotic resistance in Mycobacterium abscessus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609441. [PMID: 39229117 PMCID: PMC11370614 DOI: 10.1101/2024.08.23.609441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mycobacterium abscessus is a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate in M. abscessus and the mechanisms required for drug exclusion remain poorly understood. We measured antibiotic accumulation in M. abscessus using mass spectrometry and found a wide range of drug accumulation across clinically relevant antibiotics. Of these compounds, linezolid accumulates the least, suggesting that inadequate uptake impacts its efficacy. We utilized transposon mutagenesis screening to identify genes that cause linezolid resistance and found multiple transporters that promote membrane permeability or efflux, including an uncharacterized, M. abscessus-specific protein that effluxes linezolid and several chemically related antibiotics. This demonstrates that membrane permeability and drug efflux are critical mechanisms of antibiotic resistance in M. abscessus and suggests that targeting membrane transporters could potentiate the efficacy of certain antibiotics.
Collapse
Affiliation(s)
- Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Tobias Funck
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Germany
| | - Xin Wang
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Samuel Zinga
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Chidiebere C Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Claudia M Denkinger
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Germany
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Xia Q, Perera HA, Bolarinho R, Piskulich ZA, Guo Z, Yin J, He H, Li M, Ge X, Cui Q, Ramström O, Yan M, Cheng JX. Click-free imaging of carbohydrate trafficking in live cells using an azido photothermal probe. SCIENCE ADVANCES 2024; 10:eadq0294. [PMID: 39167637 PMCID: PMC11338237 DOI: 10.1126/sciadv.adq0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Harini A. Perera
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
11
|
van der Klugt T, van den Biggelaar RHGA, Saris A. Host and bacterial lipid metabolism during tuberculosis infections: possibilities to synergise host- and bacteria-directed therapies. Crit Rev Microbiol 2024:1-21. [PMID: 38916142 DOI: 10.1080/1040841x.2024.2370979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative pathogen of tuberculosis, the most lethal infectious disease resulting in 1.3 million deaths annually. Treatments against Mtb are increasingly impaired by the growing prevalence of antimicrobial drug resistance, which necessitates the development of new antibiotics or alternative therapeutic approaches. Upon infecting host cells, predominantly macrophages, Mtb becomes critically dependent on lipids as a source of nutrients. Additionally, Mtb produces numerous lipid-based virulence factors that contribute to the pathogen's ability to interfere with the host's immune responses and to create a lipid rich environment for itself. As lipids, lipid metabolism and manipulating host lipid metabolism play an important role for the virulence of Mtb, this review provides a state-of-the-art overview of mycobacterial lipid metabolism and concomitant role of host metabolism and host-pathogen interaction therein. While doing so, we will emphasize unexploited bacteria-directed and host-directed drug targets, and highlight potential synergistic drug combinations that hold promise for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Teun van der Klugt
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Kelly SD, Duong NH, Nothof JT, Lowary TL, Whitfield C. Three-component systems represent a common pathway for extracytoplasmic addition of pentofuranose sugars into bacterial glycans. Proc Natl Acad Sci U S A 2024; 121:e2402554121. [PMID: 38748580 PMCID: PMC11127046 DOI: 10.1073/pnas.2402554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024] Open
Abstract
Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or β-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to β-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Nam Ha Duong
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Jeremy T. Nothof
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
13
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Xia Q, Perera HA, Bolarinho R, Piskulich ZA, Guo Z, Yin J, He H, Li M, Ge X, Cui Q, Ramström O, Yan M, Cheng JX. Click-free imaging of carbohydrate trafficking in live cells using an azido photothermal probe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584185. [PMID: 38559219 PMCID: PMC10979903 DOI: 10.1101/2024.03.08.584185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Harini A. Perera
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zeke A. Piskulich
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
15
|
Palande A, Patil S, Veeram A, Sahoo SS, Lodhiya T, Maurya P, Muralikrishnan B, Chugh J, Mukherjee R. Proteomic Analysis of the Mycobacterium tuberculosis Outer Membrane for Potential Implications in Uptake of Small Molecules. ACS Infect Dis 2024; 10:890-906. [PMID: 38400924 DOI: 10.1021/acsinfecdis.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Increased resistance to current antimycobacterial agents and a potential bias toward relatively hydrophobic chemical entities highlight an urgent need to understand how current anti-TB drugs enter the tubercle bacilli. While inner membrane proteins are well-studied, how small molecules cross the impenetrable outer membrane remains unknown. Here, we employed mass spectrometry-based proteomics to show that octyl-β-d-glucopyranoside selectively extracts the outer membrane proteins of Mycobacterium tuberculosis. Differentially expressed proteins between nutrient-replete and nutrient-depleted conditions were enriched to identify proteins involved in nutrient uptake. We demonstrate cell surface localization of seven new proteins using immunofluorescence and show that overexpression of the proteins LpqY and ProX leads to hypersensitivity toward streptomycin, while overexpression of SubI, SpmT, and Rv2041 exhibited higher membrane permeability, assessed through an EtBr accumulation assay. Further, proton NMR metabolomics suggests the role of six outer membrane proteins in glycerol uptake. This study identifies several outer membrane proteins that are involved in the permeation of small hydrophilic molecules and are potential targets for enhancing the uptake and efficacy of anti-TB drugs.
Collapse
Affiliation(s)
- Aseem Palande
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Saniya Patil
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Anjali Veeram
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Soumya Swastik Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Tejan Lodhiya
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Pankaj Maurya
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Balaji Muralikrishnan
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
16
|
Pavlenok M, Nair RR, Hendrickson RC, Niederweis M. The C-terminus is essential for the stability of the mycobacterial channel protein MspA. Protein Sci 2024; 33:e4912. [PMID: 38358254 PMCID: PMC10868439 DOI: 10.1002/pro.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.
Collapse
Affiliation(s)
- Mikhail Pavlenok
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | | - Michael Niederweis
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
17
|
Vilas-Boas AA, Goméz-García R, Machado M, Nunes C, Ribeiro S, Nunes J, Oliveira ALS, Pintado M. Lavandula pedunculata Polyphenol-Rich Extracts Obtained by Conventional, MAE and UAE Methods: Exploring the Bioactive Potential and Safety for Use a Medicine Plant as Food and Nutraceutical Ingredient. Foods 2023; 12:4462. [PMID: 38137266 PMCID: PMC10742868 DOI: 10.3390/foods12244462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nowadays, plant-based bioactive compounds (BCs) are a key focus of research, supporting sustainable food production and favored by consumers for their perceived safety and health advantages over synthetic options. Lavandula pedunculata (LP) is a Portuguese, native species relevant to the bioeconomy that can be useful as a source of natural BCs, mainly phenolic compounds. This study compared LP polyphenol-rich extracts from conventional maceration extraction (CE), microwave and ultrasound-assisted extraction (MAE and UAE). As a result, rosmarinic acid (58.68-48.27 mg/g DE) and salvianolic acid B (43.19-40.09 mg/g DE) were the most representative phenolic compounds in the LP extracts. The three methods exhibited high antioxidant activity, highlighting the ORAC (1306.0 to 1765.5 mg Trolox equivalents (TE)/g DE) results. In addition, the extracts obtained with MAE and CE showed outstanding growth inhibition for B. cereus, S. aureus, E. coli, S. enterica and P. aeruginosa (>50%, at 10 mg/mL). The MAE extract showed the lowest IC50 (0.98 mg DE/mL) for angiotensin-converting enzyme inhibition and the best results for α-glucosidase and tyrosinase inhibition (at 5 mg/mL, the inhibition was 87 and 73%, respectively). The LP polyphenol-rich extracts were also safe on caco-2 intestinal cells, and no mutagenicity was detected. The UAE had lower efficiency in obtaining LP polyphenol-rich extracts. MAE equaled CE's efficiency, saving time and energy. LP shows potential as a sustainable raw material, allowing diverse extraction methods to safely develop health-promoting food and nutraceutical ingredients.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Ricardo Goméz-García
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
- Centro de Investigación e Innovación Científica y Tecnológica—CIICYT, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Manuela Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Catarina Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Sónia Ribeiro
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 3045-155 Oliveira do Hospital, Portugal; (C.N.); (S.R.); (J.N.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.A.V.-B.); (R.G.-G.); (M.M.); (A.L.S.O.)
| |
Collapse
|
18
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
19
|
Khalid S, Brandner AF, Juraschko N, Newman KE, Pedebos C, Prakaash D, Smith IPS, Waller C, Weerakoon D. Computational microbiology of bacteria: Advancements in molecular dynamics simulations. Structure 2023; 31:1320-1327. [PMID: 37875115 DOI: 10.1016/j.str.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Microbiology is traditionally considered within the context of wet laboratory methodologies. Computational techniques have a great potential to contribute to microbiology. Here, we describe our loose definition of "computational microbiology" and provide a short survey focused on molecular dynamics simulations of bacterial systems that fall within this definition. It is our contention that increased compositional complexity and realistic levels of molecular crowding within simulated systems are key for bridging the divide between experimental and computational microbiology.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK.
| | - Astrid F Brandner
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Nikolai Juraschko
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Artificial Intelligence and Informatics, The Rosalind Franklin Institute, Didcot, UK
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Iain P S Smith
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Callum Waller
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | | |
Collapse
|
20
|
Wang X, Feng L, Li M, Dong W, Luo X, Shang D. Membrane-active and DNA binding related double-action antimycobacterial mechanism of antimicrobial peptide W3R6 and its synthetic analogs. Biochim Biophys Acta Gen Subj 2023:130415. [PMID: 37336295 DOI: 10.1016/j.bbagen.2023.130415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The emergence of multidrug- or extremely drug-resistant M. tuberculosis strains has made very few drugs available for current tuberculosis treatment. Antimicrobial peptides can be employed as a promising alternative strategy for TB treatment. Here, we designed and synthesized a series of peptide sequences based on the structure-activity relationships of natural sequences of antimicrobial peptides. The peptide W3R6 and its analogs were screened and found to have potent antimycobacterial activity against M. smegmatis, and no hemolytic activity against human erythrocytes. The evidence from the mechanism of action study indicated that W3R6 and its analogs can interact with the mycobacterial membrane in a lytic manner and form pores on the outer membrane of M. smegmatis. Significant colocalization of D-W3R6 with mycobacterial DNA was observed by confocal laser scanning microscopy and DNA retardation assays, which suggested that the antimycobacterial mechanism of action of the peptide was associated with the unprotected genomic DNA of M. smegmatis. In general, W3R6 and its analogs act on not only the mycobacterial membrane but also the genomic DNA in the cytoplasm, which makes it difficult for mycobacteria to generate resistance due to the peptides having two targets. In addition, the peptides can effectively eliminate M. smegmatis cells from infected macrophages. Our findings indicated that the antimicrobial peptide W3R6 could be a novel lead compound to overcome the threat from drug-resistant M. tuberculosis strains in the development of potent AMPs for TB therapeutic applications.
Collapse
Affiliation(s)
- Xiaorui Wang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Liubin Feng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mengmiao Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Xueyue Luo
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
21
|
Li Y, Acharya A, Yang L, Liu J, Tajkhorshid E, Zgurskaya HI, Jackson M, Gumbart JC. Insights into substrate transport and water permeation in the mycobacterial transporter MmpL3. Biophys J 2023; 122:2342-2352. [PMID: 36926696 PMCID: PMC10257117 DOI: 10.1016/j.bpj.2023.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Mycobacteria, such as Mycobacterium tuberculosis, are characterized by a uniquely thick and waxy cell envelope that consists of two membranes, with a variety of mycolates comprising their outer membrane (OM). The protein Mycobacterial membrane protein Large 3 (MmpL3) is responsible for the transport of a primary OM component, trehalose monomycolate (TMM), from the inner (cytoplasmic) membrane (IM) to the periplasmic space, a process driven by the proton gradient. Although multiple structures of MmpL3 with bound substrates have been solved, the exact pathway(s) for TMM or proton transport remains elusive. Here, employing molecular dynamics simulations we investigate putative pathways for either transport species. We hypothesized that MmpL3 will cycle through similar conformational states as the related transporter AcrB, which we used as targets for modeling the conformation of MmpL3. A continuous water pathway through the transmembrane region was found in one of these states, illustrating a putative pathway for protons. Additional equilibrium simulations revealed that TMM can diffuse from the membrane into a binding pocket in MmpL3 spontaneously. We also found that acetylation of TMM, which is required for transport, makes it more stable within MmpL3's periplasmic cavity compared with the unacetylated form.
Collapse
Affiliation(s)
- Yupeng Li
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry (MB&B), Yale University, New Haven, Connecticut
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
22
|
Prithviraj M, Kado T, Mayfield JA, Young DC, Huang AD, Motooka D, Nakamura S, Siegrist MS, Moody DB, Morita YS. Tuberculostearic Acid Controls Mycobacterial Membrane Compartmentalization. mBio 2023; 14:e0339622. [PMID: 36976029 PMCID: PMC10127668 DOI: 10.1128/mbio.03396-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
The intracellular membrane domain (IMD) is a laterally discrete region of the mycobacterial plasma membrane, enriched in the subpolar region of the rod-shaped cell. Here, we report genome-wide transposon sequencing to discover the controllers of membrane compartmentalization in Mycobacterium smegmatis. The putative gene cfa showed the most significant effect on recovery from membrane compartment disruption by dibucaine. Enzymatic analysis of Cfa and lipidomic analysis of a cfa deletion mutant (Δcfa) demonstrated that Cfa is an essential methyltransferase for the synthesis of major membrane phospholipids containing a C19:0 monomethyl-branched stearic acid, also known as tuberculostearic acid (TBSA). TBSA has been intensively studied due to its abundant and genus-specific production in mycobacteria, but its biosynthetic enzymes had remained elusive. Cfa catalyzed the S-adenosyl-l-methionine-dependent methyltransferase reaction using oleic acid-containing lipid as a substrate, and Δcfa accumulated C18:1 oleic acid, suggesting that Cfa commits oleic acid to TBSA biosynthesis, likely contributing directly to lateral membrane partitioning. Consistent with this model, Δcfa displayed delayed restoration of subpolar IMD and delayed outgrowth after bacteriostatic dibucaine treatment. These results reveal the physiological significance of TBSA in controlling lateral membrane partitioning in mycobacteria. IMPORTANCE As its common name implies, tuberculostearic acid is an abundant and genus-specific branched-chain fatty acid in mycobacterial membranes. This fatty acid, 10-methyl octadecanoic acid, has been an intense focus of research, particularly as a diagnostic marker for tuberculosis. It was discovered in 1934, and yet the enzymes that mediate the biosynthesis of this fatty acid and the functions of this unusual fatty acid in cells have remained elusive. Through a genome-wide transposon sequencing screen, enzyme assay, and global lipidomic analysis, we show that Cfa is the long-sought enzyme that is specifically involved in the first step of generating tuberculostearic acid. By characterizing a cfa deletion mutant, we further demonstrate that tuberculostearic acid actively regulates lateral membrane heterogeneity in mycobacteria. These findings indicate the role of branched fatty acids in controlling the functions of the plasma membrane, a critical barrier for the pathogen to survive in its human host.
Collapse
Affiliation(s)
- Malavika Prithviraj
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob A. Mayfield
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David C. Young
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Annie D. Huang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
23
|
Liyanage S, Raviranga NGH, Ryan JG, Shell SS, Ramström O, Kalscheuer R, Yan M. Azide-Masked Fluorescence Turn-On Probe for Imaging Mycobacteria. JACS AU 2023; 3:1017-1028. [PMID: 37124305 PMCID: PMC10131213 DOI: 10.1021/jacsau.2c00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
A fluorescence turn-on probe, an azide-masked and trehalose-derivatized carbazole (Tre-Cz), was developed to image mycobacteria. The fluorescence turn-on is achieved by photoactivation of the azide, which generates a fluorescent product through an efficient intramolecular C-H insertion reaction. The probe is highly specific for mycobacteria and could image mycobacteria in the presence of other Gram-positive and Gram-negative bacteria. Both the photoactivation and detection can be accomplished using a handheld UV lamp, giving a limit of detection of 103 CFU/mL, which can be visualized by the naked eye. The probe was also able to image mycobacteria spiked in sputum samples, although the detection sensitivity was lower. Studies using heat-killed, stationary-phase, and isoniazid-treated mycobacteria showed that metabolically active bacteria are required for the uptake of Tre-Cz. The uptake decreased in the presence of trehalose in a concentration-dependent manner, indicating that Tre-Cz hijacked the trehalose uptake pathway. Mechanistic studies demonstrated that the trehalose transporter LpqY-SugABC was the primary pathway for the uptake of Tre-Cz. The uptake decreased in the LpqY-SugABC deletion mutants ΔlpqY, ΔsugA, ΔsugB, and ΔsugC and fully recovered in the complemented strain of ΔsugC. For the mycolyl transferase antigen 85 complex (Ag85), however, only a slight reduction of uptake was observed in the Ag85 deletion mutant ΔAg85C, and no incorporation of Tre-Cz into the outer membrane was observed. The unique intracellular incorporation mechanism of Tre-Cz through the LpqY-SugABC transporter, which differs from other trehalose-based fluorescence probes, unlocks potential opportunities to bring molecular cargoes to mycobacteria for both fundamental studies and theranostic applications.
Collapse
Affiliation(s)
- Sajani
H. Liyanage
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - N. G. Hasitha Raviranga
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Julia G. Ryan
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Scarlet S. Shell
- Department
of Biology and Biotechnology, Worcester
Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Olof Ramström
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, SE-39182 Kalmar, Sweden
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Mingdi Yan
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
24
|
Sparks IL, Nijjer J, Yan J, Morita YS. Lipoarabinomannan regulates septation in Mycobacterium smegmatis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534150. [PMID: 36993273 PMCID: PMC10055410 DOI: 10.1101/2023.03.26.534150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The growth and division of mycobacteria, which include several clinically relevant pathogens, deviate significantly from that of canonical bacterial models. Despite their Gram-positive ancestry, mycobacteria synthesize and elongate a diderm envelope asymmetrically from the poles, with the old pole elongating more robustly than the new pole. In addition to being structurally distinct, the molecular components of the mycobacterial envelope are also evolutionarily unique, including the phosphatidylinositol-anchored lipoglycans lipomannan (LM) and lipoarabinomannan (LAM). LM and LAM modulate host immunity during infection, but their role outside of intracellular survival remains poorly understood, despite their widespread conservation among non-pathogenic and opportunistically pathogenic mycobacteria. Previously, Mycobacterium smegmatis and Mycobacterium tuberculosis mutants producing structurally altered LM and LAM were shown to grow slowly under certain conditions and to be more sensitive to antibiotics, suggesting that mycobacterial lipoglycans may support cellular integrity or growth. To test this, we constructed multiple biosynthetic lipoglycan mutants of M. smegmatis and determined the effect of each mutation on cell wall biosynthesis, envelope integrity, and division. We found that mutants deficient in LAM, but not LM, fail to maintain cell wall integrity in a medium-dependent manner, with envelope deformations specifically associated with septa and new poles. Conversely, a mutant producing abnormally large LAM formed multiseptated cells in way distinct from that observed in a septal hydrolase mutant. These results show that LAM plays critical and distinct roles at subcellular locations associated with division in mycobacteria, including maintenance of local cell envelope integrity and septal placement.
Collapse
Affiliation(s)
- Ian L. Sparks
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
25
|
Hodges H, Obeng K, Avanzi C, Ausmus AP, Angala SK, Kalera K, Palcekova Z, Swarts BM, Jackson M. Azido Inositol Probes Enable Metabolic Labeling of Inositol-Containing Glycans and Reveal an Inositol Importer in Mycobacteria. ACS Chem Biol 2023; 18:595-604. [PMID: 36856664 PMCID: PMC10071489 DOI: 10.1021/acschembio.2c00912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Bacteria from the genus Mycobacterium include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in Mycobacterium smegmatis. We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.
Collapse
Affiliation(s)
- Heather Hodges
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Kwaku Obeng
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Alex P. Ausmus
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Karishma Kalera
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Zuzana Palcekova
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859 USA
- Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, 48859 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523 USA
| |
Collapse
|
26
|
Fieweger RA, Wilburn KM, Montague CR, Roszkowski EK, Kelly CM, Southard TL, Sondermann H, Nazarova EV, VanderVen BC. MceG stabilizes the Mce1 and Mce4 transporters in Mycobacterium tuberculosis. J Biol Chem 2023; 299:102910. [PMID: 36642182 PMCID: PMC9947336 DOI: 10.1016/j.jbc.2023.102910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Lipids are important nutrients for Mycobacterium tuberculosis (Mtb) to support bacterial survival in mammalian tissues and host cells. Fatty acids and cholesterol are imported across the Mtb cell wall via the dedicated Mce1 and Mce4 transporters, respectively. It is thought that the Mce1 and Mce4 transporters are comprised of subunits that confer substrate specificity and proteins that couple lipid transport to ATP hydrolysis, similar to other bacterial ABC transporters. However, unlike canonical bacterial ABC transporters, Mce1 and Mce4 appear to share a single ATPase, MceG. Previously, it was established that Mce1 and Mce4 are destabilized when key transporter subunits are rendered nonfunctional; therefore, we investigated here the role of MceG in Mce1 and Mce4 protein stability. We determined that key residues in the Walker B domain of MceG are required for the Mce1- and Mce4-mediated transport of fatty acids and cholesterol. Previously, it has been established that Mce1 and Mce4 are destabilized and/or degraded when key transporter subunits are rendered nonfunctional, thus we investigated a role for MceG in stabilizing Mce1 and Mce4. Using an unbiased quantitative proteomic approach, we demonstrate that Mce1 and Mce4 proteins are specifically degraded in mutants lacking MceG. Furthermore, bacteria expressing Walker B mutant variants of MceG failed to stabilize Mce1 and Mce4, and we show that deleting MceG impacts the fitness of Mtb in the lungs of mice. Thus, we conclude that MceG represents an enzymatic weakness that can be potentially leveraged to disable and destabilize both the Mce1 and Mce4 transporters in Mtb.
Collapse
Affiliation(s)
- Rachael A Fieweger
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Kaley M Wilburn
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Christine R Montague
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Emma K Roszkowski
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Carolyn M Kelly
- Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Teresa L Southard
- Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Holger Sondermann
- Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Evgeniya V Nazarova
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA
| | - Brian C VanderVen
- Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca New York, USA.
| |
Collapse
|
27
|
Sparks IL, Derbyshire KM, Jacobs WR, Morita YS. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J Bacteriol 2023; 205:e0033722. [PMID: 36598232 PMCID: PMC9879119 DOI: 10.1128/jb.00337-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genus Mycobacterium contains several slow-growing human pathogens, including Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium avium. Mycobacterium smegmatis is a nonpathogenic and fast growing species within this genus. In 1990, a mutant of M. smegmatis, designated mc2155, that could be transformed with episomal plasmids was isolated, elevating M. smegmatis to model status as the ideal surrogate for mycobacterial research. Classical bacterial models, such as Escherichia coli, were inadequate for mycobacteria research because they have low genetic conservation, different physiology, and lack the novel envelope structure that distinguishes the Mycobacterium genus. By contrast, M. smegmatis encodes thousands of conserved mycobacterial gene orthologs and has the same cell architecture and physiology. Dissection and characterization of conserved genes, structures, and processes in genetically tractable M. smegmatis mc2155 have since provided previously unattainable insights on these same features in its slow-growing relatives. Notably, tuberculosis (TB) drugs, including the first-line drugs isoniazid and ethambutol, are active against M. smegmatis, but not against E. coli, allowing the identification of their physiological targets. Furthermore, Bedaquiline, the first new TB drug in 40 years, was discovered through an M. smegmatis screen. M. smegmatis has become a model bacterium, not only for M. tuberculosis, but for all other Mycobacterium species and related genera. With a repertoire of bioinformatic and physical resources, including the recently established Mycobacterial Systems Resource, M. smegmatis will continue to accelerate mycobacterial research and advance the field of microbiology.
Collapse
Affiliation(s)
- Ian L. Sparks
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keith M. Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
28
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
29
|
Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM. Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria. Nat Commun 2022; 13:5320. [PMID: 36085278 PMCID: PMC9463166 DOI: 10.1038/s41467-022-32553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival. We speculated that the production of specific cell wall lipid(s) that inhibit NPC1 could have been a critical step in the evolution of pathogenicity. We therefore investigated whether lipid extracts from clinical Mtb strains from multiple Mtb lineages, Mtb complex (MTBC) members and non-tubercular mycobacteria (NTM) inhibit the NPC pathway. We report that inhibition of the NPC pathway was present in all clinical isolates from Mtb lineages 1, 2, 3 and 4, Mycobacterium bovis and the NTM, Mycobacterium abscessus and Mycobacterium avium. However, lipid extract from Mycobacterium canettii, which is considered to resemble the common ancestor of the MTBC did not inhibit the NPC1 pathway. We conclude that the evolution of NPC1 inhibitory mycobacterial cell wall lipids evolved early and post divergence from Mycobacterium canettii-related mycobacteria and that this activity contributes significantly to the promotion of disease.
Collapse
Affiliation(s)
- Yuzhe Weng
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
30
|
Nguyen PP, Kado T, Prithviraj M, Siegrist MS, Morita YS. Inositol acylation of phosphatidylinositol mannosides: a rapid mass response to membrane fluidization in mycobacteria. J Lipid Res 2022; 63:100262. [PMID: 35952902 PMCID: PMC9490103 DOI: 10.1016/j.jlr.2022.100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacteria share an unusually complex, multilayered cell envelope, which contributes to adaptation to changing environments. The plasma membrane is the deepest layer of the cell envelope and acts as the final permeability barrier against outside molecules. There is an obvious need to maintain the plasma membrane integrity, but the adaptive responses of the plasma membrane to stress exposure remain poorly understood. Using chemical treatment and heat stress to fluidize the membrane, we show here that phosphatidylinositol (PI)-anchored plasma membrane glycolipids known as PI mannosides (PIMs) are rapidly remodeled upon membrane fluidization in Mycobacterium smegmatis. Without membrane stress, PIMs are predominantly in a triacylated form: two acyl chains of the PI moiety plus one acyl chain modified at one of the mannose residues. Upon membrane fluidization, we determined the fourth fatty acid is added to the inositol moiety of PIMs, making them tetra-acylated variants. Additionally, we show that PIM inositol acylation is a rapid response independent of de novo protein synthesis, representing one of the fastest mass conversions of lipid molecules found in nature. Strikingly, we found that M. smegmatis is more resistant to the bactericidal effect of a cationic detergent after benzyl alcohol pre-exposure. We further demonstrate that fluidization-induced PIM inositol acylation is conserved in pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. Our results demonstrate that mycobacteria possess a mechanism to sense plasma membrane fluidity change. We suggest that inositol acylation of PIMs is a novel membrane stress response that enables mycobacterial cells to resist membrane fluidization.
Collapse
Affiliation(s)
- Peter P Nguyen
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
31
|
Wang XX, Ke X, Liu ZQ, Zheng YG. Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World J Microbiol Biotechnol 2022; 38:191. [PMID: 35974205 PMCID: PMC9381402 DOI: 10.1007/s11274-022-03369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Steroidal resource occupies a vital proportion in the pharmaceutical industry attributing to their important therapeutic effects on fertility, anti-inflammatory and antiviral activities. Currently, microbial transformation from phytosterol has become the dominant strategy of steroidal drug intermediate synthesis that bypasses the traditional chemical route. Mycobacterium sp. serve as the main industrial microbial strains that are capable of introducing selective functional modifications of steroidal intermediate, which has become an indispensable platform for steroid biomanufacturing. By reviewing the progress in past two decades, the present paper concentrates mainly on the microbial rational modification aspects that include metabolic pathway editing, key enzymes engineering, material transport pathway reinforcement, toxic metabolic intermediates removal and byproduct reconciliation. In addition, progress on omics analysis and direct genetic manipulation are summarized and classified that may help reform the industrial hosts with more efficiency. The paper provides an insightful present for steroid biomanufacturing especially on the current trends and prospects of mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
32
|
Eslaminejad T, Moshafi MH, Hasanpore M, Ayatollahi SA, Ansari M. Evaluation of the anticandidal activity of clotrimazole using Lactobacillus caseie ghosts as biological drug carrier. Daru 2022; 30:67-73. [PMID: 35290650 PMCID: PMC9114249 DOI: 10.1007/s40199-022-00432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Candida albicans cause oral and vaginal mucosa infections as well as bloodstream and deep-tissue infections. Commonly, clotrimazole as a broad-spectrum antimitotic drug applied for treatment of Candida albicans infections. Bacterial ghosts are dead cells that have the broad potential to target the various body tissues and cells as drug vector. OBJECTIVES We hope to conquest this resistance by using clotrimazole loaded on bacterial ghosts. METHODS Lactobacillus ghosts were produced by using tween 80 and lactic acid according to the protocol and the amount of the DNA and protein in supernatant was measured by Nano-drop spectrophotometry. Ghost's morphological characteristics were detected by using light microscopy, SEM and AFM. Antifungal activities of the synthesized ghosts were measured by plate methods. Three independent vertical Franz cells were used to evaluate drug release profile. BG-clotrimazole was added into cream base and was examined for dispensability as well as uniformity of the formulation on the skin. RESULTS Results of the Nano-drop analysis showed that protein and DNA was seen in supernatant of treatment compared to control groups. AFM results showed well-dispersed and rod-shaped L. casei ghost cells. Lysis pores formation in the L. casei ghosts was indicated by SEM micrographs. BGs represent an excellent drug delivery system because of the high loading capability. Nearly, 50% of clotrimazole was released from BGs during 90 min. Highest anticandidal activity occurred using 100 mg/l clotrimazole-BG, while toxic effects were also seen with 10 mg/l clotrimazole. IC50 clotrimazole-BG was found at 0.001 mg/l. Chemical stability results showed that about 90% of clotrimazole remained in the formulation. CONCLUSION It could be concluded that the bacterial ghosts are very talented to high loading capability, keeping and releasing drug during six months, therefore these could act as an excellent drug delivery system.
Collapse
Affiliation(s)
- Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of, Medical Sciences, Kerman, Iran.,Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hassan Moshafi
- Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Matineh Hasanpore
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of, Medical Sciences, Kerman, Iran
| | - Seyed Amin Ayatollahi
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran. .,Food and Drug Laboratory Research Center, Food and Drug Administration, MOH & ME, Tehran, Iran.
| |
Collapse
|
33
|
Zhang L, Kent JE, Whitaker M, Young DC, Herrmann D, Aleshin AE, Ko YH, Cingolani G, Saad JS, Moody DB, Marassi FM, Ehrt S, Niederweis M. A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nat Commun 2022; 13:2255. [PMID: 35474308 PMCID: PMC9042941 DOI: 10.1038/s41467-022-29873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating the importance of Rv0455c and siderophore secretion during disease. The crystal structure of a Rv0455c homolog reveals a novel protein fold consisting of a helical bundle with a 'cinch' formed by an essential intramolecular disulfide bond. These findings advance our understanding of the distinct M. tuberculosis siderophore secretion system.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James E Kent
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David C Young
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Alexander E Aleshin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
34
|
Moolla N, Bailo R, Marshall R, Bavro VN, Bhatt A. Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria. Cell Surf 2021; 7:100062. [PMID: 34522829 PMCID: PMC8427324 DOI: 10.1016/j.tcsw.2021.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Mycobacterial membrane protein Large (MmpL7) is a Resistance-Nodulation-Division (RND) family transporter required for the export of the virulence lipid, phthiocerol dimycocerosate (PDIM), in Mycobacterium tuberculosis. Using a null mutant of the related, vaccine strain Mycobacterium bovis BCG, we show that MmpL7 is also involved in the transport of the structurally related phenolic glycolipid (PGL), which is also produced by the hypervirulent M. tuberculosis strain HN878, but absent in M. tuberculosis H37Rv. Furthermore, we generated an in silico model of M. tuberculosis MmpL7 that revealed MmpL7 as a functional outlier within the MmpL-family, missing a canonical proton-relay signature sequence, suggesting that it employs a yet-unidentified mechanism for energy coupling for transport. In addition, our analysis demonstrates that the periplasmic porter domain 2 insert (PD2-insert), which doesn't share any recognisable homology, is highly alpha-helical in nature, suggesting an organisation similar to that seen in the hopanoid PD3/4 domains. Using the M. bovis BCG mmpL7 mutant for functional complementation with mutated alleles of mmpL7, we were able to identify residues present in the transmembrane domains TM4 and TM10, and the PD2 domain insert that play a crucial role in PDIM transport, and in certain cases, biosynthesis of PDIM.
Collapse
Affiliation(s)
- Nabiela Moolla
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert Marshall
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Jia Khor M, Broda A, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. An Improved Method for Rapid Detection of Mycobacterium abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Front Chem 2021; 9:715890. [PMID: 34386482 PMCID: PMC8353234 DOI: 10.3389/fchem.2021.715890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Rapid diagnostics of bacterial infection is the key to successful recovery and eradication of the disease. Currently, identification of bacteria is based on the detection of highly abundant proteins, mainly ribosomal proteins, by routine MALDI-TOF mass spectrometry. However, relying solely on proteins is limited in subspecies typing for some pathogens. This is the case for, for example, the mycobacteria belonging to the Mycobacterium abscessus (MABS) complex, which is classified into three subspecies, namely, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Being able to detect bacteria accurately and rapidly at the subspecies level could not only reliably identify the pathogen causing the disease but also enable better antibiotic stewardship. For instance, M. abscessus subsp. abscessus and M. abscessus subsp. bolletii possess a functional erm41 (erythromycin ribosomal methylation gene 41) gene, whilst M. abscessus subsp. massiliense does not, resulting in differences in macrolide antibiotic (e.g., clarithromycin and azithromycin) susceptibilities. This presents a challenge for physicians when designing an appropriate treatment regimen. To address this challenge, in addition to proteins, species-specific lipids have now been considered as a game changer in clinical microbiology diagnostics. However, their extraction can be time-consuming, and analysis requires the use of apolar toxic organic solvents (e.g., chloroform). Here, we present a new method to accurately detect species and subspecies, allowing the discrimination of the mycobacteria within the MABS complex and relying on the use of ethanol. We found that a combination of the matrix named super-DHB with 25% ethanol with a bacterial suspension at McFarland 20 gave robust and reproducible data, allowing the discrimination of the bacteria within the MABS complex strains tested in this study (n = 9). Further investigations have to be conducted to validate the method on a larger panel of strains for its use in diagnostic laboratories.
Collapse
Affiliation(s)
- Min Jia Khor
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
37
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
38
|
Veyron-Churlet R, Saliou JM, Locht C. Interconnection of the mycobacterial heparin-binding hemagglutinin with cholesterol degradation and heme/iron pathways identified by proximity-dependent biotin identification in Mycobacterium smegmatis. Environ Microbiol 2021; 23:3212-3224. [PMID: 33913567 DOI: 10.1111/1462-2920.15547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Deciphering protein-protein interactions is a critical step in the identification and the understanding of biological mechanisms deployed by pathogenic bacteria. The development of in vivo technologies to characterize these interactions is still in its infancy, especially for bacteria whose subcellular organization is particularly complex, such as mycobacteria. In this work, we used the proximity-dependent biotin identification (BioID) to define the mycobacterial heparin-binding hemagglutinin (HbhA) interactome in the saprophytic bacterium Mycobacterium smegmatis. M. smegmatis is a commonly used model to study and characterize the physiology of pathogenic mycobacteria, such as Mycobacterium tuberculosis. Here, we adapted the BioID technology to in vivo protein-protein interactions studies in M. smegmatis, which presents several advantages, such as maintaining the complex organization of the mycomembrane, offering the possibility to study membrane or cell wall-associated proteins, including HbhA, in the presence of cofactors and post-translational modifications, such as the complex methylation pattern of HbhA. Using this technology, we found that HbhA is interconnected with cholesterol degradation and heme/iron pathways. These results are in line with previous studies showing the dual localization of HbhA, associated with the cell wall and intracytoplasmic lipid inclusions, and its induction under high iron growth conditions.
Collapse
Affiliation(s)
- Romain Veyron-Churlet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, F-59000, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, F-59000, France
| |
Collapse
|
39
|
An ABC transporter Wzm-Wzt catalyzes translocation of lipid-linked galactan across the plasma membrane in mycobacteria. Proc Natl Acad Sci U S A 2021; 118:2023663118. [PMID: 33879617 DOI: 10.1073/pnas.2023663118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, one of the deadliest pathogens in human history, is distinguished by a unique, multilayered cell wall, which offers the bacterium a high level of protection from the attacks of the host immune system. The primary structure of the cell wall core, composed of covalently linked peptidoglycan, branched heteropolysaccharide arabinogalactan, and mycolic acids, is well known, and numerous enzymes involved in the biosynthesis of its components are characterized. The cell wall biogenesis takes place at both cytoplasmic and periplasmic faces of the plasma membrane, and only recently some of the specific transport systems translocating the metabolic intermediates between these two compartments have been characterized [M. Jackson, C. M. Stevens, L. Zhang, H. I. Zgurskaya, M. Niederweis, Chem. Rev., 10.1021/acs.chemrev.0c00869 (2020)]. In this work, we use CRISPR interference methodology in Mycobacterium smegmatis to functionally characterize an ATP-binding cassette (ABC) transporter involved in the translocation of galactan precursors across the plasma membrane. We show that genetic knockdown of the transmembrane subunit of the transporter results in severe morphological changes and the accumulation of an aberrantly long galactan precursor. Based on similarities with structures and functions of specific O-antigen ABC transporters of gram-negative bacteria [C. Whitfield, D. M. Williams, S. D. Kelly, J. Biol. Chem. 295, 10593-10609 (2020)], we propose a model for coupled synthesis and export of the galactan polymer precursor in mycobacteria.
Collapse
|
40
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
41
|
Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Acc Chem Res 2021; 54:930-939. [PMID: 33539084 PMCID: PMC8208102 DOI: 10.1021/acs.accounts.0c00843] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotics are miracle drugs that can cure infectious bacterial diseases. However, their utility is challenged by antibiotic-resistant bacteria emerging in clinics and straining modern medicine and our ways of life. Certain bacteria such as Gram-negative (Gram(-)) and Mycobacteriales species are intrinsically resistant to most clinical antibiotics and can further gain multidrug resistance through mutations and plasmid acquisition. These species stand out by the presence of an additional external lipidic membrane, the outer membrane (OM), that is composed of unique glycolipids. Although formidable, the OM is a passive permeability barrier that can reduce penetration of antibiotics but cannot affect intracellular steady-state concentrations of drugs. The two-membrane envelopes are further reinforced by active efflux transporters that expel antibiotics from cells against their concentration gradients. The major mechanism of antibiotic resistance in Gram(-) pathogens is the active efflux of drugs, which acts synergistically with the low permeability barrier of the OM and other mutational and plasmid-borne mechanisms of antibiotic resistance.The synergy between active efflux and slow uptake offers Gram(-) bacteria an impressive degree of protection from potentially harmful chemicals, but it is also their Achilles heel. Kinetic studies have revealed that even small changes in the efficiency of either of the two factors can have dramatic effects on drug penetration into the cell. In line with these expectations, two major approaches to overcome this antibiotic resistance mechanism are currently being explored: (1) facilitation of antibiotic penetration across the outer membranes and (2) avoidance and inhibition of clinically relevant multidrug efflux pumps. Herein we summarize the progress in the latter approach with a focus on efflux pumps from the resistance-nodulation-division (RND) superfamily. The ability to export various substrates across the OM at the expense of the proton-motive force acting on the inner membrane and the engagement of accessory proteins for their functions are the major mechanistic advantages of these pumps. Both the RND transporters and their accessory proteins are being targeted in the discovery of efflux pump inhibitors, which in combination with antibiotics can potentiate antibacterial activities. We discuss intriguing relationships between substrates and inhibitors of efflux pumps, as these two types of ligands face similar barriers and binding sites in the transporters and accessory proteins and both types of activities often occur with the same chemical scaffold. Several distinct chemical classes of efflux inhibitors have been discovered that are as structurally diverse as the substrates of efflux pumps. Recent mechanistic insights, both empirical and computational, have led to the identification of features that distinguish OM permeators and efflux pump avoiders as well as efflux inhibitors from substrates. These findings suggest a path forward for optimizing the OM permeation and efflux-inhibitory activities in antibiotics and other chemically diverse compounds.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - John K Walker
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|