1
|
Golden MM, Heppe AC, Zaremba CL, Wuest WM. Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii. RSC Chem Biol 2024; 5:d4cb00175c. [PMID: 39372678 PMCID: PMC11446287 DOI: 10.1039/d4cb00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
It is estimated that by 2050, bacterial infections will cause 1.8 million more deaths than cancer annually, and the current lack of antibiotic drug discovery is only exacerbating the crisis. Two pathogens in particular, Gram-negative bacteria A. baumannii and P. aeruginosa, are of grave concern because of their heightened multi-drug resistance due to a dense, impermeable outer membrane. However, targeting specific cellular processes may prove successful in overcoming bacterial resistance. This review will concentrate on a novel approach to combatting pathogenicity by disarming bacteria through the disruption of metal homeostasis to reduce virulence and enhance antibiotic uptake. The varying levels of success in bringing metallophores to clinical trials, with currently only one FDA-approved siderophore antibiotic to date, will also be detailed.
Collapse
Affiliation(s)
| | - Amelia C Heppe
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Cassandra L Zaremba
- Department of Chemistry and Biochemistry, Denison University Granville OH 43023 USA
| | - William M Wuest
- Department of Chemistry, Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Emory University Atlanta GA 30322 USA
| |
Collapse
|
2
|
Jiang J, Okuda S, Itoh H, Okamoto K, Nakanishi H, Suzuki M, Lu P, Nagata K. Structure-Guided Discovery of a Potent Inhibitor of the Ferric Citrate Binding Protein FecB in Vibrio Bacteria. Angew Chem Int Ed Engl 2024:e202411688. [PMID: 39304960 DOI: 10.1002/anie.202411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Infections caused by Gram-negative bacteria present a significant risk to human health worldwide. Novel strategies are needed to deal with the challenge caused by drug-resistant bacteria. Here, we report a new approach to combat infections by targeting iron-binding proteins to suppress bacterial growth. We investigated the function of the conserved periplasmic binding protein FecB from Vibrio alginolyticus. FecB was known to play a crucial role in the bacterial growth and to relate with biofilm formation. We then solved the crystal structures and elucidated the binding mechanism of FecB with ferric ion chelated by citrate. The results indicated that FecB binds weakly to one citrate molecule and strongly to the Fe3+-(citrate)2 complex. Based on these results, a structure-based virtual screening approach was conducted against FecB to identify small molecules that block ferric citrate uptake. Further evaluations in vivo and in vitro demonstrated that salvianolic acid C significantly suppressed bacterial growth, indicating that targeting bacterial nutrient absorption is a promising strategy for identifying potential antibacterial drugs.
Collapse
Affiliation(s)
- Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 828, Zhongxing Road, Xitang Town, Jiashan County, Jiaxing City, Zhejiang Province, 314100, China
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Hu YL, Bi SL, Zhang ZY, Kong NQ. Correlation between Antibiotics-Resistance, Virulence Genes and Genotypes among Klebsiella pneumoniae Clinical Strains Isolated in Guangzhou, China. Curr Microbiol 2024; 81:289. [PMID: 39078504 DOI: 10.1007/s00284-024-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen causing community-acquired and hospital-acquired infections. This aim of this study was to analysis the antibiotic-resistance phenotypes, carbapenemase genes, virulence genes, and genotypes the 62 K. pneumoniae clinical isolates, and to explore the correlations between these isolates. The antimicrobial susceptibility profiles were determined using the BD Phoenix-100 system. Carbapenemase and virulence genes were detected using multiplex PCR. Out of the 62 K. pneumoniae clinical isolates, 79.0% were exhibited resistance to antibiotics, with 69.4% displaying multi-drug resistance. The rate of antibiotic-resistance was highest for penicillin (71.0%), followed by cephalosporins (66.1%), and lowest for carbapenems (29.0%). The detection rates of carbapenemase genes were as follows: KPC (56.5%), VIM (35.5%), and NDM (1.61%). Additionally, seven virulence genes were detected with the highest prevalence rates, of which entB and mrkD were at the top of the carrier rates with 95.2% each. The study classified 62 isolates into 13 clusters and 46 genotypes using ERIC-PCR. Cluster A6 exhibited the highest genetic diversity, comprising 20 strains and 13 genotypes. The statistical analysis revealed a strong correlation between MDR and resistance to penicillin and cephalosporin. Furthermore, genes related to siderophores were closely associated with mrkD. Genotypes identified by ERIC-PCR showed a negative correlation with allS. The study revealed a negative correlation between antibiotic resistance and genes kfu, ybtS, iutA, rmpA, and allS. Conversely, a positive correlation was observed between antibiotic resistance and genes entB and mrkD. The correlations identified in this study provide insights into the occurrence of hospital-acquired infections. The findings of this study may guide the prevention and control of K. pneumoniae outbreaks by utilizing appropriate medication.
Collapse
Affiliation(s)
- Yi-Lin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510220, China
| | - Shui-Lian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China.
| | - Zang-Yun Zhang
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Nian-Qing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| |
Collapse
|
4
|
Ahmed SF, Balutowski A, Yang J, Wencewicz TA, Gulick AM. Expanding the substrate selectivity of the fimsbactin biosynthetic adenylation domain, FbsH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605314. [PMID: 39091846 PMCID: PMC11291136 DOI: 10.1101/2024.07.26.605314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria Acinetobacter baumannii produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report on structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an in vitro reconstitution analysis to assess the production of analogs of the final product as well as several early-stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.
Collapse
Affiliation(s)
- Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States
| | - Adam Balutowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Jinping Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Andrew M. Gulick
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
5
|
Mular A, Hubmann I, Petrik M, Bendova K, Neuzilova B, Aguiar M, Caballero P, Shanzer A, Kozłowski H, Haas H, Decristoforo C, Gumienna-Kontecka E. Biomimetic Analogues of the Desferrioxamine E Siderophore for PET Imaging of Invasive Aspergillosis: Targeting Properties and Species Specificity. J Med Chem 2024; 67:12143-12154. [PMID: 38907990 DOI: 10.1021/acs.jmedchem.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The pathogenic fungus Aspergillus fumigatus utilizes a cyclic ferrioxamine E (FOXE) siderophore to acquire iron from the host. Biomimetic FOXE analogues were labeled with gallium-68 for molecular imaging with PET. [68Ga]Ga(III)-FOXE analogues were internalized in A. fumigatus cells via Sit1. Uptake of [68Ga]Ga(III)-FOX 2-5, the most structurally alike analogue to FOXE, was high by both A. fumigatus and bacterial Staphylococcus aureus. However, altering the ring size provoked species-specific uptake between these two microbes: ring size shortening by one methylene unit (FOX 2-4) increased uptake by A. fumigatus compared to that by S. aureus, whereas lengthening the ring (FOX 2-6 and 3-5) had the opposite effect. These results were consistent both in vitro and in vivo, including PET imaging in infection models. Overall, this study provided valuable structural insights into the specificity of siderophore uptake and, for the first time, opened up ways for selective targeting and imaging of microbial pathogens by siderophore derivatization.
Collapse
Affiliation(s)
- Andrzej Mular
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Isabella Hubmann
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Katerina Bendova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Barbora Neuzilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacky University, 77900 Olomouc, Czech Republic
| | - Mario Aguiar
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Patricia Caballero
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Abraham Shanzer
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
- Public Higher Medical Professional School in Opole, Katowicka 68, 45-060 Opole, Poland
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
6
|
Adamiak JW, Ajmal L, Zgurskaya HI. Non-interchangeable functions of efflux transporters of Pseudomonas aeruginosa in survival under infection-associated stress. J Bacteriol 2024; 206:e0005424. [PMID: 38874367 PMCID: PMC11323973 DOI: 10.1128/jb.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Pseudomonas aeruginosa is a challenging opportunistic pathogen due to its intrinsic and acquired mechanisms of antibiotic resistance. A large repertoire of efflux transporters actively expels antibiotics, toxins, and metabolites from cells and enables growth of P. aeruginosa in diverse environments. In this study, we analyzed the roles of representative efflux pumps from the Resistance-Nodulation-Division (RND), Major Facilitator Superfamily (MFS), and Small Multidrug Resistance (SMR) families of proteins in the susceptibility of P. aeruginosa to antibiotics and bacterial growth under stresses imposed by human hosts during bacterial infections: an elevated temperature, osmotic stress, low iron, bile salts, and acidic pH. We selected five RND pumps MexAB-OprM, MexEF-OprN, MexCD-OprJ, MuxABC-OpmB, and TriABC-OpmH that differ in their substrate specificities and expression profiles, two MFS efflux pumps PA3136-3137 and PA5158-5160 renamed here into MfsAB and MfsCD-OpmG, respectively, and an SMR efflux transporter PA1540-1541 (MdtJI). We found that the most promiscuous RND pumps such as MexEF-OprN and MexAB-OprM are integrated into diverse survival mechanisms and enable P. aeruginosa growth under various stresses. MuxABC-OpmB and TriABC-OpmH pumps with narrower substrate spectra are beneficial only in the presence of the iron chelator 2,2'-dipyridyl and bile salts, respectively. MFS pumps do not contribute to antibiotic efflux but play orthogonal roles in acidic pH, low iron, and in the presence of bile salts. In contrast, MdtJI protects against polycationic antibiotics but does not contribute to survival under stress. Thus, efflux pumps play specific, non-interchangeable functions in P. aeruginosa cell physiology and bacterial survival under stresses. IMPORTANCE The role of multidrug efflux pumps in the intrinsic and clinical levels of antibiotic resistance in Pseudomonas aeruginosa and other gram-negative bacteria is well-established. Their functions in bacterial physiology, however, remain unclear. The P. aeruginosa genome comprises an arsenal of efflux pumps from different protein families, the substrate specificities of which are typically assessed by measuring their impact on susceptibility to antibiotics. In this study, we analyzed how deletions and overproductions of efflux pumps affect P. aeruginosa growth under human-infection-induced stresses. Our results show that the physiological functions of multidrug efflux pumps are non-redundant and essential for the survival of this important human pathogen under stress.
Collapse
Affiliation(s)
- Justyna W. Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Laiba Ajmal
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
7
|
Zhao L, Li Y, Wang W, Qi X, Wang S, Song W, Li T, Gao W. Regulating NCOA4-Mediated Ferritinophagy for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2024; 49:1806-1822. [PMID: 38713437 DOI: 10.1007/s11064-024-04146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/11/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ischemic stroke presents a global health challenge, necessitating an in-depth comprehension of its pathophysiology and therapeutic strategies. While reperfusion therapy salvages brain tissue, it also triggers detrimental cerebral ischemia-reperfusion injury (CIRI). In our investigation, we observed the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in an oxygen-glucose deprivation/reoxygenation (OGD/R) model using HT22 cells (P < 0.05). This activation contributed to oxidative stress (P < 0.05), enhanced autophagy (P < 0.05) and cell death (P < 0.05) during CIRI. Silencing NCOA4 effectively mitigated OGD/R-induced damage (P < 0.05). These findings suggested that targeting NCOA4-mediated ferritinophagy held promise for preventing and treating CIRI. Subsequently, we substantiated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway effectively regulated the NCOA4-mediated ferritinophagy, by applying the cGAS inhibitor RU.521 and performing NCOA4 overexpression (P < 0.05). Suppressing the cGAS-STING pathway efficiently curtailed ferritinophagy (P < 0.05), oxidative stress (P < 0.05), and cell damage (P < 0.05) of CIRI, while NCOA4 overexpression could alleviate this effect (P < 0.05). Finally, we elucidated the specific molecular mechanism underlying the protective effect of the iron chelator deferoxamine (DFO) on CIRI. Our findings revealed that DFO alleviated hypoxia-reoxygenation injury in HT22 cells through inhibiting NCOA4-mediated ferritinophagy and reducing ferrous ion levels (P < 0.05). However, the protective effects of DFO were counteracted by cGAS overexpression (P < 0.05). In summary, our results indicated that the activation of the cGAS-STING pathway intensified cerebral damage during CIRI by inducing NCOA4-mediated ferritinophagy. Administering the iron chelator DFO effectively attenuated NCOA4-induced ferritinophagy, thereby alleviating CIRI. Nevertheless, the role of the cGAS-STING pathway in CIRI regulation likely involves intricate mechanisms, necessitating further validation in subsequent investigations.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xue Qi
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Su Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Li
- Department of Skin Medical Cosmetology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Shin HE, Pan C, Curran DM, Bateman TJ, Chong DHY, Ng D, Shah M, Moraes TF. Prevalence of Slam-dependent hemophilins in Gram-negative bacteria. J Bacteriol 2024; 206:e0002724. [PMID: 38814789 PMCID: PMC11332172 DOI: 10.1128/jb.00027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examine a heme acquisition system that utilizes hemophores called hemophilins which are also referred to as HphAs in several Gram-negative bacteria. In this study, we report three new HphA structures from Stenotrophomonas maltophilia, Vibrio harveyi, and Haemophilus parainfluenzae. Structural determination of HphAs revealed an N-terminal clamp-like domain that binds heme and a C-terminal eight-stranded β-barrel domain that shares the same architecture as the Slam-dependent Neisserial surface lipoproteins. The genetic organization of HphAs consists of genes encoding a Slam homolog and a TonB-dependent receptor (TBDR). We investigated the Slam-HphA system in the native organism or the reconstituted system in Escherichia coli cells and found that the efficient secretion of HphA depends on Slam. The TBDR also played an important role in heme uptake and conferred specificity for its cognate HphA. Furthermore, bioinformatic analysis of HphA homologs revealed that HphAs are conserved in the alpha, beta, and gammaproteobacteria. Together, these results show that the Slam-dependent HphA-type hemophores are prevalent in Gram-negative bacteria and further expand the role of Slams in transporting soluble proteins. IMPORTANCE This paper describes the structure and function of a family of Slam (Type IX secretion System) secreted hemophores that bacteria use to uptake heme (iron) while establishing an infection. Using structure-based bioinformatics analysis to define the diversity and prevalence of this heme acquisition pathway, we discovered that a large portion of gammaproteobacterial harbors this system. As organisms, including Acinetobacter baumannii, utilize this system to facilitate survival during host invasion, the identification of this heme acquisition system in bacteria species is valuable information and may represent a target for antimicrobials.
Collapse
Affiliation(s)
- Hyejin Esther Shin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David M. Curran
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J. Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Wang L, Zeng Q, Hu J, Bao Z, Wang M. Proteome analysis of outer membrane vesicles from Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease. J Invertebr Pathol 2024; 204:108082. [PMID: 38447863 DOI: 10.1016/j.jip.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A specific strain of Vibrio parahaemolyticus (VpAHPND) causes acute hepatopancreatic necrosis disease (AHPND), leading to significant losses in shrimp aquaculture. Outer membrane vesicles (OMVs) are naturally secreted by Gram-negative bacteria, and their significant roles in host-pathogen interactions and pathogenicity have been recognized. In the present study, OMVs were isolated from VpAHPND by differential-ultracentrifugation and used for proteomics analysis. In the Nano-HPLC-MS/MS analysis, totally 645 proteins were determined, including virulence factors, immunogenic proteins, outer membrane protein, bacterial secretory proteins, ribosomal proteins, protease, and iron regulation proteins. Furthermore, GO and KEGG annotations indicated that proteins identified in VpAHPND-OMVs are involved in metabolism, regulation of multiple biological processes, genetic information processes, immunity and more. Meanwhile, toxin proteins PirAvp and PirBvp, associated with VpAHPND pathogenicity, were also identified in the proteome of VpAHPND-OMVs. Our objective is to identify the protein composition of OMVs released by VpAHPND, analyzing the potential for cytotoxicity and immunomodulatory activity of these granule hosts. This study is crucial for understanding the roles played by bacterial-derived vesicles in the disease process, given that these vesicles carry relevant activities inherent to the bacteria that produce them.
Collapse
Affiliation(s)
- Lihan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou 061101, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou 061101, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
10
|
Kumar A, Chakravorty S, Yang T, Russo TA, Newton SM, Klebba PE. Siderophore-mediated iron acquisition by Klebsiella pneumoniae. J Bacteriol 2024; 206:e0002424. [PMID: 38591913 PMCID: PMC11112993 DOI: 10.1128/jb.00024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
- Department of Rare Blood and Musculoskeletal Disorders, Sanofi, Cambridge, Massachusetts, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
- Jacobs School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Thomas A. Russo
- Jacobs School of Medicine, University at Buffalo, Buffalo, New York, USA
- Veterans Administration, Western New York Healthcare System, Buffalo, New York, USA
| | - Salete M. Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E. Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
11
|
Carson DV, Juarez RJ, Do T, Yang Z, James Link A. Antimicrobial Lasso Peptide Cloacaenodin Utilizes a Unique TonB-Dependent Transporter to Access Susceptible Bacteria. ACS Chem Biol 2024; 19:981-991. [PMID: 38527226 PMCID: PMC11031277 DOI: 10.1021/acschembio.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of new antimicrobial agents effective against Gram-negative bacteria remains a major challenge in drug discovery. The lasso peptide cloacaenodin has potent antimicrobial activity against multiple strains in the Enterobacter genus, one of the ESKAPE pathogens. Here, we show that cloacaenodin uses a previously uncharacterized TonB-dependent transporter, which we name CloU, to cross the outer membrane (OM) of susceptible bacteria. Inner membrane transport is mediated by the protein SbmA. CloU is distinct from the known OM transporters (FhuA and PupB) utilized by other antimicrobial lasso peptides and thus offers important insight into the spectrum of activity of cloacaenodin. Using knowledge of the transport pathway to predict other cloacaenodin-susceptible strains, we demonstrate the activity of cloacaenodin against clinical isolates of Enterobacter and of a Kluyvera strain. Further, we use molecular dynamics simulations and mutagenesis of CloU to explain the variation in cloacaenodin susceptibility observed across different strains of Enterobacter. This work expands the currently limited understanding of lasso peptide uptake and advances the potential of cloacaenodin as an antibiotic.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Reecan J. Juarez
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhongyue Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Lin Y, Liang S, Zhang Y, Yu Y. The antibacterial mechanism of (-)-epigallocatechin-3-gallate (EGCG) against Campylobacter jejuni through transcriptome profiling. J Food Sci 2024; 89:2384-2396. [PMID: 38389445 DOI: 10.1111/1750-3841.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been shown antibacterial activity against Campylobacter jejuni; however, the relevant antibacterial mechanism is unknown. In this study, phenotypic experiments and RNA sequencing were used to explore the antibacterial mechanism. The minimum inhibitory concentration of EGCG on C. jejuni was 32 µg/mL. EGCG-treated was able to increase intracellular reactive oxygen species levels and decline bacterial motility. The morphology and cell membrane of C. jejuni after EGCG treatment were observed collapsed, broken, and agglomerated by field emission scanning electron microscopy and fluorescent microscopy. The RNA-seq analysis presents that there are 36 and 72 differential expressed genes after C. jejuni was treated by EGCG with the concentration of 16 and 32 µg/mL, respectively. EGCG-treated increased the thioredoxin expression, which was a critical protein to resist oxidative stress. Moreover, downregulation of the flgH and flgM gene in flagellin biosynthesis of C. jejuni was able to impair the flagella, reducing cell motility and virulence. The primary antibacterial mechanism revealed by RNA-seq is that EGCG with iron-chelating activity competes with C. jejuni for iron, causing iron deficiency in C. jejuni, which potentially impacts the survival and virulence of C. jejuni. The results suggested a new direction for exploring the activity of EGCG against C. jejuni in the food industry. PRACTICAL APPLICATION: A deeper understanding of the antibacterial mechanism of EGCG against C. jejuni was more beneficial in improving the food safety, eliminating concerns about human health caused by C. jejuni in future food, and promoting the natural antibacterial agent EGCG application in the food industry.
Collapse
Affiliation(s)
- Yilin Lin
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
He L, Wang Y, Zhang C, Niu Y, Wang Y, Ma H, Li N, Ye J, Ma Y. Self-Assembled Tetraphenylethene-Based Nanoaggregates with Tunable Electrochemiluminescence for the Ultrasensitive Detection of E. coli. Anal Chem 2024; 96:4809-4816. [PMID: 38466895 DOI: 10.1021/acs.analchem.3c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
As an effective ECL emitter, tetraphenylethene (TPE)-based molecules have recently been reported with aggregation-induced electrochemiluminescence (AIECL) property, while it is still a big challenge to control its aggregation states and obtain uniform aggregates with intense ECL emission. In this study, we develop three TPE derivatives carrying a pyridinium group, an alkyl chain, and a quaternary ammonium group via the Menschutkin reaction. The resulting molecules exhibit significantly red-shifted FL and enhanced ECL emissions due to the tunable reduction of the energy gap between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs). More importantly, the amphiphilicity of the as-developed molecules enables their spontaneous self-assembly into well-controlled spherical nanoaggregates, and the ECL intensity of nanoaggregates with 3 -CH2- (named as C3) is 17.0-fold higher compared to that of the original 4-(4-(1,2,2-triphenylvinyl)phenyl)pyridine (TPP) molecule. These cationic nanoaggregates demonstrate a high affinity toward bacteria, and an ECL sensor for the profiling of Escherichia coli (E. coli) was developed with a broad linear range and good selectivity in the presence of an E. coli-specific aptamer. This study provides an effective way to enhance the ECL emission of TPE molecules through their derivatization and a simple way to prepare well-controlled AIECL nanoaggregates for ECL application.
Collapse
Affiliation(s)
- Linli He
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Chunxue Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yibo Niu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yujie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Huizhen Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Nan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jianshan Ye
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Ying Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
15
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Li W, Lv BM, Quan Y, Zhu Q, Zhang HY. Associations between Serum Mineral Nutrients, Gut Microbiota, and Risk of Neurological, Psychiatric, and Metabolic Diseases: A Comprehensive Mendelian Randomization Study. Nutrients 2024; 16:244. [PMID: 38257137 PMCID: PMC10818407 DOI: 10.3390/nu16020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Recent observational studies have reported associations between serum mineral nutrient levels, gut microbiota composition, and neurological, psychiatric, and metabolic diseases. However, the causal effects of mineral nutrients on gut microbiota and their causal associations with diseases remain unclear and require further investigation. This study aimed to identify the associations between serum mineral nutrients, gut microbiota, and risk of neurological, psychiatric, and metabolic diseases using Mendelian randomization (MR). We conducted an MR study using the large-scale genome-wide association study (GWAS) summary statistics of 5 serum mineral nutrients, 196 gut microbes at the phylum, order, family, and genus levels, and a variety of common neurological, psychiatric, and metabolic diseases. Initially, the independent causal associations of mineral nutrients and gut microbiota with diseases were examined by MR. Subsequently, the causal effect of mineral nutrients on gut microbiota was estimated to investigate whether specific gut microbes mediated the association between mineral nutrients and diseases. Finally, we performed sensitivity analyses to assess the robustness of the study results. After correcting for multiple testing, we identified a total of 33 causal relationships among mineral nutrients, gut microbiota, and diseases. Specifically, we found 4 causal relationships between 3 mineral nutrition traits and 3 disease traits, 15 causal associations between 14 gut microbiota traits and 6 disease traits, and 14 causal associations involving 4 mineral nutrition traits and 15 gut microbiota traits. Meanwhile, 118 suggestive associations were identified. The current study reveals multiple causal associations between serum mineral nutrients, gut microbiota, risk of neurological, psychiatric, and metabolic diseases, and potentially provides valuable insights for subsequent nutritional therapies.
Collapse
Affiliation(s)
- Wang Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| | - Bo-Min Lv
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
- Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| | - Qiang Zhu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
- Key Laboratory of Smart Farming for Agricultural Animals, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (B.-M.L.); (Y.Q.); (H.-Y.Z.)
| |
Collapse
|
17
|
Zou Z, Robinson JI, Steinberg LK, Henderson JP. Uropathogenic Escherichia coli wield enterobactin-derived catabolites as siderophores. J Biol Chem 2024; 300:105554. [PMID: 38072063 PMCID: PMC10788543 DOI: 10.1016/j.jbc.2023.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here, we find the siderophore enterobactin (Ent) and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined Ent biosynthesis and import mutants, we identify lower molecular weight dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-Ent complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed Ent, we find that Ent and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.
Collapse
Affiliation(s)
- Zongsen Zou
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - John I Robinson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lindsey K Steinberg
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jeffrey P Henderson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St Louis, Missouri, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
18
|
Hastie JL, Carmichael HL, Werner BM, Dunbar KE, Carlson PE. Clostridioides difficile utilizes siderophores as an iron source and FhuDBGC contributes to ferrichrome uptake. J Bacteriol 2023; 205:e0032423. [PMID: 37971230 PMCID: PMC10729759 DOI: 10.1128/jb.00324-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE This study is the first example of C. difficile growing with siderophores as the sole iron source and describes the characterization of the ferric hydroxamate uptake ABC transporter (FhuDBGC). This transporter shows specificity to the siderophore ferrichrome. While not required for pathogenesis, this transporter highlights the redundancy in iron acquisition mechanisms that C. difficile uses to compete for iron during an infection.
Collapse
Affiliation(s)
- Jessica L. Hastie
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Hannah L. Carmichael
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Bailey M. Werner
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Kristin E. Dunbar
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Paul E. Carlson
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| |
Collapse
|
19
|
Li J, Wang H. Autophagy-dependent ferroptosis in infectious disease. J Transl Int Med 2023; 11:355-362. [PMID: 38130644 PMCID: PMC10732494 DOI: 10.2478/jtim-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Autophagy is the initial defense response of the host against pathogens. Autophagy can be either non-selective or selective. It selectively targets the degradation of autophagic substrates through the sorting and transportation of autophagic receptor proteins. However, excessive autophagy activity will trigger cell death especially ferroptosis, which was characterized by the accumulation of lipid peroxide and free iron. Several certain types of selective autophagy degrade antioxidant systems and ferritin. Here, we summarized the latest researches of autophagy in infection and discuss the regulatory mechanisms and signaling pathways of autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Jiarou Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin150086, Heilongjiang Province, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin150086, Heilongjiang Province, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin150086, Heilongjiang Province, China
| |
Collapse
|
20
|
Soto Perezchica MM, Guerrero Barrera AL, Avelar Gonzalez FJ, Quezada Tristan T, Macias Marin O. Actinobacillus pleuropneumoniae, surface proteins and virulence: a review. Front Vet Sci 2023; 10:1276712. [PMID: 38098987 PMCID: PMC10720984 DOI: 10.3389/fvets.2023.1276712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023] Open
Abstract
Actinobacillus pleuropneumoniae (App) is a globally distributed Gram-negative bacterium that produces porcine pleuropneumonia. This highly contagious disease produces high morbidity and mortality in the swine industry. However, no effective vaccine exists to prevent it. The infection caused by App provokes characteristic lesions, such as edema, inflammation, hemorrhage, and necrosis, that involve different virulence factors. The colonization and invasion of host surfaces involved structures and proteins such as outer membrane vesicles (OMVs), pili, flagella, adhesins, outer membrane proteins (OMPs), also participates proteases, autotransporters, and lipoproteins. The recent findings on surface structures and proteins described in this review highlight them as potential immunogens for vaccine development.
Collapse
Affiliation(s)
- María M. Soto Perezchica
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L. Guerrero Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J. Avelar Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Teodulo Quezada Tristan
- Departamento de Ciencias Veterinaria, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Osvaldo Macias Marin
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
21
|
de Miranda R, Cuthbert BJ, Klevorn T, Chao A, Mendoza J, Arbing M, Sieminski PJ, Papavinasasundaram K, Abdul-Hafiz S, Chan S, Sassetti CM, Ehrt S, Goulding CW. Differentiating the roles of Mycobacterium tuberculosis substrate binding proteins, FecB and FecB2, in iron uptake. PLoS Pathog 2023; 19:e1011650. [PMID: 37747938 PMCID: PMC10553834 DOI: 10.1371/journal.ppat.1011650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, poses a great threat to human health. With the emergence of drug resistant Mtb strains, new therapeutics are desperately needed. As iron is critical to the growth and survival of Mtb, mechanisms through which Mtb acquires host iron represent attractive therapeutic targets. Mtb scavenges host iron via Mtb siderophore-dependent and heme iron uptake pathways. While multiple studies describe the import of heme and ferric-siderophores and the export of apo-siderophores across the inner membrane, little is known about their transport across the periplasm and cell-wall environments. Mtb FecB and FecB2 are predicted periplasmic binding proteins implicated in host iron acquisition; however, their precise roles are not well understood. This study sought to differentiate the roles FecB and FecB2 play in Mtb iron acquisition. The crystallographic structures of Mtb FecB and FecB2 were determined to 2.0 Å and 2.2 Å resolution, respectively, and show distinct ligand binding pockets. In vitro ligand binding experiments for FecB and FecB2 were performed with heme and bacterial siderophores from Mtb and other species, revealing that both FecB and FecB2 bind heme, while only FecB binds the Mtb sideophore ferric-carboxymycobactin (Fe-cMB). Subsequent structure-guided mutagenesis of FecB identified a single glutamate residue-Glu339-that significantly contributes to Fe-cMB binding. A role for FecB in the Mtb siderophore-mediated iron acquisition pathway was corroborated by Mycobacterium smegmatis and Mtb pull-down assays, which revealed interactions between FecB and members of the mycobacterial siderophore export and import machinery. Similarly, pull-down assays with FecB2 confirms its role in heme uptake revealing interactions with a potential inner membrane heme importer. Due to ligand preference and protein partners, our data suggest that Mtb FecB plays a role in siderophore-dependent iron and heme acquisition pathways; in addition, we confirm that Mtb FecB2 is involved in heme uptake.
Collapse
Affiliation(s)
- Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Bonnie J. Cuthbert
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Thaís Klevorn
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Alex Chao
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Jessica Mendoza
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mark Arbing
- UCLA-DOE Institute, UCLA, Los Angeles, Calofornia, United States of America
| | - Paul J. Sieminski
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sumer Abdul-Hafiz
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Sum Chan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Celia W. Goulding
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, Califiornia, United States of America
| |
Collapse
|
22
|
Büttner H, Hörl J, Krabbe J, Hertweck C. Discovery and Biosynthesis of Anthrochelin, a Growth-Promoting Metallophore of the Human Pathogen Luteibacter anthropi. Chembiochem 2023; 24:e202300322. [PMID: 37191164 DOI: 10.1002/cbic.202300322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Various human pathogens have emerged from environmental strains by adapting to higher growth temperatures and the ability to produce virulence factors. A remarkable example of a pathoadapted bacterium is found in the genus Luteibacter, which typically comprises harmless soil microbes, yet Luteibacter anthropi was isolated from the blood of a diseased child. Up until now, nothing has been known about the specialized metabolism of this pathogen. By comparative genome analyses we found that L. anthropi has a markedly higher biosynthetic potential than other bacteria of this genus and uniquely bears an NRPS gene locus tentatively coding for the biosynthesis of a metallophore. By metabolic profiling, stable isotope labeling, and NMR investigation of a gallium complex, we identified a new family of salicylate-derived nonribosomal peptides named anthrochelins A-D. Surprisingly, anthrochelins feature a C-terminal homocysteine tag, which might be introduced during peptide termination. Mutational analyses provided insight into the anthrochelin assembly and revealed the unexpected involvement of a cytochrome P450 monooxygenase in oxazole formation. Notably, this heterocycle plays a key role in the binding of metals, especially copper(II). Bioassays showed that anthrochelin significantly promotes the growth of L. anthropi in the presence of low and high copper concentrations, which occur during infections.
Collapse
Affiliation(s)
- Hannah Büttner
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Johannes Hörl
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jana Krabbe
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection, Biology, HKI, Dept. of Biomolecular Chemistry, Beutenbergstrasse 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
23
|
Azmat M, Ghalandari B, Jessica J, Xu Y, Li X, Su W, Qiang Z, Deng S, Azmat T, Jiang L, Ding X. PepDRED: De Novo Peptide Design with Strong Binding Affinity for Target Protein. Anal Chem 2023; 95:12264-12272. [PMID: 37553082 DOI: 10.1021/acs.analchem.3c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
De novo design of peptides that bind specifically to functional proteins is beneficial for diagnostics and therapeutics. However, complex permutations and combinations of amino acids pose significant challenges to the rational design of peptides with desirable stability and affinity. Herein, we develop a computational-based evolution method, namely, peptidomimetics-driven recognition elements design (PepDRED), to derive hemoglobin-inspired peptidomimetics. PepDRED mimics the natural evolutionism pipeline to generate stable apovariant (AVs) structures for wild-type counterparts via automated point mutations and validates their efficiency through free binding energy analysis and per residue energy decomposition analysis. For application demonstration, we applied PepDRED to design de novo peptides to bind FhuA, a typical TonB-dependent transporter (TBDT). TBDTs are Gram-negative bacterial outer membrane proteins responsible for iron transport and vital for bacterial resistance. PepDRED generated a pool of AVs and proceeded to reach an optimized peptide, AV440, with a remarkable binding affinity of -21 kcal/mol. AV440 is ∼2.5-fold stronger than the existing FhuA inhibitor Microcin J25. Network energy analysis further unveils that incorporating methionine (M42) in the N-terminal region significantly enhances inter-residue contacts and binding affinity. PepDRED offers a prompt and efficient in silico approach to develop potent peptide candidates for target proteins.
Collapse
Affiliation(s)
- Mehmoona Azmat
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Jessica Jessica
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Yuechen Xu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Xinle Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Wenqiong Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Zhang Qiang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Shuxin Deng
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Tabina Azmat
- Department of Cyber Security, AIR University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200230, China
| |
Collapse
|
24
|
Huang M, Wang M, Feng Y, Wang M, Gao Q, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Mao S, Sun D, He Y, Wu Z, Cheng A, Liu M. Functional Characterization of FeoAB in Iron Acquisition and Pathogenicity in Riemerella anatipestifer. Microbiol Spectr 2023; 11:e0137323. [PMID: 37272830 PMCID: PMC10434265 DOI: 10.1128/spectrum.01373-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
The bacterium Riemerella anatipestifer requires iron for growth, but the mechanism of iron uptake is not fully understood. In this study, we disrupted the Feo system and characterized its function in iron import in R. anatipestifer ATCC 11845. Compared to the parent strain, the growth of the ΔfeoA, ΔfeoB, and ΔfeoAB strains was affected under Fe3+-limited conditions, since the absence of the feo system led to less intracellular iron than in the parent strain. In parallel, the ΔfeoAB strain was shown to be less sensitive to streptonigrin, an antibiotic that requires free iron to function. The sensitivity of the ΔfeoAB strain to hydrogen peroxide was also observed to be diminished compared with that of the parent strain, which could be related to the reduced intracellular iron content in the ΔfeoAB strain. Further research revealed that feoA and feoB were directly regulated by iron through the Fur regulator and that the transcript levels of feoA and feoB were significantly increased in medium supplemented with 1 mM MnCl2, 400 μM ZnSO4, and 200 μM CuCl2. Finally, it was shown that the ΔfeoAB strain of R. anatipestifer ATCC 11845 was significantly impaired in its ability to colonize the blood, liver, and brain of ducklings. Taken together, these results demonstrated that FeoAB supports ferrous iron acquisition in R. anatipestifer and plays an important role in R. anatipestifer colonization. IMPORTANCE In Gram-negative bacteria, the Feo system is an important ferrous iron transport system. R. anatipestifer encodes an Feo system, but its function unknown. As iron uptake may be required for oxidative stress protection and virulence, understanding the contribution of iron transporters to these processes is crucial. This study showed that the ΔfeoAB strain is debilitated in its ability to import iron and that its intracellular iron content was constitutively low, which enhanced the resistance of the deficient strain to H2O2. We were surprised to find that, in addition to responding to iron, the Feo system may play an important role in sensing manganese, zinc, and copper stress. The reduced colonization ability of the ΔfeoAB strain also sheds light on the role of iron transporters in host-pathogen interactions. This study is important for understanding the cross talk between iron and other metal transport pathways, as well as the pathogenic mechanism in R. anatipestifer.
Collapse
Affiliation(s)
- Mi Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Feng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Wang P, Xiao Y, Gao D, Long Y, Xie Z. The Gene paaZ of the Phenylacetic Acid (PAA) Catabolic Pathway Branching Point and ech outside the PAA Catabolon Gene Cluster Are Synergistically Involved in the Biosynthesis of the Iron Scavenger 7-Hydroxytropolone in Pseudomonas donghuensis HYS. Int J Mol Sci 2023; 24:12632. [PMID: 37628812 PMCID: PMC10454607 DOI: 10.3390/ijms241612632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The newly discovered iron scavenger 7-hydroxytropolone (7-HT) is secreted by Pseudomonas donghuensis HYS. In addition to possessing an iron-chelating ability, 7-HT has various other biological activities. However, 7-HT's biosynthetic pathway remains unclear. This study was the first to report that the phenylacetic acid (PAA) catabolon genes in cluster 2 are involved in the biosynthesis of 7-HT and that two genes, paaZ (orf13) and ech, are synergistically involved in the biosynthesis of 7-HT in P. donghuensis HYS. Firstly, gene knockout and a sole carbon experiment indicated that the genes orf17-21 (paaEDCBA) and orf26 (paaG) were involved in the biosynthesis of 7-HT and participated in the PAA catabolon pathway in P. donghuensis HYS; these genes were arranged in gene cluster 2 in P. donghuensis HYS. Interestingly, ORF13 was a homologous protein of PaaZ, but orf13 (paaZ) was not essential for the biosynthesis of 7-HT in P. donghuensis HYS. A genome-wide BLASTP search, including gene knockout, complemented assays, and site mutation, showed that the gene ech homologous to the ECH domain of orf13 (paaZ) is essential for the biosynthesis of 7-HT. Three key conserved residues of ech (Asp39, His44, and Gly62) were identified in P. donghuensis HYS. Furthermore, orf13 (paaZ) could not complement the role of ech in the production of 7-HT, and the single carbon experiment indicated that paaZ mainly participates in PAA catabolism. Overall, this study reveals a natural association between PAA catabolon and the biosynthesis of 7-HT in P. donghuensis HYS. These two genes have a synergistic effect and different functions: paaZ is mainly involved in the degradation of PAA, while ech is mainly related to the biosynthesis of 7-HT in P. donghuensis HYS. These findings complement our understanding of the mechanism of the biosynthesis of 7-HT in the genus Pseudomonas.
Collapse
Affiliation(s)
| | | | | | - Yan Long
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (P.W.); (Y.X.); (D.G.)
| |
Collapse
|
26
|
Zou Z, Robinson JI, Steinberg LK, Henderson JP. Uropathogenic Escherichia coli wield enterobactin-derived catabolites as siderophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550588. [PMID: 37546885 PMCID: PMC10402112 DOI: 10.1101/2023.07.25.550588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Uropathogenic E. coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here we find the siderophore enterobactin and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined enterobactin biosynthesis and import mutants, we identify lower molecular weight, dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-enterobactin complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed enterobactin, we find that enterobactin and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.
Collapse
Affiliation(s)
- Zongsen Zou
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John I. Robinson
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lindsey K. Steinberg
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Wimalasiri VW, Jurczak KA, Wieliniec MK, Nilaweera TD, Nakamoto RK, Cafiso DS. A disulfide chaperone knockout facilitates spin labeling and pulse EPR spectroscopy of outer membrane transporters. Protein Sci 2023; 32:e4704. [PMID: 37312651 PMCID: PMC10288552 DOI: 10.1002/pro.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Pulse EPR measurements provide information on distances and distance distributions in proteins but require the incorporation of pairs of spin labels that are usually attached to engineered cysteine residues. In previous work, we demonstrated that efficient in vivo labeling of the Escherichia coli outer membrane vitamin B12 transporter, BtuB, could only be achieved using strains defective in the periplasmic disulfide bond formation (Dsb) system. Here, we extend these in vivo measurements to FecA, the E. coli ferric citrate transporter. As seen for BtuB, pairs of cysteines cannot be labeled when the protein is present in a standard expression strain. However, incorporating plasmids that permit an arabinose induced expression of FecA into a strain defective in the thiol disulfide oxidoreductase, DsbA, enables efficient spin-labeling and pulse EPR of FecA in cells. A comparison of the measurements made on FecA in cells with measurements made in reconstituted phospholipid bilayers suggests that the cellular environment alters the behavior of the extracellular loops of FecA. In addition to these in situ EPR measurements, the use of a DsbA minus strain for the expression of BtuB improves the EPR signals and pulse EPR data obtained in vitro from BtuB that is labeled, purified, and reconstituted into phospholipid bilayers. The in vitro data also indicate the presence of intermolecular BtuB-BtuB interactions, which had not previously been observed in a reconstituted bilayer system. This result suggests that in vitro EPR measurements on other outer membrane proteins would benefit from protein expression in a DsbA minus strain.
Collapse
Affiliation(s)
- Viranga W. Wimalasiri
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kinga A. Jurczak
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Monika K. Wieliniec
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Thushani D. Nilaweera
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Present address:
Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesBethesdaMarylandUSA
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - David S. Cafiso
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
28
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
29
|
Royer G, Clermont O, Marin J, Condamine B, Dion S, Blanquart F, Galardini M, Denamur E. Epistatic interactions between the high pathogenicity island and other iron uptake systems shape Escherichia coli extra-intestinal virulence. Nat Commun 2023; 14:3667. [PMID: 37339949 DOI: 10.1038/s41467-023-39428-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
The intrinsic virulence of extra-intestinal pathogenic Escherichia coli is associated with numerous chromosomal and/or plasmid-borne genes, encoding diverse functions such as adhesins, toxins, and iron capture systems. However, the respective contribution to virulence of those genes seems to depend on the genetic background and is poorly understood. Here, we analyze genomes of 232 strains of sequence type complex STc58 and show that virulence (quantified in a mouse model of sepsis) emerged in a sub-group of STc58 due to the presence of the siderophore-encoding high-pathogenicity island (HPI). When extending our genome-wide association study to 370 Escherichia strains, we show that full virulence is associated with the presence of the aer or sit operons, in addition to the HPI. The prevalence of these operons, their co-occurrence and their genomic location depend on strain phylogeny. Thus, selection of lineage-dependent specific associations of virulence-associated genes argues for strong epistatic interactions shaping the emergence of virulence in E. coli.
Collapse
Affiliation(s)
- Guilhem Royer
- Université Paris Cité, IAME, INSERM, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
- EERA Unit "Ecology and Evolution of Antibiotics Resistance," Institut Pasteur-Assistance Publique/Hôpitaux de Paris-Université Paris-Saclay, Paris, France
- UMR CNRS, 3525, Paris, France
| | | | - Julie Marin
- Université Paris Cité, IAME, INSERM, Paris, France
- Université Sorbonne Paris Nord, IAME, INSERM, Bobigny, France
| | | | - Sara Dion
- Université Paris Cité, IAME, INSERM, Paris, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Erick Denamur
- Université Paris Cité, IAME, INSERM, Paris, France.
- AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France.
| |
Collapse
|
30
|
Jiang L, Zhao Y, Yao Y, Lou J, Zhao Y, Hu B. Adding siderophores: A new strategy to reduce greenhouse gas emissions in composting. BIORESOURCE TECHNOLOGY 2023:129319. [PMID: 37315620 DOI: 10.1016/j.biortech.2023.129319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Microbial community is the primary driver causing the greenhouse gas emissions in composting. Thus, regulating the microbial communities is a strategy to reduce them. Here, two different siderophores (enterobactin and putrebactin) were added, which could bind and translocate iron by specific microbes, to regulate the composting communities. The results showed that adding enterobactin enriched Acinetobacter and Bacillus with specific receptors by 6.84-fold and 6.78-fold. It promoted carbohydrate degradation and amino acid metabolism. This resulted in a 1.28-fold increase in humic acid content, as well as a 14.02% and 18.27% decrease in CO2 and CH4 emissions, respectively. Meanwhile, adding putrebactin boosted the microbial diversity by 1.21-fold and enhanced potential microbial interactions by 1.76-fold. The attenuated denitrification process led to a 1.51-fold increase in the total nitrogen content and a 27.47% reduction in N2O emissions. Overall, adding siderophores is an efficient strategy to reduce greenhouse gas emissions and promote the compost quality.
Collapse
Affiliation(s)
- Liyan Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqing Yao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingxuan Lou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou310058, China.
| |
Collapse
|
31
|
Chan DCK, Josts I, Koteva K, Wright GD, Tidow H, Burrows LL. Interactions of TonB-dependent transporter FoxA with siderophores and antibiotics that affect binding, uptake, and signal transduction. Proc Natl Acad Sci U S A 2023; 120:e2221253120. [PMID: 37043535 PMCID: PMC10120069 DOI: 10.1073/pnas.2221253120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.
Collapse
Affiliation(s)
- Derek C. K. Chan
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry, Hamburg22761, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg22761, Germany
| | - Lori L. Burrows
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
32
|
Stelitano G, Cocorullo M, Mori M, Villa S, Meneghetti F, Chiarelli LR. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int J Mol Sci 2023; 24:ijms24076181. [PMID: 37047161 PMCID: PMC10094389 DOI: 10.3390/ijms24076181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.
Collapse
|
33
|
Dolan SK. Illuminating Siderophore Transporter Functionality with Thiopeptide Antibiotics. mBio 2023; 14:e0332622. [PMID: 36946760 PMCID: PMC10128021 DOI: 10.1128/mbio.03326-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa is a leading cause of infections and mortality in immunocompromised patients. This organism can overcome iron deprivation during infection via the synthesis of two iron-chelating siderophores, pyoverdine and pyochelin, which scavenge iron from host proteins. P. aeruginosa can also uptake xenosiderophores produced by other bacteria or fungi using dedicated transporter systems. The precise substrate specificity of these siderophore transporters remains to be determined. The thiopeptide antibiotic thiostrepton exploits the pyoverdine transporters FpvA and FpvB to cross the outer membrane and reach intracellular targets. Using a series of intricate biochemical experiments, a recent study by Chan and Burrows capitalized on the specificity of thiostrepton to uncover that FpvB transports the xenosiderophores ferrichrome and ferrioxamine B with higher affinity than pyoverdine. This surprising result highlights an alternative uptake pathway for these siderophores and has significant implications for our understanding of iron acquisition in this organism.
Collapse
Affiliation(s)
- Stephen K Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Kim DY, Yeom S, Park J, Lee H, Kim HJ. Cytoplasmic Delivery of an Antibiotic, Trimethoprim, with a Simple Bidentate Catechol Analog as a Siderophore Mimetic. ACS Infect Dis 2023; 9:554-566. [PMID: 36753707 DOI: 10.1021/acsinfecdis.2c00556] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Concerns about antibiotic-resistant Gram-negative pathogens are escalating, and accordingly siderophore-based intracellular antibiotic delivery is attracting more attention as an effective means to overcome these infections. Despite the successful clinical translation of this strategy, the delivery potential of siderophores has been limited to periplasm targeting, and this has appreciably restricted the repertoire of applicable antibiotics. To overcome this shortcoming of the current technology, this study focused on investigating the capability of simple bidentate catechol analogs to function as vehicles for cytoplasmic antibiotic delivery. Specifically, by employing trimethoprim, an inhibitor of dihydrofolate reductase located in the cytoplasm, as a model antibiotic, a chemical library of chelator-antibiotic conjugates featuring four different catechol analogs was prepared. Then, their various pharmacological properties and antimicrobial activities were evaluated. Analysis of these characterization data led to the identification of the active conjugates exhibiting notable iron- and trimethoprim-dependent potency against Escherichia coli. Further characterization of these hit molecules using E. coli mutant strains revealed that 2,3-dihydroxybenzoate could effectively deliver several corresponding conjugates to the cytoplasm by exploiting the siderophore uptake machineries present across the outer and inner membranes, originally designated for the native siderophore of E. coli, enterobactin. Considering the synthetic simplicity, such a catechol analog could have appreciable usage in potentiating cytoplasm-active antibiotics against recalcitrant Gram-negative pathogens.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Suyeon Yeom
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Jimin Park
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Heeyeong Lee
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for ProteoGeonomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
35
|
Pseudomonas aeruginosa FpvB Is a High-Affinity Transporter for Xenosiderophores Ferrichrome and Ferrioxamine B. mBio 2023; 14:e0314922. [PMID: 36507834 PMCID: PMC9973354 DOI: 10.1128/mbio.03149-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron is essential for many biological functions in bacteria, but its poor solubility is a limiting factor for growth. Bacteria produce siderophores, soluble natural products that bind iron with high affinity, to overcome this challenge. Siderophore-iron complexes return to the cell through specific outer membrane transporters. The opportunistic pathogen Pseudomonas aeruginosa makes multiple transporters that recognize its own siderophores, pyoverdine and pyochelin, and xenosiderophores produced by other bacteria or fungi, which gives it a competitive advantage. Some antibiotics exploit these transporters to bypass the membrane to reach their intracellular targets-including the thiopeptide antibiotic, thiostrepton (TS), which uses the pyoverdine transporters FpvA and FpvB to cross the outer membrane. Here, we assessed TS susceptibility in the presence of various siderophores and discovered that ferrichrome and ferrioxamine B antagonized TS uptake via FpvB. Unexpectedly, we found that FpvB transports ferrichrome and ferrioxamine B with higher affinity than pyoverdine. Site-directed mutagenesis of FpvB coupled with competitive growth inhibition and affinity label quenching studies suggested that the siderophores and antibiotic share a binding site in an aromatic pocket formed by the plug and barrel domains but have differences in their binding mechanism and molecular determinants for uptake. This work describes an alternative uptake pathway for ferrichrome and ferrioxamine B in P. aeruginosa and emphasizes the promiscuity of siderophore transporters, with implications for Gram-negative antibiotic development via the Trojan horse approach. IMPORTANCE Gram-negative bacteria express a variety of outer membrane transporters to import critical nutrients such as iron. Due to its insolubility, iron is taken up while bound to small-molecule chelators called siderophores. Pseudomonas aeruginosa takes up its own siderophores pyoverdine and pyochelin but can also steal siderophores produced by other bacteria and fungi, giving it a competitive advantage in iron-limited environments. Here, we used whole-cell reporter assays to show that FpvB, originally identified as a secondary transporter for pyoverdine, transports the chemically distinct fungal siderophore ferrichrome and the bacterial siderophore ferrioxamine B with high affinity. FpvB is also used by thiopeptide antibiotic thiostrepton for uptake. We predicted that all of these ligands bind to a common hydrophobic pocket in FpvB and used site-directed mutagenesis coupled with phenotypic assays to identify residues required for uptake. These analyses showed that siderophore and antibiotic uptake could be uncoupled. Our data show that FpvB is a promiscuous transporter of multiple chemically distinct ligands and fills in missing details of ferrichrome transport by P. aeruginosa. A clearer picture of the spectrum of outer membrane transporter substrate specificity is useful for the design of novel siderophore-antibiotic conjugates that can exploit nutrient uptake pathways to kill challenging Gram-negative pathogens.
Collapse
|
36
|
Semenec L, Cain AK, Dawson CJ, Liu Q, Dinh H, Lott H, Penesyan A, Maharjan R, Short FL, Hassan KA, Paulsen IT. Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence. Nat Commun 2023; 14:702. [PMID: 36759602 PMCID: PMC9911699 DOI: 10.1038/s41467-023-36252-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Acinetobacter baumannii and Klebsiella pneumoniae are opportunistic pathogens frequently co-isolated from polymicrobial infections. The infections where these pathogens co-exist can be more severe and recalcitrant to therapy than infections caused by either species alone, however there is a lack of knowledge on their potential synergistic interactions. In this study we characterise the genomes of A. baumannii and K. pneumoniae strains co-isolated from a single human lung infection. We examine various aspects of their interactions through transcriptomic, phenomic and phenotypic assays that form a basis for understanding their effects on antimicrobial resistance and virulence during co-infection. Using co-culturing and analyses of secreted metabolites, we discover the ability of K. pneumoniae to cross-feed A. baumannii by-products of sugar fermentation. Minimum inhibitory concentration testing of mono- and co-cultures reveals the ability for A. baumannii to cross-protect K. pneumoniae against the cephalosporin, cefotaxime. Our study demonstrates distinct syntrophic interactions occur between A. baumannii and K. pneumoniae, helping to elucidate the basis for their co-existence in polymicrobial infections.
Collapse
Affiliation(s)
- Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Qi Liu
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Hannah Lott
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Anahit Penesyan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Ram Maharjan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia
| | - Francesca L Short
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Karl A Hassan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2113, Australia.
| |
Collapse
|
37
|
Role of siderophore in Pseudomonas fluorescens biofilm formation and spoilage potential function. Food Microbiol 2023; 109:104151. [DOI: 10.1016/j.fm.2022.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
|
38
|
Liang Z, Shen J, Liu J, Sun X, Yang Y, Lv Y, Zheng J, Mou X, Li H, Ding X, Yang F. Prevalence and Characterization of Serratia marcescens Isolated from Clinical Bovine Mastitis Cases in Ningxia Hui Autonomous Region of China. Infect Drug Resist 2023; 16:2727-2735. [PMID: 37168514 PMCID: PMC10166088 DOI: 10.2147/idr.s408632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Purpose This study aimed to investigate the prevalence and genetic characterization of Serratia marcescens isolates from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Methods S. marcescens was identified by the polymerase-chain reaction of 16S rRNA gene and sequencing. Antimicrobial susceptibility was tested by the disk diffusion method. Genes of resistance and virulence were determined by the PCR. Results Overall, S. marcescens were confirmed from 32 of 2897 (1.1%) mastitis milk samples. These isolates showed high resistance to cefazolin (30/32, 93.8%) and chloramphenicol (28/32, 87.5%). A 12.5% (4/32) of the isolates displayed multidrug resistance (MDR). The most prevalent resistant genes found in S. marcescens were TEM (32/32, 100%) and CTX-M (24/32, 75.0%; CTX-M-15, 14/32, 43.8%; CTX-M-14, 8/32, 25.0%; CTX-M-65, 2/32, 6.3%) for extended-spectrum beta-lactamase, cmlA (28/32, 87.5%) and floR (16/32, 50.0%) for chloramphenicol resistance, SIM-1 (2/32, 6.3%) for carbapenemases, and sdeB (28/32, 87.5%), sdeY (26/32, 81.3%), sdeR (26/32, 81.3%) and sdeD (20/32, 62.5%) for efflux pumps. Moreover, all isolates carried virulence genes flhD, entB, and kpn, and most of them contained mrkD (30/32, 93.8%), ycfM (26/32, 81.3%), bsmB (26/32, 81.3%), pigP (26/32, 81.3%), kfu (24/32, 75.0%) and shlB (24/32, 75.0%). Conclusion To our knowledge, this is the first report of genetic determinants for antimicrobial resistance and virulence in S. marcescens isolated from bovine mastitis cases in China. These findings are useful for developing strategies for prevention and treatment of bovine mastitis caused by S. marcescens in China.
Collapse
Affiliation(s)
- Zeyi Liang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jiahao Shen
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Jing Liu
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xu Sun
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yayuan Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Yanan Lv
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Juanshan Zheng
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xiaoqing Mou
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Hongsheng Li
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Xuezhi Ding
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
| | - Feng Yang
- Key Laboratory of New Animal Drug Project of Gansu Province/Key Laboratory of Veterinary Pharmaceutics Discovery, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730050, People’s Republic of China
- Correspondence: Feng Yang; Xuezhi Ding, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, No. 335 Jiangouyan, Qilihe District, Lanzhou, Gansu, 730050, People’s Republic of China, Tel +86-931-2115262, Fax +86-931-2114180, Email ;
| |
Collapse
|
39
|
Manrique PD, López CA, Gnanakaran S, Rybenkov VV, Zgurskaya HI. New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance. Ann N Y Acad Sci 2023; 1519:46-62. [PMID: 36344198 PMCID: PMC9839546 DOI: 10.1111/nyas.14921] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibiotics effective against Gram-negative ESKAPE pathogens are a critical area of unmet need. Infections caused by these pathogens are not only difficult to treat but finding new therapies to overcome Gram-negative resistance is also a challenge. There are not enough antibiotics in development that target the most dangerous pathogens and there are not enough novel drugs in the pipeline. The major obstacle in the antibiotic discovery pipeline is the lack of understanding of how to breach antibiotic permeability barriers of Gram-negative pathogens. These barriers are created by active efflux pumps acting across both the inner and the outer membranes. Overproduction of efflux pumps alone or together with either modification of the outer membrane or antibiotic-inactivating enzymes and target mutations contribute to clinical levels of antibiotics resistance. Recent efforts have generated significant advances in the rationalization of compound efflux and permeation across the cell envelopes of Gram-negative pathogens. Combined with earlier studies and novel mathematical models, these efforts have led to a multilevel understanding of how antibiotics permeate these barriers and how multidrug efflux and permeation contribute to the development of antibiotic resistance and heteroresistance. Here, we discuss the new developments in this area.
Collapse
Affiliation(s)
- Pedro D. Manrique
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
- Present address: Physics Department, George Washington University, Washington D.C. 20052, United States
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| |
Collapse
|
40
|
Wu CM, Li LH, Lin YL, Wu CJ, Lin YT, Yang TC. The sbiTRS Operon Contributes to Stenobactin-Mediated Iron Utilization in Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0267322. [PMID: 36453931 PMCID: PMC9769818 DOI: 10.1128/spectrum.02673-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Iron is an essential micronutrient for various bacterial cellular processes. Fur is a global transcriptional regulator participating in iron homeostasis. Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has emerged as an opportunistic pathogen. To elucidate the novel regulatory mechanism behind iron homeostasis in S. maltophilia, wild-type KJ and KJΔFur, a fur mutant, were subjected to transcriptome assay. A five-gene cluster, sbiBA-sbiTRS, was significantly upregulated in KJΔFur. SbiAB is an ATP type efflux pump, SbiT is an inner membrane protein, and SbiSR is a two-component regulatory system (TCS). The sbiTRS operon organization was verified by reverse transcription-PCR (RT-PCR). Localization prediction and bacterial two-hybrid studies revealed that SbiT resided in the inner membrane and had an intramembrane interaction with SbiS. In iron-replete conditions, SbiT interacted with SbiS and maintained SbiSR TCS in a resting state. In response to iron depletion stress, SbiT no longer interacted with SbiS, leading to SbiSR TCS activation. The iron source utilization assay demonstrated the contribution of SbiSR TCS to stenobactin-mediated ferric iron utilization but notto the utilization of hemin and ferric citrate. Furthermore, SmeDEF and SbiAB pumps, known stenobactin secretion outlets, were members of the SbiSR regulon. Collectively, in an iron-depleted condition, SbiSR activation is regulated by Fur at the transcriptional level and by SbiT at the posttranslational level. Activated SbiSR contributes to stenobactin-mediated ferric iron utilization by upregulating the smeDEF and sbiAB operons. SbiSR is the first TCS found to be involved in iron homeostasis in S. maltophilia. IMPORTANCE Therapeutic options for Stenotrophomonas maltophilia infections are limited because S. maltophilia is intrinsically resistant to several antibiotics. Iron is an essential element for viability, but iron overload is a lethal threat to bacteria. Therefore, disruption of iron homeostasis can be an alternative strategy to cope with S. maltophilia infection. The intricate regulatory networks involved in iron hemostasis have been reported in various pathogens; however, little is known about S. maltophilia. Herein, a novel sbiTRS operon, a member of Fur regulon, was characterized. SbiT, an inner membrane protein, negatively modulated the SbiSR two-component regulatory system by intramembrane protein-protein interaction with SbiS. In response to iron-depleted stress, SbiSR was activated via the regulation of Fur and SbiT. Activated SbiSR upregulated smeDEF and sbiAB, which contributed to stenobactin-mediated ferric iron utilization. A novel fur-sbiT-sbiSR-smeDEF/sbiAB regulatory circuit in S. maltophilia was revealed.
Collapse
Affiliation(s)
- Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ling Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
41
|
Synthesis and study of new siderophore analog-ciprofloxacin conjugates with antibiotic activities against Pseudomonas aeruginosa and Burkholderia spp. Eur J Med Chem 2022; 245:114921. [DOI: 10.1016/j.ejmech.2022.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
42
|
Liu M, Zhang M, Chen J, Yang R, Huang Z, Liu Z, Li N, Shui L. Liquid crystal-based optical aptasensor for the sensitive and selective detection of Gram-negative bacteria. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Moynié L, Hoegy F, Milenkovic S, Munier M, Paulen A, Gasser V, Faucon AL, Zill N, Naismith JH, Ceccarelli M, Schalk IJ, Mislin GLA. Hijacking of the Enterobactin Pathway by a Synthetic Catechol Vector Designed for Oxazolidinone Antibiotic Delivery in Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1894-1904. [PMID: 35881068 DOI: 10.1021/acsinfecdis.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Enterobactin (ENT) is a tris-catechol siderophore used to acquire iron by multiple bacterial species. These ENT-dependent iron uptake systems have often been considered as potential gates in the bacterial envelope through which one can shuttle antibiotics (Trojan horse strategy). In practice, siderophore analogues containing catechol moieties have shown promise as vectors to which antibiotics may be attached. Bis- and tris-catechol vectors (BCVs and TCVs, respectively) were shown using structural biology and molecular modeling to mimic ENT binding to the outer membrane transporter PfeA in Pseudomonas aeruginosa. TCV but not BCV appears to cross the outer membrane via PfeA when linked to an antibiotic (linezolid). TCV is therefore a promising vector for Trojan horse strategies against P. aeruginosa, confirming the ENT-dependent iron uptake system as a gate to transport antibiotics into P. aeruginosa cells.
Collapse
Affiliation(s)
- Lucile Moynié
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, U.K
| | - Françoise Hoegy
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy
| | - Mathilde Munier
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| | - Aurélie Paulen
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| | - Véronique Gasser
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| | - Aline L Faucon
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| | - Nicolas Zill
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| | - James H Naismith
- The Rosalind Franklin Institute, Harwell Campus, Oxfordshire OX11 0QS, U.K.,Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford OX3 7BN, U.K
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, 09042 Monserrato, Italy.,IOM/CNR, Sezione di Cagliari, University of Cagliari, 09042 Monserrato, Italy
| | - Isabelle J Schalk
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, France.,Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, France
| |
Collapse
|
44
|
Gnann AD, Xia Y, Soule J, Barthélemy C, Mawani JS, Musoke SN, Castellano BM, Brignole EJ, Frueh DP, Dowling DP. High-resolution structures of a siderophore-producing cyclization domain from Yersinia pestis offer a refined proposal of substrate binding. J Biol Chem 2022; 298:102454. [PMID: 36063993 PMCID: PMC9547227 DOI: 10.1016/j.jbc.2022.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/01/2023] Open
Abstract
Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.
Collapse
Affiliation(s)
- Andrew D. Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Yuan Xia
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Clara Barthélemy
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jayata S. Mawani
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Sarah Nzikoba Musoke
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian M. Castellano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Edward J. Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA,For correspondence: Daniel P. Dowling
| |
Collapse
|
45
|
Zhao S, Wang Z, Lin Z, Wei G, Wen X, Li S, Yang X, Zhang Q, Jing C, Dai Y, Guo J, He Y. Drug Repurposing by Siderophore Conjugation: Synthesis and Biological Evaluation of Siderophore‐Methotrexate Conjugates as Antibiotics. Angew Chem Int Ed Engl 2022; 61:e202204139. [DOI: 10.1002/anie.202204139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sheng Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Zhi‐Peng Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Zihua Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Guoxing Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Xumei Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Siyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Qun Zhang
- Medicine Laboratory Children's Hospital of Chongqing Medical University Ministry of Education Key Laboratory of Child Development and Disorders 136 Zhongshan 2nd Rd Yuzhong, Chongqing 400014 P. R. China
| | - Chunmei Jing
- Medicine Laboratory Children's Hospital of Chongqing Medical University Ministry of Education Key Laboratory of Child Development and Disorders 136 Zhongshan 2nd Rd Yuzhong, Chongqing 400014 P. R. China
| | - Yuanwei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Jian Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
46
|
Pellizza L, Bialer MG, Sieira R, Aran M. MliR, a novel MerR-like regulator of iron homeostasis, impacts metabolism, membrane remodeling, and cell adhesion in the marine Bacteroidetes Bizionia argentinensis. Front Microbiol 2022; 13:987756. [PMID: 36118216 PMCID: PMC9478572 DOI: 10.3389/fmicb.2022.987756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The MerR family is a group of transcriptional activators with conserved N-terminal helix-turn-helix DNA binding domains and variable C-terminal effector binding regions. In most MerR proteins the effector binding domain (EBD) contains a cysteine center suited for metal binding and mediates the response to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. We here present a novel transcriptional regulator classified in the MerR superfamily that lacks an EBD domain and has neither conserved metal binding sites nor cysteine residues. This regulator from the psychrotolerant bacteria Bizionia argentinensis JUB59 is involved in iron homeostasis and was named MliR (MerR-like iron responsive Regulator). In silico analysis revealed that homologs of the MliR protein are widely distributed among different bacterial species. Deletion of the mliR gene led to decreased cell growth, increased cell adhesion and filamentation. Genome-wide transcriptomic analysis showed that genes associated with iron homeostasis were downregulated in mliR-deletion mutant. Through nuclear magnetic resonance-based metabolomics, ICP-MS, fluorescence microscopy and biochemical analysis we evaluated metabolic and phenotypic changes associated with mliR deletion. This work provides the first evidence of a MerR-family regulator involved in iron homeostasis and contributes to expanding our current knowledge on relevant metabolic pathways and cell remodeling mechanisms underlying in the adaptive response to iron availability in bacteria.
Collapse
|
47
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
48
|
Zhao S, Wang ZP, Lin Z, Wei G, Wen X, Li S, Yang X, Zhang Q, Jing C, Dai Y, Guo J, He Y. Drug Repurposing by Siderophore Conjugation: Synthesis and Biological Evaluation of Siderophore‐Methotrexate Conjugates as Antibiotics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sheng Zhao
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Zhi-Peng Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Zihua Lin
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Guoxing Wei
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Xumei Wen
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Siyu Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Xiaohong Yang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Qun Zhang
- Chongqing Medical University Affiliated Children's Hospital Medicine Laboratory CHINA
| | - Chunmei Jing
- Chongqing Medical University Affiliated Children's Hospital Department of Clinical Laboratory CHINA
| | - Yuanwei Dai
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Jian Guo
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yun He
- Chongqing University School of Pharmaceutical Sciences Daxuecheng South Road 401331 Chongqing CHINA
| |
Collapse
|
49
|
Wu CJ, Chen Y, Li LH, Wu CM, Lin YT, Ma CH, Yang TC. Roles of SmeYZ, SbiAB, and SmeDEF Efflux Systems in Iron Homeostasis of Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0244821. [PMID: 35647692 PMCID: PMC9241820 DOI: 10.1128/spectrum.02448-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/30/2022] [Indexed: 11/28/2022] Open
Abstract
Stenotrophomonas maltophilia, a nonfermenting Gram-negative rod, is frequently isolated from the environment and is emerging as a multidrug-resistant global opportunistic pathogen. S. maltophilia harbors eight RND-type efflux pumps that contribute to multidrug resistance and physiological functions. Among the eight efflux pumps, SmeYZ pump is constitutively highly expressed. In our previous study, we demonstrated that loss-of-function of the SmeYZ pump results in pleiotropic phenotypes, including abolished swimming motility, decreased secreted protease activity, and compromised tolerance to oxidative stress and antibiotics. In this study, we attempted to elucidate the underlying mechanisms responsible for ΔsmeYZ-mediated pleiotropic phenotypes. RNA-seq transcriptome analysis and subsequent confirmation with qRT-PCR revealed that smeYZ mutant experienced an iron starvation response because the genes involved in the synthesis and uptake of stenobactin, the sole siderophore of S. maltophilia, were significantly upregulated. We further verified that smeYZ mutant had low intracellular iron levels via inductively coupled plasma mass spectrometry (ICP-MS). Also, KJΔYZ was more sensitive to 2,2'-dipyridyl (DIP), a ferrous iron chelator, in comparison with the wild type. The contribution of SmeYZ, SmeDEF, and SbiAB pumps to stenobactin secretion was suggested by qRT-PCR and further verified by Chrome Azurol S (CAS) activity, iron source utilization, and cell viability assays. We also demonstrated that loss-of-function of SmeYZ led to the compensatory upregulation of SbiAB and SmeDEF pumps for stenobactin secretion. The overexpression of the SbiAB pump resulted in a reduction in intracellular iron levels, which may be the key factor responsible for the ΔsmeYZ-mediated pleiotropic phenotypes, except for antibiotic extrusion. IMPORTANCE Efflux pumps display high efficiency of drug extrusion, which underlies their roles in multidrug resistance. In addition, efflux pumps have physiological functions, and their expression is tightly regulated by various environmental and physiological signals. Functional redundancy of efflux pumps is commonly observed, and mutual regulation occurs among these functionally redundant pumps in a bacterium. Stenotrophomonas maltophilia is an opportunistic pathogen that shows intrinsic multi-drug resistance. In this study, we demonstrated that SmeYZ, SbiAB, and SmeDEF efflux pumps of S. maltophilia display functional redundancy in siderophore secretion. Inactivation of smeYZ led to the upregulation of smeDEF and sbiAB. Unexpectedly, sbiAB overexpression resulted in the reduction of intracellular iron levels, which led to pleiotropic defects in smeYZ mutant. This study demonstrates a previously unidentified connection between efflux pumps, siderophore secretion, and intracellular iron levels in S. maltophilia.
Collapse
Affiliation(s)
- Chao-Jung Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu Chen
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Hua Ma
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
50
|
Antibiotic resistance and siderophores production by clinical Escherichia coli strains. BIOTECHNOLOGIA 2022; 103:169-184. [PMID: 36606072 PMCID: PMC9642952 DOI: 10.5114/bta.2022.116211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
The phenomenon of antibiotic resistance has dramatically increased in the last few decades, especially in enterobacterial pathogens. Different strains of Escherichia coli have been reported to produce a variety of structurally different siderophores. In the present study, 32 E. coli strains were collected from different clinical settings in Cairo, Egypt and subjected to the antibiotic susceptibility test by using 19 antibiotics belonging to 7 classes of chemical groups. The results indicated that 31 strains could be considered as extensively drug-resistant and only one strain as pan drug-resistant. Siderophores production by all the tested E. coli strains was determined qualitatively and quantitatively. Two E. coli strains coded 21 and 49 were found to be the most potent siderophores producers, with 79.9 and 46.62%, respectively. Bacterial colonies with cured plasmids derived from strain 49 showed susceptibility to all the tested antibiotics. Furthermore, E. coli DH5α cells transformed with the plasmid isolated from E. coli strain 21 or E. coli strain 49 were found to be susceptible to ansamycins, quinolones, and sulfonamide groups of antibiotics. In contrast, both plasmid-cured and plasmid-transformed strains did not produce siderophores, indicating that the genes responsible for siderophores production were located on plasmids and regulated by genes located on the chromosome. On the basis of the obtained results, it could be concluded that there is a positive correlation between antibiotic resistance, especially to quinolones and sulfonamide groups, and siderophores production by E. coli strains used in this study.
Collapse
|