1
|
Chaabane L, Jaafar Z, Chaaben M, Chaaben S, Ghali AE, Msaddek M, Beyou E, Baouab MHV. Dual-function advanced magnetic bacterial cellulose materials: From enhanced adsorption phenomena to an unprecedented circular green catalytic strategy. J Colloid Interface Sci 2025; 686:1215-1229. [PMID: 39951983 DOI: 10.1016/j.jcis.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
With the growing emphasis on circular catalysis principles and green chemistry, addressing the dual challenge of wastewater treatment and sustainable catalysis has become increasingly critical. Although the adsorption of copper ions using magnetic biomaterials has been widely investigated, its full potential is still not fully understood. In particular, the reutilization of Cu(II)-loaded magnetic bacterial cellulose in circular green catalytic reactions remains underexplored. This study presents a novel magnetic bacterial cellulose-based material, designated as (BC-BPEM)@Fe3O4NPs, engineered through advanced chemical modifications to address these challenges. The adsorption kinetics followed a pseudo-second-order model, indicating chemisorption as the predominant mechanism. A key challenge addressed in this study was the efficient reuse of Cu(II)-loaded magnetic bacterial cellulose-based material. The recovered material was successfully employed as a catalyst in the synthesis of novel 1,4-disubstituted bis-1,2,3-triazoles under green conditions. Notably, the reaction achieved an impressive rate of 0.219 ± 0.006 mmol.gcat-1.min-1 and a 99 % yield within 15 min, using green deep eutectic solvents (ChCl/Gly) and glutathione as a reducing agent. Remarkably, the catalyst retained its high catalytic performance over 20 cycles, maintaining yields consistently between 99 % and 97 %. This study not only emphasizes the seamless integration of adsorption and catalytic recycling but also highlights the sustainability of the approach. Environmental metrics revealed an E-factor of 0.442 kg waste/kg product, a PMI of 1.442 kg materials/kg product, and an RME of 99.83 %, reinforcing the potential of catalyst in both sustainable catalysis and environmental remediation.
Collapse
Affiliation(s)
- Laroussi Chaabane
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France.
| | - Zouhour Jaafar
- CSPBAT, CNRS UMR 7244, F-93017, University Paris 13, Sorbonne Paris City, Bobigny, France; Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Marwa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Département de Chimie, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - Safa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Institut National de la Recherche Scientifique-Centre Énergie Matériaux Télécommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Amel El Ghali
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| | - Moncef Msaddek
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Emmanuel Beyou
- Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France
| | - Mohammed Hassen V Baouab
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| |
Collapse
|
2
|
Sharma S, Sagar R. Efficient synthesis of coumarin based triazole linked O-glycoconjugates as new bio-active glycohybrids. Carbohydr Res 2025; 550:109395. [PMID: 39864121 DOI: 10.1016/j.carres.2025.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Glycohybrids are biologically significant molecules with variety of biological functions and are found as structural motifs in numerous natural products. Here, we report the synthesis of various new coumarin-based O-glycoconjugates as glycohybrids that are chirally enriched and bridged by 1,2,3-triazoles ring system. The1,2,3-triazoles bridging was done via CuAAC click-chemistry. Click chemistry offers several advantages, including high chemo- and regioselectivity, mild reaction conditions, easy purification, and compatibility with multiple functional groups. Two series of O-glycoconjugates as new glycohybrids were designed and efficiently synthesized in very good isolated yields, using d-glucose, d-galactose, d-mannose, d-arabinose, 3,4,6-tri-O-acetyl-D-glucal, 3,4,6-tri-O-acetyl-D-galactal and 3,4-di-O-acetyl-D-arabinal derived 1-O-propargylated glycosides, reacting with various 4-azidocoumarins under click-chemistry reaction conditions. The prepared new coumarin-based O-glycoconjugates as glycohybrids were found to possess anticancer activity against MCF-7 breast cancer cell lines at micromolar concentration.
Collapse
Affiliation(s)
- Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Zhao J, Chen R, Ma A, Dong Y, Han M, Yu X, Chen Y. CuO 2@SiO 2 nanoparticle assisted click reaction-mediated magnetic relaxation biosensor for rapid detection of Salmonella in food. Biosens Bioelectron 2025; 273:117188. [PMID: 39894606 DOI: 10.1016/j.bios.2025.117188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
Foodborne pathogens seriously threaten people's life and well-being. In this study, we developed a novel magnetic relaxation time (PCuMRS) biosensor by integrating phage, differential magnetic separation technology, and copper catalyzed click reaction to enable rapid and sensitive detection of viable Salmonella typhimurium (S. typhimurium) in food within 80 min. This assay utilized phage as the recognition element to accurately differentiate between viable and nonviable S. typhimurium. Initially, we prepared a complex of magnetic nanoparticles (MNPs) and phage to efficiently capture viable S. typhimurium. We synthesized CuO2@SiO2-phage nanoparticles loaded with numerous Cu2+ ions to transform the concentration of S. typhimurium into a corresponding concentration of copper ions, which then modulate the click reaction between magnetic nanoparticles of varying sizes, leading to changes in both the number of small magnetic nanoparticles and magnetic signals. Based on this principle, we established a linear relationship (102-107 CFU/mL) between the concentration of S. typhimurium and the changes in magnetic signal, with a limit of quantification of 80 CFU/mL. Furthermore, the standard recovery rate and coefficient of variation of the sensor are 93.68%-100.36% and 0.59%-4.76%, respectively. The PCuMRS biosensor demonstrates outstanding sensitivity and a short detection time, making it a rapid, sensitive, and accurate method for identifying foodborne pathogens such as S. typhimurium, which has potential for applications in various other fields.
Collapse
Affiliation(s)
- Junpeng Zhao
- Dalian Jinshiwan Laboratory, Dalian, 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Rui Chen
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Minjie Han
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Xuezhi Yu
- Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yiping Chen
- Dalian Jinshiwan Laboratory, Dalian, 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
4
|
Koosha S, Ghorbani-Vaghei R, Alavinia S. Copper-anchored polysulfonamide-modified UiO-66-NH 2/sodium alginate nanocatalyst for sustainable synthesis of 1,2,3-triazoles. NANOSCALE ADVANCES 2025; 7:1937-1945. [PMID: 39936119 PMCID: PMC11808793 DOI: 10.1039/d4na01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
An effective nanocomposite comprising a metal-organic framework and porous polysulfonamide-sodium alginate (SA-PS) was developed for phenyl triazole production. The Cu(i) ions were uniformly distributed on the as-prepared UiO-66-NH2@SA-PS matrix, coordinated by sulfonamide groups in a bidentate bridging pattern (UiO-66-NH2@SA-PS/CuI). The nanocatalyst UiO-66-NH2@SA-PS/CuI demonstrated exceptional performance in the synthesis of 1,2,3-triazole derivatives, facilitating high product yields in the reaction of various aryl boronic acids, phenylacetylene, and sodium azide under mild conditions.
Collapse
Affiliation(s)
- Samaneh Koosha
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamadan 6517838683 Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamadan 6517838683 Iran
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan Rasht Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamadan 6517838683 Iran
| |
Collapse
|
5
|
Yadav Y, Singh K, Tyagi R, Sagar R. Organobase-catalyzed efficient synthesis of 4-acyl-5-aryl tri-substituted triazole linked N-glycosides as glycohybrids. Org Biomol Chem 2025; 23:2904-2917. [PMID: 39989371 DOI: 10.1039/d4ob01971g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Herein, we report a highly efficient organobase-catalyzed method for the synthesis of fully decorated chiral 4-acyl-5-aryl-trisubstituted-1,2,3-triazole-linked N-glycosidic molecular scaffolds as glycohybrids. This process involves a base-catalyzed 1,3 dipolar cycloaddition reaction, where β-ketoesters react with various glycosyl azides in dimethyl sulfoxide at room temperature, furnishing new glycohybrids in good to excellent yields. This intermolecular reaction is metal-free, exceptionally efficient, versatile, and high-yielding, with a broad substrate scope and remarkable regioselectivity.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
6
|
Schauenburg D, Weil T. Not So Bioorthogonal Chemistry. J Am Chem Soc 2025; 147:8049-8062. [PMID: 40017419 PMCID: PMC11912343 DOI: 10.1021/jacs.4c15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
The advent of bioorthogonal chemistry has transformed scientific research, offering a powerful tool for selective and noninvasive labeling of (bio)molecules within complex biological environments. This innovative approach has facilitated the study of intricate cellular processes, protein dynamics, and interactions. Nevertheless, a number of challenges remain to be addressed, including the need for improved reaction kinetics, enhanced biocompatibility, and the development of a more diverse and orthogonal set of reactions. While scientists continue to search for veritable solutions, bioorthogonal chemistry remains a transformative tool with a vast potential for advancing our understanding of biology and medicine. This Perspective offers insights into reactions commonly classified as "bioorthogonal", which, however, may not always demonstrate the desired selectivity regarding the interactions between their components and the additives or catalysts used under the reaction conditions.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
7
|
Yadav MS, Jaiswal MK, Kumar S, Singh SK, Garai S, Tiwari VK. Substrate-Dependent Stereoselective Synthesis of Pyrrolo[3,4-b]Pyridin-5-Ones and Pyridyl Isoindoline-1-Ones Using Bis(benzotriazol-1-yl) Ligand. Chem Asian J 2025; 20:e202401301. [PMID: 39558624 DOI: 10.1002/asia.202401301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
The documented work highlighted the synthesis of bis(benzotriazol-1-yl) methane derivatives using silicomolybdic acid (SMA) and successfully implemented in the stereoselective synthesis of diverse pyrrolo[3,4-b]pyridin-5-one and pyridyl isoindolinones derivatives in one-pot. The pyridinamide precursor with diverse alkynes furnished Z-selectivity of pyrrolo[3,4-b]pyridin-5-one across exocyclic C=C bond while the various benzamides on treating with 2-ethynyl pyridine afforded (E)-pyridylisoindoline-1-ones as a major isomer. The single-crystal X-ray diffraction provides strong evidence in favor of the existence and orientation of developed compounds. The broad substrate scope, easy accessibility of substrates, high stereoselectivity, scale-up synthesis, and crystal evidence demonstrate the merits of the current decorum.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, INDIA
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, INDIA
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, INDIA
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, INDIA
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, INDIA
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, INDIA
| |
Collapse
|
8
|
Roy D, Deori K. Structure-activity relationships in the development of single atom catalysts for sustainable organic transformations. NANOSCALE ADVANCES 2025; 7:1243-1271. [PMID: 39911731 PMCID: PMC11792631 DOI: 10.1039/d4na00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Single atom catalysts (SACs), which can provide the combined benefits of homogeneous and heterogeneous catalysts, are a revolutionary concept in the field of material research. The highly exposed catalytic surfaces, unsaturated sites, as well as unique structural and electronic properties of SACs have the potential to catalyze numerous reactions with unmatched efficiency and durability when stabilized on a suitable support. In this review, we have provided an intuitive insight into the strategies adopted in the last 5 years for morphology control of SACs to know about its impact on metal-support interaction and various organic transformations with special reference to metal oxides, alloys, metal-organic frameworks (MOFs) and carbon-based supports. This review also includes a brief description of unparalleled potentials of SACs and the recent advances in the catalysis of industrially important organic transformations, with special emphasis on the C-C cross-coupling reaction, biomass conversion, hydrogenation, oxidation and click chemistry. This unprecedented and unique perspective will highlight the interactions occurring within SACs that are responsible for their high catalytic efficiency, which will potentially benefit various organic transformations. We have also suggested plausible synergy of various other concepts such as defect engineering and piezocatalysis with SACs, which can provide a new direction to sustainable chemistry. A good understanding of the different types of metal-support interactions will help researchers develop morphology-controlled SACs with tunable properties and establish mechanisms for their exceptional catalytic behaviour in industrially important organic transformations.
Collapse
Affiliation(s)
- Deepshikha Roy
- KD's NAME (NanoMat&Energy) Lab, Department of Chemistry, Dibrugarh University Dibrugarh 786004 India
| | - Kalyanjyoti Deori
- KD's NAME (NanoMat&Energy) Lab, Department of Chemistry, Dibrugarh University Dibrugarh 786004 India
| |
Collapse
|
9
|
Sharma A, Jaiswal MK, Yadav MS, Ansari D, Tripathi RP, Tiwari VK. Recent development on stereoselective intramolecular O-glycosylation methodology. Carbohydr Res 2025; 552:109415. [PMID: 40023931 DOI: 10.1016/j.carres.2025.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Carbohydrates are increasingly recognized for their versatility as scaffolds in biological, pharmaceutical and biotechnological applications, due to their structural diversity, biocompatibility, hydrophilicity, low toxicity, bioavailability, and excellent ADME properties. The important role of carbohydrates in biological systems deepens, the demand for well-defined and anomerically pure carbohydrates in biomedical research has surged. Chemical synthesis remains the most viable method to meet this demand, despite the inherent challenges in glycosylation reactions. Carbohydrate oligomers, in particular, pose significant difficulties due to the need for complex protecting and leaving group modifications, functionalization, labour-intensive purification, and detailed characterization. A precise stereo and regio-control during glycosylation remains one of the major challenges in organic synthesis. To enhance the selectivity in glycosylation products, the concept of 'Intramolecular Glycosylation' was developed, offering a more advanced and efficient alternative route to conventional methods. Various intramolecular glycosylation methods can be classified primarily into three categories: Intramolecular Aglycone Delivery (IAD), Leaving Group-based Intramolecular Glycosylation, and the Molecular Clamp concept. This review article explores the fundamentals of these three methodologies, their significant advancements, and highlights their growing impact on the stereoselective synthesis of numerous bioactive O-glycosides, glycans with diverse functionalities, complex oligosaccharides, and various macrocycles with definite stereoselectivity.
Collapse
Affiliation(s)
- Anindra Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Department of Chemistry, A.P.S.M. College, Barauni, A Constituent Unit of Lalit Narayan Mithila University, Darbhanga, Bihar, India.
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Danish Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rama P Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Singh K, Mandal T, Pandey UP, Singh V. Emergence of Fluorescent Glycodots for Biomedical Applications. ACS Biomater Sci Eng 2025; 11:742-773. [PMID: 39876593 DOI: 10.1021/acsbiomaterials.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Carbohydrate-functionalized quantum dots exhibit excellent physical characteristics and enhance the steric interaction with biological cells and tissues. Glycoconjugation of quantum dots promotes aqueous solubility, stability, and reduced immunogenicity. Carbohydrate-protein interactions are involved in various vital processes and provide insight into cellular recognition, cell-to-cell communication, pathogenicity, antigen-antibody recognition, and enzymatic action. Quantum dots are fluorescent materials with rich quantum mechanical and unique optical properties, making them valuable for biomedical applications. Recent advancements in quantum dot materials as biomedical tools have led to the development of carbohydrate-conjugated glyco-functionalized quantum dots. These innovations promise application as nanocarriers, imaging agents, fluorescent probes, and theranostics. This review provides an overview of glyco nanotechnology, emphasizing carbohydrate-conjugated metal-, silicon-, and carbon-based quantum dots as glyco dots and their potential biomedical uses. We hope that this study will address the gap in this field and provide a more precise understanding of the subject.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh Pratap Pandey
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research Lucknow, Uttar Pradesh, 226001, India
| |
Collapse
|
11
|
Yasuda T, Orimoto G, Yoshida S. Three-step click assembly using trivalent platforms bearing azido, ethynyl, and fluorosulfonyl groups. Chem Commun (Camb) 2025; 61:2333-2336. [PMID: 39807037 DOI: 10.1039/d4cc06585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Divergent synthesis of triazoles was achieved using newly designed platform molecules possessing azide, alkyne, and fluorosulfonyl moieties. Consecutive conjugations by the sulfur(VI) fluoride exchange and following consecutive triazole formations allowed us to prepare a wide variety of bis(triazole)s by virtue of selective transformations. One-pot triple-click assembly of easily accessible modules led to the facile synthesis of middle-molecular-weight triazoles with various functional moieties.
Collapse
Affiliation(s)
- Takahiro Yasuda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.
| | - Gaku Orimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.
| |
Collapse
|
12
|
Wang Y, Bo Y, Liu Y, Zhou J, Nguyen D, Baskaran D, Liu Y, Wang H. Metabolic labeling and targeted modulation of adipocytes. Biomater Sci 2025; 13:434-445. [PMID: 39648977 PMCID: PMC11758917 DOI: 10.1039/d4bm01352b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Adipocytes play a critical role in energy storage and endocrine signaling and are associated with various diseases such as cancer and diabetes. Facile strategies to engineer adipocytes have long been pursued for elucidating adipocyte biology and developing adipocyte-based therapies. Herein, we report metabolic glycan labeling of adipocytes and subsequent targeted modulation of adipocytes via click chemistry. We show that azido tags expressed on the surface of adipocytes can persist for over 4 days. By conjugating dibenzocyclooctyne (DBCO)-cargos onto azido-labeled adipocytes via click chemistry, the cargos can be retained on the adipocyte membrane for over 12 hours. We further show that signaling molecules including adiponectin, calreticulin, mannose-binding lectin 2, and milk fat globule-EGF factor 8 protein can be conjugated to adipocytes to orchestrate their phagocytosis by macrophages. The azido-labeled adipocytes grafted into mice can also mediate targeted conjugation of DBCO-cargos in vivo. This adipocyte labeling and targeting technology will facilitate the development of adipocyte-based therapies and provides a new platform for manipulating the interaction between adipocytes and other types of cells.
Collapse
Affiliation(s)
- Yueji Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yusheng Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jiadiao Zhou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel Nguyen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dhyanesh Baskaran
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Cai M, Zhang Y, Zhen J, Yang F, Ou X, Zhang J, Yu F. Trivalent oleanolic acid-glucose conjugates: Synthesis and efficacy against Influenza A virus. Eur J Med Chem 2024; 280:116977. [PMID: 39454223 DOI: 10.1016/j.ejmech.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Influenza A virus (IAV) leads to significant morbidity and mortality due to the seasonal epidemics and spread. We have demonstrated that oleanolic acid (OA) C28 glucose conjugates and OA trimers are capable of effectively blocking the recognition and interaction between the influenza virus and host cells. In this study, a series of OA-glucose trimers were designed and synthesized through the CuAAC reaction. All trimers underwent screening for anti-IAV activities in vitro. Among these, compounds 13a and 13b showed inhibitory activity against the influenza virus, with IC50 values of 0.68 μM and 0.47 μM, respectively, demonstrating greater potency than oseltamivir (IC50 = 1.36 μM). Results from the time-of-addition experiment and hemagglutination inhibition assay suggest that these OA-glucose trimers may disrupt the recognition between the HA protein of IAV and sialic acid receptors on host cells, thus blocking viral entry. Furthermore, it was found that compound 13b effectively inhibits IAV infection in BALB/c mice. This study has elucidated the structure-activity relationships of OA trimers against the influenza virus and highlighted the utility of multivalent OA conjugates for enhancing ligand-target interactions in anti-influenza virus drug design, laying a groundwork for future research into the antiviral applications of these natural products.
Collapse
Affiliation(s)
- Ming Cai
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Yuan Zhang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Jie Zhen
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Fan Yang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Xia Ou
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Jihong Zhang
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China
| | - Fei Yu
- School of Medicine, Kunming University of Science and Technology, Yunnan, 650500, China.
| |
Collapse
|
14
|
Zhang C, Tian T, Yin N, Zhao J. Click chemistry-based fluorescence polarization sensor for sensitive detection of ampicillin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124872. [PMID: 39067359 DOI: 10.1016/j.saa.2024.124872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Ampicillin (AMP) is a β-lactam antibiotic that can inhibit bacterial wall synthesis. The overuse and misuse of AMP makes it micropollutant that commonly found in food and various environmental media. In this work, a fluorescence polarization sensor was designed to sensitive detection of trace ampicillin based on click chemistry, using graphene oxide (GO) as a fluorescence polarization (FP) signal enhancement element. First, when ampicillin binds to its aptamer (apt), the adjacent alkyne and azide groups are separated, hindering the click-linking reaction. When Carboxyfluorescein (FAM) fluorophore-labeled probe (C-FAM) is added, its protruding 3-terminal FAM is recognized and cleaved by exonuclease I (EXO I), releasing fluorophores free that could not be adsorbed on GO, resulting in a lo0wer polarization signal. If there is no AMP in the system, aptamer probe is connected to its complementary chain ends by a click reaction. After C-FAM hybridizes with apt, the apt/P duplex is opened and the prominent single-stranded ends adsorb on the GO, leading a significantly enhanced FP signal. According to the relationship between the difference in FP values and the concentrations of AMP, the limit of detection of proposed method is as low as 80 pg/mL. This assay has a wide linear range plus excellent selectivity, and has been applied to detect AMP in milk and river water samples with satisfactory results, which demonstrates that the FP sensor has great potential for practical applications in food safety and environmental protection fields.
Collapse
Affiliation(s)
- Chao Zhang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Tian Tian
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Nanzhu Yin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Jingjin Zhao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China.
| |
Collapse
|
15
|
Jaiswal MK, Yadav MS, Maurya S, Ansari D, Tiwari VK. HFIP-Mediated Synthesis of 4-Aryl- NH-1,2,3-Triazoles and 1,5-Disubstituted 1,2,3-Triazolyl Glycoconjugates. J Org Chem 2024; 89:17213-17227. [PMID: 39509605 DOI: 10.1021/acs.joc.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We herein report a multicomponent reaction for the synthesis of N-unsubstituted-1,2,3-triazoles and N-substituted-1,2,3 triazoles from the reaction of aldehydes, nitroalkanes, and sodium azides/glycosyl azides in the presence of 1,1,1,3,3,3-hexafluoroisopropanol, a hydrogen bond-donating reaction medium. This three-component reaction provides a metal-free strategy for sequentially forming one C-C and two C-N bonds in a one-pot fashion. One-pot mild reaction condition, operational simplicity, wide substrate scope, good functional group tolerance, easy purification, high reaction yields, and altogether excellent regioselectivity are the notable advantages of this 1,2,3-triazole-forming protocol. Moreover, this protocol provides practical access to the gram-scale synthesis of potent inhibitors of indoleamine 2,3-dioxygenase 1.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shristy Maurya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Danish Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
16
|
Song JQ, Shen LJ, Wang HJ, Liu QB, Ye LB, Liu K, Shi L, Cai B, Lin HS, Pang T. Discovery of Balasubramide Derivative with Tissue-Specific Anti-Inflammatory Activity Against Acute Lung Injury by Targeting VDAC1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410550. [PMID: 39556713 DOI: 10.1002/advs.202410550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Macrophage-mediated inflammatory responses including pyroptosis are involved in the pathogenesis of sepsis and acute lung injury (ALI), for which there are currently no effective therapeutic treatments. The natural product (+)-Balasubramide is an eight-membered lactam compound extracted from the leaves of the Sri Lanka plant Clausena Indica and has shown anti-inflammatory activities, but its poor pharmacokinetic properties limit its further application for ALI. In this study, a compound (+)3C-20 is discovered with improved both pharmacokinetic properties and anti-inflammatory activity from a series of (+)-Balasubramide derivatives. The compound (+)3C-20 exhibits a markedly enhanced inhibitory effect against LPS-induced expressions of pro-inflammatory factors in mouse macrophages and human PBMCs from ALI patients and shows a preferable lung tissue distribution in mice. (+)3C-20 remarkably attenuates LPS-induced ALI through lung tissue-specific anti-inflammatory actions. Mechanistically, a chemical proteomics study shows that (+)3C-20 directly binds to mitochondrial VDAC1 and inhibits VDAC1 oligomerization to block mtDNA release, further preventing NLRP3 inflammasome activation. These findings identify (+)3C-20 as a novel VDAC1 inhibitor with promising therapeutic potential for ALI associated with inflammation.
Collapse
Affiliation(s)
- Jin-Qian Song
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Li-Juan Shen
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Hao-Jie Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qi-Bing Liu
- Department of Pharmacy, the First Affiliated Hospital of Hainan Medical University & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, 571199, P.R. China
| | - Lian-Bao Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian, 116044, P. R. China
| | - Bin Cai
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Han-Sen Lin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
17
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Zheng J, Wang X, Qin H, Hou Y, Yang Q, Zhang X, Hun X. Target-Navigated CBT-Cys "Stapling" Coupled with CRISPR/Cas12a Amplification for the Photoelectrochemical Nucleic Acid Assay. Anal Chem 2024; 96:18011-18019. [PMID: 39331475 DOI: 10.1021/acs.analchem.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Generally, rolling circle amplification (RCA) is based on an enzyme-linked padlock extension reaction. Herein, rapid linking that utilizes click chemistry for joining sticky ends of DNA molecules was developed. The ends of nucleic acid were modified with 2-cyano-6-aminobenzothiazole (CBT) and cystine (Cys-Cys), while glutathione was introduced to break the disulfide bond under target navigation and promote the linkage between CBT and Cys at the terminus of the nucleic acid at pH 7.4. Subsequently, RCA was performed using phi29 polymerase. CRISPR/Cas12a cleavage was triggered by the product of RCA amplification. Assisted by alkaline phosphatase, the electron exchange process between the photoelectroactive Sb@Co(OH)F nanorod and p-aminophenol (p-AP) was collected in the form of photoelectrochemical (PEC) signals. Mass spectrometry, gel electrophoresis, and PEC signals were employed to verify the linking process and the RCA coupled with CRISPR/Cas12a cleavage amplification. CBT-Cys connection exhibited a high reaction rate (23.79 M-1·s-1). This enzyme-free linking process was superior to traditional enzyme catalysis in terms of the reaction environment and linking rate. This efficient nonenzymatic joining system holds great potential for constructing nonhomologous end joining, modifying DNA with molecules, and facilitating nucleic acid-protein modification processes.
Collapse
Affiliation(s)
- Jie Zheng
- College of Biological Engineering, College of Chemistry and Molecular Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaoyu Wang
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongqing Qin
- College of Biological Engineering, College of Chemistry and Molecular Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yaxiao Hou
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, P. R. China
| | - Xuzhi Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, P. R. China
| | - Xu Hun
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
19
|
Abdel-Rahman AAH, El-Bayaa MN, Sobhy A, El-Ganzoury EM, Nossier ES, Awad HM, El-Sayed WA. Novel quinazolin-4-one based derivatives bearing 1,2,3-triazole and glycoside moieties as potential cytotoxic agents through dual EGFR and VEGFR-2 inhibitory activity. Sci Rep 2024; 14:24980. [PMID: 39443462 PMCID: PMC11500008 DOI: 10.1038/s41598-024-73171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
The toxicity that was caused by the developed medications for anticancer treatment is, unfortunately, an earnest problem stemming from the various involved targets, and accordingly, intense research for overcoming such a phenomenon remains indispensable. In the current inquiry, an innovative category of substituted quinazoline-based glycosides incorporating a core of 1,2,3-triazole and attached to distinct acetylated likewise deprotected sugar segments are created and produced synthetically. The resulted 1,2,3-triazolyl-glycosides products were investigated for their ability to cause cytotoxicity to several human cancer cell lines. The quinazoline based glycosyl-1,2,3-triazoles 10-13 with free hydroxy sugar moiety revealed excellent potency against (IC50 range = 5.70-8.10 µM, IC50 Doxorubicin = 5.6 ± 0.30 µM, IC50 Erlotinib = 4.3 ± 0.1 µM). against MCF-7 cancer cell line. In addition, the derived glycosides incorporating quinazolinone and triazole core 6-13 with acetylated and deprotected sugar parts showed excellent and superior potency against HCT-116 (IC50 range = 2.90-6.40 µM). The potent products were revealed as safe cytotoxic agents as indicated by their studied safety profiles. Additional research of promising candidates inhibitory analysis performed against EGFR and VEGFR-2. The hydroxylated glycosides incorporating triazole and quinazoline system 11 and 13 with N-methyl substitution of quinazolinone, gave excellent potency against EGFR (IC50 = 0.35 ± 0.11 and 0.31 ± 0.06 µM, correspondingly) since glycoside 13 revealed comparable IC50 (3.20 ± 0.15 µM) to sorafenib against VEGFR-2. For more understanding of its action mode, it was analyzed how the 1,2,3-triazolyl glycoside 13 made an effect on the apoptosis induction and the arrest of the cell cycle. It was revealed that it had the ability to stop HCT-116 cells in their cell cycle's G1 stage. Moreover, the influence of quinazolinone-1,2,3-triazole-glycoside 13 upon p53, Bax, and Bcl-2 levels in HCT-116 units was also studied for future approaches toward its behavior. Additionally, the latter derivative may trigger apoptosis, as indicated by a significant increase in apoptotic cells. Furthermore, molecular docking was simulated to make an obvious validation and comprehension acquirement of the binding's characteristics also attractions among the most forceful compounds side by side with their aimed enzymes.
Collapse
Affiliation(s)
- Adel A-H Abdel-Rahman
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Mohamed N El-Bayaa
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Asmaa Sobhy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman M El-Ganzoury
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt
| | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Wael A El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| |
Collapse
|
20
|
Khairbek AA, Badawi MAAH, Alzahrani AY, Thomas R. Assessing the catalytic potential of novel halogen substituted carbene NHC (F, Cl, Br, I) catalysts in [3 + 2] cycloaddition reactions: A computational investigation. Dalton Trans 2024; 53:16635-16646. [PMID: 39327943 DOI: 10.1039/d4dt02225d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
This study investigated the catalytic behavior of NHC-X ligands (X = F, Cl, Br, I) in cycloaddition reactions, focusing on both mononuclear and binuclear pathways. Using NCI (noncovalent interaction), RDG (reduced density gradient), ELF (electron localization function), and LOL (localized orbital locus) computational analyses, the electronic interactions and stability of the ligands were examined. The results showed that NHC-Cl exhibited the least steric hindrance and strongest transition state stabilization, making it the most efficient catalyst. NHC-F also demonstrated strong stabilization, particularly in the binuclear pathway. In contrast, NHC-Br showed moderate efficiency, whereas NHC-I was the least effective owing to higher Gibbs free energy values and greater steric hindrance, especially in polar solvents such as water and acetonitrile. This study emphasizes the crucial role of solvent effects and thermodynamic factors in influencing the catalytic efficiency. These findings provide a framework for optimizing NHC-based catalysts for chemical transformations.
Collapse
Affiliation(s)
- Ali A Khairbek
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
- Department of Chemistry, Faculty of Science, Tishreen University, Latakia, Syrian Arab Republic.
| | | | - Abdullah Y Alzahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 23622, Saudi Arabia
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala-686101, India.
- Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala-686101, India
| |
Collapse
|
21
|
Zhao M, Cho SH, Wu X, Mao J, Vogt BD, Zacharia NS. Covalently crosslinked coacervates: immobilization and stabilization of proteins with enhanced enzymatic activity. SOFT MATTER 2024; 20:7623-7633. [PMID: 39291470 DOI: 10.1039/d4sm00765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coacervates represent models for membrane-free protocells and thus provide a simple route to synthetic cellular-like systems that provide selective encapsulation of solutes. Here, we demonstrate a simple and versatile post-coacervation crosslink method using the thiol-ene click reaction in aqueous media to prepare covalently crosslinked coacervates. The crosslinking of the coacervate enables stability at extreme pH where the uncrosslinked coacervate fully disassembles. The crosslinking also enhances the hydrophobicity within the coacervate environment to increase the encapsulation efficiency of bovine serum albumin (BSA), as compared to the uncrosslinked coacervate. Additionally, the crosslinked coacervate increases the stabilization of BSA at low pH. These crosslinked coacervates can act as carriers for enzymes. The enzymatic activity of alkaline phosphatase (ALP) is enhanced within the crosslinked coacervate compared to the ALP in aqueous solution. The post-coacervation crosslink approach allows the utilization of coacervates for encapsulation of biologicals under conditions where the coacervate would generally disassemble. We demonstrate that these crosslinked coacervates enable the protection of encapsulated protein against denaturation at extreme pH and enhance the enzymatic activity with encapsulation. This click approach to stabilization of coacervates should be broadly applicable to other systems for a variety of biologics and environmentally sensitive molecules.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Szu-Hao Cho
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Xinchi Wu
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Jingyi Mao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Bryan D Vogt
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| |
Collapse
|
22
|
Ajormal F, Bikas R, Ghasemzadeh H, Noshiranzadeh N, Kozakiewicz-Piekarz A. Green and recyclable catalyst based on chitosan/CuFe 2O 4 nanocomposite hydrogel for one-step synthesis of 1,2,3-triazoles. RSC Adv 2024; 14:31320-31331. [PMID: 39359334 PMCID: PMC11443811 DOI: 10.1039/d4ra05626d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The scope of the heterogeneous catalysts has been greatly expanded in last few decades by the development of various catalysts. In this work a new chitosan-based nanocomposite hydrogel (CS/CuFe2O4 NCH) was synthesized as a high-performance heterogeneous catalyst and then, it was utilized for the green synthesis of substituted 1,2,3-triazoles by a multi-component (azide-alkyne-epoxide) cycloaddition reaction. The synthesized nanocomposite hydrogel was investigated by using various instrumental analyses, including FT-IR, XRD, SEM, EDS, HRTEM, DLS, and TGA. The structure of one of the substituted 1,2,3-triazoles was studied by using single-crystal X-ray diffraction analysis. The nanocomposite hydrogel can be easily regenerate after the catalytic reaction. It can be reused frequently without considerable loss of activity. The high catalytic activity, straightforward reaction, easy recyclability, short reaction time, use of a green solvent, and the simple separation of catalyst are the main advantage of the current method, which offers both financial and environmental benefits.
Collapse
Affiliation(s)
- Fatemeh Ajormal
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Hossein Ghasemzadeh
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Nader Noshiranzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun Torun 87-100 Poland
| |
Collapse
|
23
|
Chen J, Feng X, He Q, Fan R. Electrochemical C-H Azidation and Diazidation of Anilines for the Synthesis of Aryl Azides and Diazides. J Org Chem 2024; 89:12326-12330. [PMID: 39177449 DOI: 10.1021/acs.joc.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The increasing importance and need in many aspects have driven the rapid development of synthetic studies toward aryl azides. In this paper, electrochemical C-H azidation and diazidation of anilines have been developed using TMSN3 as an azide source. A range of functional groups can be tolerated under the optimized reaction conditions.
Collapse
Affiliation(s)
- Juan Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Xinjiang University of Science and Technology, Korla, Xinjiang 84100, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
24
|
Wang Y, Lu SC, Wen H, Zhao C, Jiang Y, Cui H. A CuSO 4/Bicinchoninic acid/Reducing sugar based stable and non-ROS catalyst system for the CuAAC reaction in bioanalysis. Bioorg Chem 2024; 150:107557. [PMID: 38878754 DOI: 10.1016/j.bioorg.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
The limitations of commonly used sodium ascorbate-based catalyst system for copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction include excess production of reactive oxygen species and rapid catalyst deactivation. In this study instead of using a highly active reducing agent, such as, sodium ascorbate, we chose reducing sugar as a mild reducing agent to build up the catalyst system for CuAAC reaction. Interestingly, the bicinchoninic acid (BCA) assay system containing reducing sugar satisfies the essential elements of the catalyst system for CuAAC reaction. We found that CuSO4/BCA/Reducing sugar system can catalyze the CuAAC reaction but with low yield. Rational analyses of various parameters in CuSO4/BCA/Glucose catalyst system suggested storage at room temperature might enhance the catalytic activity, which was proven to be the case. Importantly, the system remains stable at room temperature and minimal H2O2 was detected. Notably, our study showed that the coordination between the slow reduction of Cu(I) by reducing sugar and the selective chelation of Cu(I) by BCA is key to developing this system. The CuSO4/BCA/Reducing sugar catalyst system was successfully applied to various CuAAC reaction based bioanalyses, and it is suitable for the CuAAC reaction based bioanalyses that are sensitive to ROS or request long reaction time.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Shi-Chao Lu
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No 8, Hangfeng Road, Fengtai District, Beijing 100070, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No 8, Hangfeng Road, Fengtai District, Beijing 100070, China
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
25
|
Ahemad MA, Patra A, Muduli L, Nayak S, Mohapatra S, Panda J, Sahoo CR. Click-chemistry-inspired synthesis of new series of 1,2,3-triazole fused chromene with glucose triazole conjugates: Antibacterial activity assessment with molecular docking evaluation. Carbohydr Res 2024; 543:109222. [PMID: 39111071 DOI: 10.1016/j.carres.2024.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
A series of new 1,2,3-triazole fused chromene based glucose triazole conjugates were synthesized from chromene fused 1,2,3-triazolyl extended alkyne and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide in good to excellent yield by a copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The major advantages include mild reaction conditions, high yield, good substrate scope, and shorter reaction time. The antibacterial efficacy of the compounds were assessed in vitro against human pathogenic Gram-negative E. coli and Gram-positive S. aureus bacteria. Compound 24j was found to be the most potent molecule with zone of inhibition (ZI) of 17 mm and minimum inhibitory concentration (MIC) of 25 μg mL-1 in E. coli and ZI of 16 mm and MIC of 25 μg mL-1 in S. aureus. Also, it significantly inhibited E. coli DNA-gyrase in silico with a binding affinity of -9.4 kcal/mol. Among all the synthesized compounds, 24i, 24d, 24e and 24f showed significant antibacterial activity against both strains and inhibited DNA-gyrase in silico with good binding affinities. Hence, these 1,2,3-triazole fused chromene based glucose triazole conjugates may evolve to be powerful antibacterial agents in recent future, according to structure-activity relationships based on strong antibacterial properties and molecular docking studies.
Collapse
Affiliation(s)
- Mohammed Ansar Ahemad
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Arpita Patra
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Lipsarani Muduli
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Sabita Nayak
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India.
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Jasmine Panda
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|
26
|
Zhao KH, Qi JM, Hu XM, Li YD, Huang R, Yan SJ. Cycloaddition and Skeleton Rearrangement of Heterocyclic Ketene Aminals (HKAs) with 1-Diazonaphthalen-2(1 H)-ones for the Synthesis of Functionalized 1,2,3-Triazoles. Org Lett 2024; 26:6866-6871. [PMID: 39093330 DOI: 10.1021/acs.orglett.4c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We developed a protocol for the synthesis of highly functionalized 5,6-dihydro-imidazo[1,2-c][1,2,3]triazole derivatives 4-5 (DHITs) from 1-diazonaphthalen-2(1H)-one derivatives with heterocyclic ketene aminals (HKAs). This strategy involved cycloaddition and skeletal rearrangement entailing the heating of a mixture of substrates 1 with HKAs 2-3 and THF without any catalyst. As a result, a series of DHITs 4-5 were produced by cleaving one bond (1 C═N bond) and forming three bonds (1 N-N and 2 C-N bonds) in a single step. This protocol achieved the dual functionalization of diazo building blocks involving both the aromatic nitrogen alkylation reaction to form an ArC-N bond without any metal catalyst and the intermolecular cycloaddition of the N═N bond. These strategies can be used to synthesize functionalized DHITs for combinatorial and parallel syntheses via one-pot reactions without any catalyst.
Collapse
Affiliation(s)
- Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jin-Mei Qi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yuan-Da Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
27
|
Jaiswal MK, Yadav MS, Singh M, Garai S, Tiwari VK. Silicomolybdic Acid Cluster as Biocompatible Catalyst for One-Pot Tandem Synthesis of Orthogonally Protected Glycosides. J Org Chem 2024; 89:10698-10708. [PMID: 39036827 DOI: 10.1021/acs.joc.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The present paper describes a new and practical approach for the one-pot preparation of O-isopropylidene derivatives and also orthogonally protected S- and O-glycosides from the corresponding unprotected saccharides by employing 2 mol % of a silicomolybdic acid (SMA) cluster as a versatile and biocompatible catalyst. The present protocol is applicable to two-step one-pot tandem transformations, which include the O-isopropylidation, spiroketal functionalization, 4,6-O-arylidene acetalations, and arylidene acetylation processes under relatively mild reaction conditions. One-pot sequential transformations, low catalyst loading, rapid transformation, high to excellent reaction yields, mild reaction conditions, and a nontoxic biocompatible workup procedure are the notable advantages of devised protocol.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Mayank Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
28
|
Brahmachari G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem Commun (Camb) 2024; 60:8153-8169. [PMID: 38978452 DOI: 10.1039/d4cc02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This feature article summarises our recent contributions (2019-2023) in designing and developing a handful of promising organic transformations for accessing several diversely functionalised biologically relevant organic scaffolds, following the green chemistry principles, particularly focusing on the application of low-energy visible light, electrochemistry, ball-milling, ultrasound, and catalyst- and additive-free synthetic strategies.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.
| |
Collapse
|
29
|
Wang G, Chen A, Aryal P, Bietsch J. Synthetic approaches of carbohydrate based self-assembling systems. Org Biomol Chem 2024; 22:5470-5510. [PMID: 38904076 DOI: 10.1039/d4ob00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
30
|
Ren JX, Zhou M, Feng XT, Zhao HY, Fu XP, Zhang X. Site-selective S-gem-difluoroallylation of unprotected peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:10002-10009. [PMID: 38966370 PMCID: PMC11220611 DOI: 10.1039/d4sc02681k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Bench-stable 3,3-difluoroallyl sulfonium salts (DFASs), featuring tunable activity and their editable C-β and gem-difluoroallyl group, proved to be versatile fluoroalkylating reagents for site-selective S-gem-difluoroallylation of cysteine residues in unprotected peptides. The reaction proceeds with high efficiency under mild conditions (ambient temperature and aqueous and weak basic conditions). Various protected/unprotected peptides, especially bioactive peptides, are site-selectively S-gem-difluoroallylated. The newly added gem-difluoroallyl group and other functional groups derived from C-β of DFASs are poised for ligation with bio-functional groups through click and radical chemistry. This stepwise "doubly orthogonal" modification of peptides enables the construction of bioconjugates with enhanced complexity and functionality. This proof of principle is successfully applied to construct a peptide-saccharide-biotin chimeric bioconjugate, indicating its great potential application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Minqi Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
31
|
Liu X, Wang Q, Li J, Diao Z, Hou J, Huo D, Hou C. Simultaneous Detection of Micro-RNAs by a Disposable Biosensor via the Click Chemistry Connection Strategy. Anal Chem 2024; 96:10577-10585. [PMID: 38887964 DOI: 10.1021/acs.analchem.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Simultaneous detection of multiple breast cancer-associated miRNAs significantly raises the accuracy and reliability of early diagnosis. In this work, disposable carbon fiber paper serves as the biosensing interface, linking DNA probes via click chemistry to efficiently capture targets and signals efficiently. DNA probes have multiple recognition domains that trigger a cascade reaction through the helper probes and targets, resulting in two signals output. The signals are centrally encapsulated in the pore of the MIL-88(Fe)-NH2. The signal carriers are directed by signal probes to the recognition domains that correspond to the DNA probes. The biosensor is selective and stable, and it can quantify miRNA-21 and miRNA-155 simultaneously with detection limits of 0.64 and 0.54 fmol/L, respectively. Furthermore, it demonstrates satisfactory performance in tests conducted with normal human serum and cell lysate. Overall, this method makes a satisfactory exploration to realize an inexpensive and sensitive biosensor for multiple biomarkers.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Zhan Diao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
32
|
Al Khalyfeh K, Ghazzy A, Al-As' Ad RM, Rüffer T, Kanoun O, Lang H. Ferrocenyl-triazole complexes and their use in heavy metal cation sensing. RSC Adv 2024; 14:20572-20584. [PMID: 38946768 PMCID: PMC11211737 DOI: 10.1039/d4ra04023f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Complexes tris((1-ferrocenyl-1H-1,2,3-triazol-4-yl)methyl)amine (3), bis((1-ferrocenyl-1H-1,2,3-triazol-4-yl)methyl)amine (6), bis((1-ferrocenyl-1H-1,2,3-triazol-4-yl)methyl)ether (7), and 1-ferrocenyl-1H-1,2,3-triazol-4-yl)methanamine (9) were synthesized using the copper-catalyzed click reaction. Complexes 3, 6, 7, and 9 were characterized using NMR (1H and 13{1H}) and IR spectroscopy, elemental analysis, and mass spectrometry. Structures of 3, 7, and 9 in the solid state were determined using single-crystal X-ray diffraction. It was found that the triazole rings were planar and slightly twisted with respect to the cyclopentadienyl groups attached to them. Chains and 3D network structures were observed due to the presence of π⋯π and C-H⋯N interactions between the cyclopentadienyl and triazole ligands. A reversible redox behavior of the Fc groups between 239 and 257 mV with multicycle stability was characteristic for all the compounds, revealing that the electrochemically generated species Fc+ remained soluble in dichloromethane. Electrochemical sensor tests demonstrated the applicability of all the complexes to enhance the quantification sensing behavior of the screen-printed carbon electrode (SPCE) toward Cd2+, Pb2+, and Cu2+ ions.
Collapse
Affiliation(s)
- Khaled Al Khalyfeh
- Department of Chemistry, Faculty of Natural Science, Al-Hussein Bin Talal University Ma'an 71111 Jordan
| | - Asma Ghazzy
- Faculty of Pharmacy, Faculty of Pharmacy and Applied Medical Sciences, Al-Ahliyya Amman University Amman 19328 Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University Amman 19328 Jordan
| | - Randa M Al-As' Ad
- Department of Chemistry, Faculty of Natural Science, Al-Hussein Bin Talal University Ma'an 71111 Jordan
| | - Tobias Rüffer
- Department of Inorganic Chemistry, Chemnitz University of Technology 09111 Chemnitz Germany
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology 09126 Chemnitz Germany
| | - Heinrich Lang
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Research Group Organometallics, Chemnitz University of Technology 09126 Chemnitz Germany
| |
Collapse
|
33
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
34
|
Li Y, Tian Y, Xie D, Wang Y, Niu D. Stereoselective synthesis of α-glycosyl azides: allyl glycosyl sulfones as radical precursors. Chem Commun (Camb) 2024; 60:6288-6291. [PMID: 38809217 DOI: 10.1039/d4cc01687d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Despite their critical importance in drug development and biochemistry, efficiently synthesizing α-glycosyl azides has continued to pose significant challenges. In this report, we introduce a universal and practical radical reaction for the stereoselective synthesis of α-glycosyl azides using bench-stable allyl glycosyl sulfones as the donor. This method is characterized by its mild reaction conditions, high stereoselectivity, and extensive scope of glycosyl units. Moreover, the accessibility of several structurally complex drug-sugar conjugates underscores the practicality of our approach.
Collapse
Affiliation(s)
- Yanjing Li
- School of Chemical Engineering and Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yubiao Tian
- School of Chemical Engineering and Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Demeng Xie
- School of Chemical Engineering and Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yingwei Wang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Dawen Niu
- School of Chemical Engineering and Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Jiang LF, Wu SH, Jiang YX, Ma HX, He JJ, Bi YB, Kong DY, Cheng YF, Cheng X, Deng QH. Enantioselective copper-catalyzed azidation/click cascade reaction for access to chiral 1,2,3-triazoles. Nat Commun 2024; 15:4919. [PMID: 38858346 PMCID: PMC11164697 DOI: 10.1038/s41467-024-49313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Chiral 1,2,3-triazoles are highly attractive motifs in various fields. However, achieving catalytic asymmetric click reactions of azides and alkynes for chiral triazole synthesis remains a significant challenge, mainly due to the limited catalytic systems and substrate scope. Herein, we report an enantioselective azidation/click cascade reaction of N-propargyl-β-ketoamides with a readily available and potent azido transfer reagent via copper catalysis, which affords a variety of chiral 1,2,3-triazoles with up to 99% yield and 95% ee under mild conditions. Notably, chiral 1,5-disubstituted triazoles that have not been accessed by previous asymmetric click reactions are also prepared with good functional group tolerance.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Shao-Hua Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yu-Xuan Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Hong-Xiang Ma
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Jia-Jun He
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yang-Bo Bi
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - De-Yi Kong
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yi-Fei Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Xuan Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Qing-Hai Deng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China.
| |
Collapse
|
36
|
Liang P, Wei J, Wei Y, Wang X, Liu F, Wang T. Hetero Diels-Alder reactions of isolable N-borylenamines. Chem Commun (Camb) 2024; 60:5964-5967. [PMID: 38767204 DOI: 10.1039/d4cc01645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A new strategy for N-borylenamines by reaction of 2-alkynyl benzyl azides with B(C6F5)3 was developed. This novel 1,3-carboboration reaction proceeded via a 5-exo-dig cyclization/formal 1,1-carboboration/B(C6F5)2 shift reaction sequence. Additionally, N-borylenamines can undergo hetero Diels-Alder (HDA) reactions with a variety of dienophiles. Our results are an attractive complement to HDA reactions.
Collapse
Affiliation(s)
- Pei Liang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Junhui Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yongliang Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xue Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Fei Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Tongdao Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
37
|
Pon Matheswari P, Ilavarasi Jeyamalar J, Iruthayaraj A, Ravindran Durai Nayagam B. Synthesis, structural, multitargeted molecular docking analysis of anti-cancer, anti-tubercular, DNA interactions of benzotriazole based macrocyclic ligand. Bioorg Chem 2024; 147:107361. [PMID: 38613924 DOI: 10.1016/j.bioorg.2024.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Biologically important macromolecule 1, 1', 3, 3' Bis - [2,3,5,6-Tetramethyl-p-phenylenebis(methylene)] dibenzotriazlinium dibromide hydrate (BTD) was synthesized and characterized using FT-IR, NMR and single-crystal XRD (SCXRD). SCXRD revealed that the compound was crystallized as a monoclinic system and associated through weak intermolecular interactions like H-bonding and π- π stacking interactions. These weak intermolecular interactions in BTD were studied using Crystal Explorer and Gaussian. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Molecular electrostatic potential (MEP) surface analysis was used to investigate the crystal's nucleophilic and electrophilic reactive sites. The molecular shape and intermolecular interactions in the crystal structure were determined using Hirshfeld surface analysis and fingerprint plots. Anticancer, anti-bacterial and DNA binding ability of BTD were investigated by experimental and theoretical techniques. The obtained results suggest that BTD possesses better anti-cancer, anti-bacterial and DNA binding abilities. The mode of action of antibiotic and anticancer approach was discussed. This provides promising therapeutic advantages for further development.
Collapse
Affiliation(s)
- P Pon Matheswari
- Department of Chemistry and Research Centre, Pope's College (Autonomous), Sawyerpuram-628251, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India.
| | - J Ilavarasi Jeyamalar
- Department of Chemistry and Research Centre, Pope's College (Autonomous), Sawyerpuram-628251, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
| | | | - B Ravindran Durai Nayagam
- Department of Chemistry and Research Centre, Pope's College (Autonomous), Sawyerpuram-628251, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India.
| |
Collapse
|
38
|
Kasana S, Nigam V, Singh S, Kurmi BD, Patel P. A New Insight Into The Huisgen Reaction: Heterogeneous Copper Catalyzed Azide-Alkyne Cycloaddition for the Synthesis of 1,4-Disubstituted Triazole (From 2018-2023). Chem Biodivers 2024; 21:e202400109. [PMID: 38640439 DOI: 10.1002/cbdv.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
The Huisgen cycloaddition, often referred to as 1,3-Dipolar cycloaddition, is a well-established method for synthesizing 1,4-disubstituted triazoles. Originally conducted under thermal conditions [3+2] cycloaddition reactions were limited by temperature, prolonged reaction time, and regioselectivity. The introduction of copper catalyzed azide-alkyne cycloaddition (CuAAC) revitalized interest, giving rise to the concept of "click chemistry". The CuAAC has emerged as a prominent method for producing 1,2,3-triazole with excellent yields and exceptional regioselectivity even in unfavorable conditions. Copper catalysts conventionally facilitate azide-alkyne cycloadditions, but challenges include instability and recycling issues. In recent years, there has been a growing demand for heterogeneous and porous catalysts in various chemical reactions. Chemists have been more interested in heterogenous catalysts as a result of the difficulties in separating homogenous catalysts from reaction products. These catalysts are favored for their abundant active sites, extensive surface area, easy separation from reaction mixtures, and the ability to be reused. Heterogeneous catalysts have garnered significant attention due to their broad industrial utility, characterized by cost-effectiveness, stability, resistance to thermal degradation, and ease of removal compared to their homogeneous counterparts. The present review covers recent advancements from year 2018 to 2023 in the field of click reactions for obtaining 1,2,3-triazoles through Cu catalyzed 1,3-dipolar azide-alkyne cycloaddition and the properties of the catalyst, reaction conditions such as solvent, temperature, reaction time, and the impact of different heterogeneous copper catalysts on product yield.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vaibhav Nigam
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Surbhi Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
39
|
Abronina PI, Malysheva NN, Zinin AI, Novikov DS, Panova MV, Kononov LO. Unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation. Carbohydr Res 2024; 540:109141. [PMID: 38740000 DOI: 10.1016/j.carres.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
We discovered an unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation of the primary hydroxy group of α-(1 → 5)-linked tetraarabinofuranoside bearing 4-(2-chloroethoxy)phenyl aglycone with α-(1 → 5), β-(1 → 2)-linked tetraarabinofuranoside containing N-phenyltrifluoroacetimidoyl leaving group, which led to octa-, dodeca- and hexadecaarabinofuranosides. The possible mechanism of triflic acid-promoted oligomerization was proposed. The choice of promoter was found to be a critical factor for the discovered oligomerization of arabinofuranosides. The obtained octa-, dodeca- and hexadecaarabinofuranosides may serve as useful blocks in the synthesis of oligosaccharide fragments of polysaccharides of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
40
|
Orimoto G, Yoshida S. Iterative click reactions using trivalent platforms for sequential molecular assembly. Chem Commun (Camb) 2024; 60:5824-5827. [PMID: 38747212 DOI: 10.1039/d4cc01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A facile synthesis of multi(triazole)s by iterative click reactions is disclosed. Good functional group tolerance of sequential click assembly by sulfur-fluoride exchange (SuFEx), copper-catalyzed azide-alkyne cycloaddition (CuAAC), and thia-Michael reaction realizes the iterative click reactions. Diverse multi(triazole)-type mid-molecules can be synthesized easily from readily available modules through good chemoselective reactions without functional group transformation steps.
Collapse
Affiliation(s)
- Gaku Orimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
41
|
Flemmich L, Bereiter R, Micura R. Chemical Synthesis of Modified RNA. Angew Chem Int Ed Engl 2024; 63:e202403063. [PMID: 38529723 DOI: 10.1002/anie.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.
Collapse
Affiliation(s)
- Laurin Flemmich
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
42
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Asymmetric Pd/Organoboron-Catalyzed Site-Selective Carbohydrate Functionalization with Alkoxyallenes Involving Noncovalent Stereocontrol. Angew Chem Int Ed Engl 2024; 63:e202400912. [PMID: 38530140 DOI: 10.1002/anie.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Herein, we demonstrate the robustness of a synergistic chiral Pd/organoboron system in tackling a challenging suite of site-, regio-, enantio- and diastereoselectivity issues across a considerable palette of biologically relevant carbohydrate polyols, when prochiral alkoxyallenes were employed as electrophiles. In view of the burgeoning role of noncovalent interactions (NCIs) in stereoselective carbohydrate synthesis, our mechanistic experiments and DFT modeling of the reaction path unexpectedly revealed that NCIs such as hydrogen bonding and CH-π interactions between the resting states of the Pd-π-allyl complex and the borinate saccharide are critically involved in the stereoselectivity control. Our strategy thus illuminates the untapped potential of harnessing NCIs in the context of transition metal catalysis to tackle stereoselectivity challenges in carbohydrate functionalization.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
43
|
Bunschoten R, Peschke F, Taladriz-Sender A, Alexander E, Andrews MJ, Kennedy AR, Fazakerley NJ, Lloyd Jones GC, Watson AJB, Burley GA. Mechanistic Basis of the Cu(OAc) 2 Catalyzed Azide-Ynamine (3 + 2) Cycloaddition Reaction. J Am Chem Soc 2024; 146:13558-13570. [PMID: 38712910 PMCID: PMC11099971 DOI: 10.1021/jacs.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is used as a ligation tool throughout chemical and biological sciences. Despite the pervasiveness of CuAAC, there is a need to develop more efficient methods to form 1,4-triazole ligated products with low loadings of Cu. In this paper, we disclose a mechanistic model for the ynamine-azide (3 + 2) cycloadditions catalyzed by copper(II) acetate. Using multinuclear nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and high-performance liquid chromatography analyses, a dual catalytic cycle is identified. First, the formation of a diyne species via Glaser-Hay coupling of a terminal ynamine forms a Cu(I) species competent to catalyze an ynamine-azide (3 + 2) cycloaddition. Second, the benzimidazole unit of the ynamine structure has multiple roles: assisting C-H activation, Cu coordination, and the formation of a postreaction resting state Cu complex after completion of the (3 + 2) cycloaddition. Finally, reactivation of the Cu resting state complex is shown by the addition of isotopically labeled ynamine and azide substrates to form a labeled 1,4-triazole product. This work provides a mechanistic basis for the use of mixed valency binuclear catalytic Cu species in conjunction with Cu-coordinating alkynes to afford superior reactivity in CuAAC reactions. Additionally, these data show how the CuAAC reaction kinetics can be modulated by changes to the alkyne substrate, which then has a predictable effect on the reaction mechanism.
Collapse
Affiliation(s)
- Roderick
P. Bunschoten
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Frederik Peschke
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Andrea Taladriz-Sender
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Emma Alexander
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Matthew J. Andrews
- EaStCHEM,
Purdie Building, School of Chemistry, University
of St Andrews, North
Haugh, St Andrews, FifeKY16 9ST, U.K.
| | - Alan R. Kennedy
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Neal J. Fazakerley
- GlaxoSmithKline,
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Guy C. Lloyd Jones
- EaStCHEM.
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Allan J. B. Watson
- EaStCHEM,
Purdie Building, School of Chemistry, University
of St Andrews, North
Haugh, St Andrews, FifeKY16 9ST, U.K.
| | - Glenn A. Burley
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
44
|
Sun Q, Ni J, Li S, Ding H, Wang P, Song N, Wang X, Li M. Access to Reverse Glycosyl Azides and Rare Sugar-Based Glycosyl Azides via Radical Decarboxylative Azidation: Divergent Synthesis of 4'- C-Azidonucleosides as Potential Antiviral Agents. Org Lett 2024; 26:3997-4001. [PMID: 38687048 DOI: 10.1021/acs.orglett.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The radical decarboxylative azidation of structurally diverse uronic acids has been established as an efficient approach to reverse glycosyl azides and rare sugar-derived glycosyl azides under the action of Ag2CO3, 3-pyridinesulfonyl azide, and K2S2O8. The power of this method has been highlighted by the divergent synthesis of 4'-C-azidonucleosides using Vorbrüggen glycosylation of nucleobases with 4-C-azidofuranosyl acetates. The antiviral assessment of the resulting nucleosides revealed one compound as a potential inhibitor of covalently closed circular DNA.
Collapse
Affiliation(s)
- Qikai Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jingxuan Ni
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Ding
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Sanya 572000, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
45
|
Yang WC, Chen CT. Expedient Azide-Alkyne Huisgen Cycloaddition Catalyzed by a Combination of VOSO 4 with Cu(0) in Aqueous Media. ACS ORGANIC & INORGANIC AU 2024; 4:235-240. [PMID: 38585512 PMCID: PMC10995936 DOI: 10.1021/acsorginorgau.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/09/2024]
Abstract
A series of vanadium(III), vanadyl(IV/V) species, inorganic metal oxides, and transition-metal oxides was examined as cocatalysts with Cu(0) powder for copper(I)-catalyzed azide-alkyne cycloaddition. Among them, vanadyl(IV) species bearing acetylacetonate, acetate, and sulfate, vanadyl(V) isopropoxide, and vanadate were suitable for the click reactions of per-acetyl and per-benzyl β-azido glycosides with three different terminal alkynes in CH3CN. Water-soluble vanadyl(IV) sulfate was further selected for efficient click reactions for unprotected β-glycosyl azides and even compatible with a thiol-containing substrate in aqueous media at ambient temperature.
Collapse
Affiliation(s)
- Wen-Chieh Yang
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan R.O.C
| | - Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
46
|
Bose P, Singh M, Gupta A, Kumar S, Ansari FJ, Pandey VK, Singh AS, Tiwari VK. Design, synthesis, and docking study of saccharin N-triazolyl glycoconjugates. Carbohydr Res 2024; 538:109101. [PMID: 38574410 DOI: 10.1016/j.carres.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal Jaah Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anoop S Singh
- Chemistry Innovation Research Center, Jubilant Biosys Ltd, Greater Noida, 201310, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
47
|
Ullah S, Mansoor F, Khan SA, Jabeen U, Almars AI, Almohaimeed HM, Basri AM, Alshabrmi FM. Exploring bi-carbazole-linked triazoles as inhibitors of prolyl endo peptidase via integrated in vitro and in silico study. Sci Rep 2024; 14:7675. [PMID: 38561470 PMCID: PMC10985113 DOI: 10.1038/s41598-024-58428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
A serine protease called prolyl endopeptidase (PEP) hydrolyses the peptide bonds on the carboxy side of the proline ring. The excessive PEP expression in brain results in neurodegenerative illnesses like dementia, Alzheimer's disease, and Parkinson's disease. Results of the prior studies on antioxidant activity, and the non-cytotoxic effect of bi-carbazole-linked triazoles, encouraged us to extend our studies towards its anti-diabetic potential. Hence, for this purpose all compounds 1-9 were evaluated to reveal their anti-prolyl endo peptidase activity. Fortunately, seven compounds resulted into significant inhibitory capability ranging from 26 to 63 µM. Among them six compounds 4-9 exhibited more potent inhibitory activity with IC50 values 46.10 ± 1.16, 42.30 ± 1.18, 37.14 ± 1.21, 26.29 ± 0.76, 28.31 ± 0.64 and 31.11 ± 0.84 µM respectively, while compound 3 was the least active compound in the series with IC50 value 63.10 ± 1.58 µM comparing with standard PEP inhibitor bacitracin (IC50 = 125 ± 1.50 µM). Moreover, mechanistic study was performed for the most active compounds 7 and 8 with Ki values 24.10 ± 0.0076 and 23.67 ± 0.0084 µM respectively. Further, the in silico studies suggested that the compounds exhibited potential interactions and significant molecular conformations, thereby elucidating the structural basis for their inhibitory effects.
Collapse
Affiliation(s)
- Saeed Ullah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farheen Mansoor
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Salman Ali Khan
- Tunneling Group, Biotechnology Centre, Doctoral School, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland.
| | - Uzma Jabeen
- Department of Biochemistry, Federal Urdu University of Karachi, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Amany I Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed M Basri
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| |
Collapse
|
48
|
Wang Q, Li X, Cao Z, Feng W, Chen Y, Jiang D. Enzyme-Mediated Bioorthogonal Cascade Catalytic Reaction for Metabolism Intervention and Enhanced Ferroptosis on Neuroblastoma. J Am Chem Soc 2024; 146:8228-8241. [PMID: 38471004 DOI: 10.1021/jacs.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
It remains a tremendous challenge to explore effective therapeutic modalities against neuroblastoma, a lethal cancer of the sympathetic nervous system with poor prognosis and disappointing treatment outcomes. Considering the limitations of conventional treatment modalities and the intrinsic vulnerability of neuroblastoma, we herein develop a pioneering sequential catalytic therapeutic system that utilizes lactate oxidase (LOx)/horseradish peroxidase (HRP)-loaded amorphous zinc metal-organic framework, named LOx/HRP-aZIF, in combination with a 3-indole-acetic acid (IAA) prodrug. On the basis of abnormal lactate accumulation that occurs in the tumor microenvironment, the cascade reaction of LOx and HRP consumes endogenous glutathione and a reduced form of nicotinamide adenine dinucleotide to achieve the first stage of killing cancer cells via antioxidative incapacitation and electron transport chain interference. Furthermore, the generation of reactive oxygen species induced by HRP and IAA through bioorthogonal catalysis promotes ferritin degradation and lipid peroxidation, ultimately provoking self-enhanced ferroptosis with positive feedback by initiating an endogenous Fenton reaction. This work highlights the superiority of the natural enzyme-dependent cascade and bioorthogonal catalytic reaction, offering a paradigm for synergistically enzyme-based metabolism-ferroptosis anticancer therapy.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Xiangze Li
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhiyao Cao
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325088, P. R. China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
49
|
Tang Q, Yin D, Liu Y, Zhang J, Guan Y, Kong H, Wang Y, Zhang X, Li J, Wang L, Hu J, Cai X, Zhu Y. Clickable X-ray Nanoprobes for Nanoscopic Bioimaging of Cellular Structures. JACS AU 2024; 4:893-902. [PMID: 38559738 PMCID: PMC10976567 DOI: 10.1021/jacsau.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
Synchrotron-based X-ray microscopy (XRM) has garnered widespread attention from researchers due to its high spatial resolution and excellent energy (element) resolution. Existing molecular probes suitable for XRM include immune probes and genetic labeling probes, enabling the precise imaging of various biological targets within cells. However, immune labeling techniques are prone to cross-interference between antigens and antibodies. Genetic labeling technologies have limited systems that allow express markers independently, and moreover, genetically encoded labels based on catalytic polymerization lack a fixed morphology. When applied to cell imaging, this can result in reduced localization accuracy due to the diffusion of labels within the cells. Therefore, both techniques face challenges in simultaneously labeling multiple biotargets within cells and achieving high-precision imaging. In this work, we applied the click reaction and developed a third category of imaging probes suitable for XRM, termed clickable X-ray nanoprobes (Click-XRN). Click-XRN consists of two components: an X-ray-sensitive multicolor imaging module and a particle-size-controllable morphology module. Efficient identification of intra- and extracellular biotargets is achieved through click reactions between the probe and biomolecules. Click-XRN possesses a controllable particle size, and its loading of various metal ions provides distinctive signals for imaging under XRM. Based on this, we optimized the imaging energy of Click-XRN with different particle sizes, enabling single-color and two-color imaging of the cell membrane, cell nucleus, and mitochondria with nanoscale spatial nanometers. Our work provides a potent molecular tool for investigating cellular activities through XRM.
Collapse
Affiliation(s)
- Qiaowei Tang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Xiangfu
Laboratory, Jiashan 314102, China
| | - Dapeng Yin
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Yubo Liu
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jichao Zhang
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yong Guan
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei 230029, China
| | - Huating Kong
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yiliu Wang
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiangzhi Zhang
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiang Li
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Hu
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoqing Cai
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ying Zhu
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
50
|
Amorim AC, Burke AJ. What is the future of click chemistry in drug discovery and development? Expert Opin Drug Discov 2024; 19:267-280. [PMID: 38214914 DOI: 10.1080/17460441.2024.2302151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell. AREAS COVERED The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry. EXPERT OPINION Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.
Collapse
Affiliation(s)
- Ana C Amorim
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
| | - Anthony J Burke
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, Universidade de Évora, Évora, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Coimbra, Portugal
| |
Collapse
|