1
|
Andrey V, Koshevaya E, Mstislav M, Parfait K. Piezoelectric PVDF and its copolymers in biomedicine: innovations and applications. Biomater Sci 2024; 12:5164-5185. [PMID: 39258881 DOI: 10.1039/d4bm00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In recent years, poly(vinylidene fluoride) (PVDF) has emerged as a versatile polymer with a wide range of applications across various fields. PVDF's piezosensitivity, versatility, crystalline structure, and tunable parameters have established it as a highly sought-after material. Furthermore, PVDF and its copolymers exhibit excellent processability and chemical resistance to a diverse array of substances. Of particular significance is its remarkable structural stability in physiological media, which highlights its potential for use in the development of biomedical products. This review offers a comprehensive overview of the latest advancements in PVDF-based biomedical systems. It examines the fabrication of stimulus-responsive delivery systems, bioelectric therapy devices, and tissue-regenerating scaffolds, all of which harness the piezosensitivity of PVDF. Moreover, the potential of PVDF in the fabrication of both invasive and non-invasive diagnostic tools is investigated, with particular emphasis on its flexibility, transparency, and piezoelectric efficiency. The material's high biocompatibility and physiological stability are of paramount importance in the development of implantable sensors for long-term health monitoring, which is crucial for the management of chronic diseases and postoperative care. Additionally, we discuss a novel approach to photoacoustic microscopy that employs a PVDF sensor, thereby eliminating the necessity for external contrast agents. This technique provides a new avenue for non-invasive imaging in biomedical applications. Finally, we explore the challenges and prospects for the development of PVDF-based systems for a range of biomedical applications. This review is distinctive in comparison to other reviews on PVDF due to its concentrated examination of biomedical applications, including pioneering imaging techniques, long-term health monitoring, and a detailed account of advancements in the field. Collectively, these elements illustrate the potential of PVDF to markedly influence biomedical engineering and patient care, distinguishing it from existing literature. By leveraging the distinctive attributes of PVDF and its copolymers, researchers can continue to advance the frontiers of biomedical engineering, with the potential to transform patient care and treatment outcomes.
Collapse
Affiliation(s)
| | - Ekaterina Koshevaya
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123182, Russia
| | - Makeev Mstislav
- Bauman Moscow State Technical University, Moscow, 141005, Russia.
| | - Kezimana Parfait
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
2
|
Gong K, Peng C, Hu S, Xie W, Chen A, Liu T, Zhang W. Aging of biodegradable microplastics and their effect on soil properties: Control from soil water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136053. [PMID: 39395391 DOI: 10.1016/j.jhazmat.2024.136053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
The ecological risks of biodegradable microplastics (BMPs) to soil ecosystems have received increasing attention. This study investigates the impacts of polylactic acid microplastics (PLA-MPs) and polybutylene adipate terephthalate microplastics (PBAT-MPs) on soil properties of black soil (BS) and fluvo-aquic soil (FS) under three water conditions including dry (Dry), flooded (FL), and alternate wetting and drying (AWD). The results show that BMPs exhibited more evident aging under Dry and AWD conditions compared to FL condition. However, BMPs aging under FL condition induced more substantial changes in soil properties, especially dissolved organic carbon (DOC) concentrations, than under Dry and AWD conditions. BMPs also increased the humification degree of soil dissolved organic matter (DOM), particularly in BS. Metagenomic analysis of PBAT-MPs treatments showed different changes in microbial community structure depending on soil moisture. Under Dry conditions, PBAT-MPs enhance the ammonium-producing process of soil microbial communities. Genes related to N nitrification and benzene degradation were enriched under AWD conditions. In contrast, PBAT-MPs do not change the abundance of genes related to the N cycle under FL conditions but significantly reduce genes related to benzene degradation. This reduction in benzene degradation genes under FL condition might potentially slow down the degradation of PBAT-MPs, and could lead to temporary accumulation of benzene-related intermediates. These findings highlight the complex interactions between BMPs, soil properties, and microbial communities, emphasizing the need for comprehensive evaluations of BMPs' environmental impacts under varying soil water conditions.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Yu H, Zhang D, Cui L, Kong Y, Jiao X. A Machine Learning Approach for Efficiently Predicting Polymer Aging from UV-Vis Spectra. J Phys Chem B 2024; 128:9255-9261. [PMID: 39276090 DOI: 10.1021/acs.jpcb.4c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
This research has introduced an innovative approach that proficiently forecasts the alterations in ultraviolet-visible spectroscopy (UV-Vis) of polymer solutions during the aging effect. This method combines readily accessible feature descriptors with classical machine learning (ML) algorithms. Traditional spectral measurements, while precise in analyzing physical properties, are limited by their cost and efficiency. Therefore, this paper introduces a method that utilizes wavelength and the blue (B), green (G), and red (R) color values of the solutions as input features. We employed seven different ML models to train on these features with 10-fold cross-validation to ensure the reliability and generalizability of our results. After comparative analysis, all of the models performed excellently. Among them, the ExtraTree model demonstrated particularly high precision and excellent predictive ability on the testing set, with a Pearson correlation coefficient (r) of 0.9859 and a mean absolute error (MAE) of 0.0457. This study offers a practical solution for the rapid and cost-effective evaluation of polymer solutions' aging effect.
Collapse
Affiliation(s)
- Haishan Yu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 42 Hezuohua Road, Hefei, Anhui 230029, China
| | - DaDi Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 42 Hezuohua Road, Hefei, Anhui 230029, China
| | - Lei Cui
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 42 Hezuohua Road, Hefei, Anhui 230029, China
| | - Yuan Kong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Xuechen Jiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 42 Hezuohua Road, Hefei, Anhui 230029, China
| |
Collapse
|
4
|
Chen H, Xiang Z, Zhang T, Wang H, Li X, Chen H, Shi Q. Heparinized self-healing polymer coating with inflammation modulation for blood-contacting biomedical devices. Acta Biomater 2024; 186:201-214. [PMID: 39089350 DOI: 10.1016/j.actbio.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
The current techniques for antithrombotic coating on blood-contacting biomedical materials and devices are usually complex and lack practical feasibility with weak coating stability and low heparin immobilization. Here, a heparinized self-healing polymer coating with inflammation modulation is introduced through thermal-initiated radical copolymerization of methacrylate esterified heparin (MA-heparin) with methyl methacrylate (MMA) and n-butyl acrylate (nBA), followed by the anchoring of reactive oxygen species (ROS)-responsive polyoxalate containing vanillyl alcohol (PVAX) onto the coating through esterification. The aspirin, which is readily dissolved in the solution of MMA and nBA, is encapsulated within the coating after copolymerization. The copolymerization of MA-heparin with MMA and nBA significantly increases the heparin content of the coating, effectively inhibiting thrombosis and rendering the coating self-healing to help maintain long-term stability. ROS-responsive PVAX and aspirin released in a temperature-dependent manner resist acute and chronic inflammation, respectively. The heparinized self-healing and inflammation-modulated polymer coating exhibits the ability to confer long-term stability and hemocompatibility to blood-contacting biomedical materials and devices. STATEMENT OF SIGNIFICANCE: Surface engineering for blood-contacting biomedical devices paves a successful way to reduce thrombotic and inflammatory complications. However, lack of effectiveness, long-term stability and practical feasibility hinders the development and clinical application of existing strategies. Here we design a heparinized self-healing and inflammation-modulated polymer coating, which possesses high heparin level and self-healing capability to maintain long-term stability. The polymer coating is practically feasible to varied substrates and demonstrated to manipulate inflammation and prevent thrombosis both in vitro and in vivo. Our work provides a new method to develop coatings for blood-contacting biomedical materials and devices with long-term stability and hemocompatibility.
Collapse
Affiliation(s)
- Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xian Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hao Chen
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
5
|
Gong K, Liu T, Peng C, Zhao Z, Xu X, Shao X, Zhao X, Qiu L, Xie W, Sui Q, Zhang W. Water-dependent effects of biodegradable microplastics on arsenic fractionation in soil: Insights from enzyme degradation and synchrotron-based X-ray analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135275. [PMID: 39053062 DOI: 10.1016/j.jhazmat.2024.135275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The abundance of biodegradable microplastics (BMPs) is increasing in soil due to the widespread use of biodegradable plastics. However, the influence of BMPs on soil metal biogeochemistry, especially arsenic (As), under different water regimes is still unclear. In this study, we investigated the effects of two types of BMPs (PLA-MPs and PBAT-MPs) on As fractionation in two types of soils (black soil and fluvo-aquic soil) under three water regimes including drying (Dry), flooding (FL), and alternate wetting and drying (AWD). The results show that BMPs had limited indirect effects on As fractionation by altering soil properties, but had direct effects by adsorbing and releasing As during their degradation. Enzyme degradation experiments show that the degradation of PLA-MPs led to an increased desorption of 4.76 % for As(III) and 15.74 % for As(V). Synchrotron-based X-ray fluorescence (μ-XRF) combined with micro-X-ray absorption near edge structure (μ-XANES) analysis show that under Dry and AWD conditions, As on the BMPs primarily bind with Fe hydrated oxides in the form of As(V). Conversely, 71.57 % of As on PBAT-MP under FL conditions is in the form of As(III) and is primarily directly adsorbed onto its surface. This study highlights the role of BMPs in soil metal biogeochemistry.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ziyi Zhao
- International Elite Engineering School, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linlin Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Rostampour S, Cook R, Jhang SS, Li Y, Fan C, Sung LP. Changes in the Chemical Composition of Polyethylene Terephthalate under UV Radiation in Various Environmental Conditions. Polymers (Basel) 2024; 16:2249. [PMID: 39204469 PMCID: PMC11358994 DOI: 10.3390/polym16162249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Polyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro(nano)plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.e., ≥95% relative humidity) and dry conditions (i.e., ≤5% relative humidity) with varying temperatures (30 °C, 40 °C, and 50 °C) for up 20 days. ATR-FTIR was used to characterize the chemical composition change of degraded PET as a function of UV exposure time. The results showed that the cleavage of the ester bond at peak 1713 cm-1 and the formation of the carboxylic acid at peak 1685 cm-1 were significantly influenced by UV radiation. Furthermore, the formation of carboxylic acid was considerably higher at saturated humidity and 50 °C conditions compared with dry conditions. The ester bond cleavage was also more pronounced in saturated humidity conditions. The novelty of this study is to provide insights into the chemical degradation of PET under environmental conditions, including UV radiation, humidity, and temperature. The results can be used to develop strategies to reduce the environmental impact of plastic pollution.
Collapse
Affiliation(s)
- Sara Rostampour
- PREP Associate, Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Rachel Cook
- Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Song-Syun Jhang
- Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 701, Taiwan;
| | - Yuejin Li
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Chunlei Fan
- Bio Environmental Science Program, Morgan State University, Baltimore, MD 21251, USA; (Y.L.); (C.F.)
| | - Li-Piin Sung
- Infrastructure Materials Group, Materials and Structural Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| |
Collapse
|
7
|
Krieguer B, Ludwig N, Dorey S, Dupuy N, Girard F, Girard-Perier N, Kuntz F, Marque SRA. Thermal properties and radical monitoring after gamma, X-ray, and electron beam irradiation in polyamides. Phys Chem Chem Phys 2024; 26:21222-21228. [PMID: 39073103 DOI: 10.1039/d4cp02358g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Ionizing radiation induced transformations in materials were monitored through tracking of the generation and degradation processes of radical species. Consequently, the types and quantities of radicals were determined by electron spin resonance (ESR). Subsequently, differential scanning calorimetry (DSC) was utilized to assess the impact of irradiation on the material crystallinity. The effects of gamma rays, X-rays, and electron beams were investigated on different polyamides, which exhibit an ESR signal up to 60 days. DSC results showed no significant effect of irradiation on the melting peak temperature of the materials, indicating that the amount of radicals generated was not large enough to induce a significant alteration of the material's macrostructure.
Collapse
Affiliation(s)
- Blanche Krieguer
- Sartorius Stedim FMT S.A.S, Z.I. Les paluds, Avenue de Jouques CS91051, 13781, Aubagne Cedex, France.
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Aix Marseille Univ, CNRS, ICR, Case 551, 13397 Marseille, France.
| | | | - Samuel Dorey
- Sartorius Stedim FMT S.A.S, Z.I. Les paluds, Avenue de Jouques CS91051, 13781, Aubagne Cedex, France.
| | - Nathalie Dupuy
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Fabien Girard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Nina Girard-Perier
- Sartorius Stedim FMT S.A.S, Z.I. Les paluds, Avenue de Jouques CS91051, 13781, Aubagne Cedex, France.
| | - Florent Kuntz
- Aerial, 250 Rue Laurent Fries, 67400 Illkirch, France
| | | |
Collapse
|
8
|
Chen Y, Li H, Xu R, Fang Y, Chen Q, Wang Z, Liu H, Weng Y. Ferried Albumin-Inspired Bioadhesive With Dynamic Interfacial Bonds for Emergency Rescue. Adv Healthc Mater 2024; 13:e2400033. [PMID: 38483196 DOI: 10.1002/adhm.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Emergency prehospital wound closure and hemorrhage control are the first priorities for life-saving. Majority of bioadhesives form bonds with tissues through irreversible cross-linking, and the remobilization of misalignment may cause severe secondary damage to tissues. Therefore, developing an adhesive that can quickly and tolerably adhere to traumatized dynamic tissue or organ surfaces in emergency situations is a major challenge. Inspired by the structure of human serum albumin (HSA), a branched polymer with multitentacled sulfhydryl is synthesized, then, an instant and fault-tolerant tough wet-tissue adhesion (IFA) hydrogel is prepared. Adhesive application time is just 5 s (interfacial toughness of ≈580 J m-2), and favorable tissue-adhesion is maintained after ten cycles. IFA hydrogel shows unchangeable adhesive performance after 1 month of storage based on the internal oxidation-reduction mechanism. It not only can efficiently seal various organs but also achieves effective hemostasis in models of the rat femoral artery and rabbit-ear artery. This work also proposes an effective strategy for controllable adhesion, enabling the production of asymmetric adhesives with on-demand detachment. Importantly, IFA hydrogel has sound antioxidation, antibacterial property, hemocompatibility, and cytocompatibility. Hence, the HSA-inspired bioadhesive emerges as a promising first-aid supply for human-machine interface-based health management and non-invasive wound closure.
Collapse
Affiliation(s)
- Yiming Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Huiying Li
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Renfeng Xu
- College of Life Science, Fujian Normal University, Fujian, 350117, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian, 350117, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| |
Collapse
|
9
|
Chen X, Huang W, Tang Y, Zhang R, Lu X, Liu Y, Zhu M, Fan X. Variation of Young's modulus suggested the main active sites for four different aging plastics at an early age time. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134189. [PMID: 38569345 DOI: 10.1016/j.jhazmat.2024.134189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Precisely determining which bonds are more sensitive when plastic aging occurs is critical to better understand the mechanisms of toxic release and microplastics formation. However, the relationship between chemical bonds with the active aging sites changes and the aging behavior of plastics at an early age is still unclear. Herein, the mechanical behavior of four polymers with different substituents was characterized by the high-resolution AFM. Young's modulus (YM) changes suggested that the cleavage of C-Cl bonds in PVC, C-H bonds in PE and PP, and C-F bonds in PTFE are the main active aging sites for plastic aging. The aging degree of the plastics followed the order of PVC > PP > PE > PTFE. Two aging periods exhibited different YM change behavior, the free radical and cross-linking resulted in a minor increase in YM during the initiation period. Numerous free radicals formed and cross-linking reaction happened, causing a significant increase in YM during the propagation period. Raman spectroscopy verified the formation of microplastics. This research develops promising strategies to quantitatively evaluate the aging degrees using AFM and establish the relationship between chemical bonds and mechanical behavior, which would provide new method to predict plastic pollution in actual environments.
Collapse
Affiliation(s)
- Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wenyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Runzhe Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xinyi Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Mude Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Chen J, Jiang G, Hamann E, Mescher H, Jin Q, Allegro I, Brenner P, Li Z, Gaponik N, Eychmüller A, Lemmer U. Organosilicon-Based Ligand Design for High-Performance Perovskite Nanocrystal Films for Color Conversion and X-ray Imaging. ACS NANO 2024; 18:10054-10062. [PMID: 38527458 PMCID: PMC11008364 DOI: 10.1021/acsnano.3c11991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
Perovskite nanocrystals (PNCs) bear a huge potential for widespread applications, such as color conversion, X-ray scintillators, and active laser media. However, the poor intrinsic stability and high susceptibility to environmental stimuli including moisture and oxygen have become bottlenecks of PNC materials for commercialization. Appropriate barrier material design can efficiently improve the stability of the PNCs. Particularly, the strategy for packaging PNCs in organosilicon matrixes can integrate the advantages of inorganic-oxide-based and polymer-based encapsulation routes. However, the inert long-carbon-chain ligands (e.g., oleic acid, oleylamine) used in the current ligand systems for silicon-based encapsulation are detrimental to the cross-linking of the organosilicon matrix, resulting in performance deficiencies in the nanocrystal films, such as low transparency and large surface roughness. Herein, we propose a dual-organosilicon ligand system consisting of (3-aminopropyl)triethoxysilane (APTES) and (3-aminopropyl)triethoxysilane with pentanedioic anhydride (APTES-PA), to replace the inert long-carbon-chain ligands for improving the performance of organosilicon-coated PNC films. As a result, strongly fluorescent PNC films prepared by a facile solution-casting method demonstrate high transparency and reduced surface roughness while maintaining high stability in various harsh environments. The optimized PNC films were eventually applied in an X-ray imaging system as scintillators, showing a high spatial resolution above 20 lp/mm. By designing this promising dual organosilicon ligand system for PNC films, our work highlights the crucial influence of the molecular structure of the capping ligands on the optical performance of the PNC film.
Collapse
Affiliation(s)
- Junchi Chen
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Guocan Jiang
- Zhejiang
Institute of Photoelectronics, Department of Physics, Zhejiang Normal University, Jinhua, 321004 Zhejiang, P. R. China
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Elias Hamann
- Institute
for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein Leopoldshafen, Germany
| | - Henning Mescher
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Qihao Jin
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Isabel Allegro
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| | - Philipp Brenner
- ZEISS
Innovation Hub @ KIT, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Zhengquan Li
- Zhejiang
Institute of Photoelectronics, Department of Physics, Zhejiang Normal University, Jinhua, 321004 Zhejiang, P. R. China
| | - Nikolai Gaponik
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Alexander Eychmüller
- Physical
Chemistry, Technische Universität
Dresden (TUD), Zellescher
Weg 19, 01069 Dresden, Germany
| | - Uli Lemmer
- Light
Technology Institute, Karlsruhe Institute
of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
12
|
Mozetič M. Aging of Plasma-Activated Polyethylene and Hydrophobic Recovery of Polyethylene Polymers. Polymers (Basel) 2023; 15:4668. [PMID: 38139920 PMCID: PMC10748196 DOI: 10.3390/polym15244668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Available literature on the aging of plasma-activated polyethylene due to hydrophobic recovery has been reviewed and critically assessed. A common method for the evaluation of hydrophobic recovery is the determination of the static water contact angle, while the surface free energy does not reveal significant correlations. Surface-sensitive methods for the characterization of chemical composition and structure have limited applicability in studying the aging phenomenon. Aging is driven by thermodynamics, so it is observed even upon storage in a vacuum, and hydrophobic recovery increases with increasing temperature. Storage of plasma-activated polyethylene in the air at ambient conditions follows almost logarithmic behavior during the period studied by most authors; i.e., up to one month. The influence of the storage medium is somehow controversial because some authors reported aging suppression by storing in polar liquids, but others reported the loss of hydrophilicity even after a brief immersion into distilled water. Methods for suppressing aging by hydrophobic recovery include plasma treatment at elevated temperature followed by brief treatment at room temperature and application of energetic ions and photons in the vacuum ultraviolet range. Storing at low temperatures is a trivial alternative, but not very practical. The aging of plasma-activated polyethylene suppresses the adhesion of many coatings, but the correlation between the surface free energy and the adhesion force has yet to be addressed adequately.
Collapse
Affiliation(s)
- Miran Mozetič
- Department of Surface Engineering, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Xu B, Hou M, Xu Q, Su J, Zhang H, Lu X, Ni Z. Non-iridescent Structurally Colored Pigments Based on CB@SiO 2@TiO 2 Core-Bishell Nanospheres with Enhanced Color Stability and Excellent Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56138-56149. [PMID: 37983553 DOI: 10.1021/acsami.3c11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, artificial amorphous photonic structure (APS) materials with high color saturation and angle independence have been competitively reported. However, there is a lack of research into their functionalization and application in practical environments. Here, with practical applications in mind, we prepared APS pigments based on CB@SiO2@TiO2 core-bishell nanospheres and demonstrated high color saturation, enhanced color stability, and excellent photocatalytic activity. SiO2 effectively protected the carbon black particles from ablation during the calcination process. Paints composed of ethanol, ethyl cellulose (EC), and pigments could be spray-coated on any substrate to prepare a structurally colored coating without limitation. The coatings show good mechanical stability and photothermal stability. The color of the structurally colored pigments can be easily changed by adjusting the sizes of the CB@SiO2@TiO2 nanospheres. The photocatalytic activity of the pigments on formaldehyde (HCHO) and methylene blue (MB) solution and reaction kinetics of their degradation were studied by experiment. The results showed that the photocatalytic activity of the pigments increased with the increase of the TiO2 loading, and the degradation rate of HCHO reached 96.7% for 3 h and that of MB reached 97.9% for 60 min when the TiO2 shell thickness was 40 nm. The structurally colored pigments based on CB@SiO2@TiO2 nanospheres effectively solve the environmental problems caused by the application of pigments and have a promising future in the fields of color decoration, display, and painting.
Collapse
Affiliation(s)
- Bin Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Maohua Hou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinqin Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jieying Su
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haitao Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaohui Lu
- State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
| | - Zhongjin Ni
- College of Engineering, Zhejiang Agriculture and Forestry University, Linan 311300, China
| |
Collapse
|
14
|
Melekhina VY, Vlasova AV, Ilyin SO. Asphaltenes from Heavy Crude Oil as Ultraviolet Stabilizers against Polypropylene Aging. Polymers (Basel) 2023; 15:4313. [PMID: 37959994 PMCID: PMC10648154 DOI: 10.3390/polym15214313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The destruction of polymers under the influence of ultraviolet (UV) radiation is the cause of their aging and deterioration of strength properties. Asphaltenes are low-value waste products after the refining and deasphalting of heavy crude oil, which absorb UV radiation well. Asphaltenes require rational utilization, which suggests their use as UV stabilizing agents for polymers. In this work, asphaltenes were used to prevent UV aging of polypropylene (PP) by adding them in a mass fraction from 5% to 30% within an asphaltene/PP composite material. Rheometry, calorimetry, X-ray diffraction analysis, and tensile strength of PP films containing asphaltenes were performed before and after their intense UV irradiation for accelerated aging. Asphaltenes slightly reduce the viscosity, crystallinity, and mechanical strength of the initial PP due to their plasticizing effect. However, this deterioration in properties is more than compensated when studying UV-aged samples. Intense UV aging causes multiple catastrophic drops in the viscosity and strength of pure PP with the preservation of crystallinity due to the break of polymer chains and a decrease in molecular weight by approximately eight times. Asphaltenes suppress the destruction of PP, which is expressed in a significantly smaller decline in its viscosity and strength due to UV aging. The most optimal content of asphaltenes is 20%, which suppresses UV destruction by six times and best preserves the strength properties of PP.
Collapse
Affiliation(s)
| | | | - Sergey O. Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
15
|
Town RM, van Leeuwen HP, Duval JFL. Effect of Polymer Aging on Uptake/Release Kinetics of Metal Ions and Organic Molecules by Micro- and Nanoplastics: Implications for the Bioavailability of the Associated Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16552-16563. [PMID: 37856883 PMCID: PMC10620988 DOI: 10.1021/acs.est.3c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The main driver of the potential toxicity of micro- and nanoplastics toward biota is often the release of compounds initially present in the plastic, i.e., polymer additives, as well as environmentally acquired metals and/or organic contaminants. Plastic particles degrade in the environment via various mechanisms and at different rates depending on the particle size/geometry, polymer type, and the prevailing physical and chemical conditions. The rate and extent of polymer degradation have obvious consequences for the uptake/release kinetics and, thus, the bioavailability of compounds associated with plastic particles. Herein, we develop a theoretical framework to describe the uptake and release kinetics of metal ions and organic compounds by plastic particles and apply it to the analysis of experimental data for pristine and aged micro- and nanoplastics. In particular, we elucidate the contribution of transient processes to the overall kinetics of plastic reactivity toward aquatic contaminants and demonstrate the paramount importance of intraparticulate contaminant diffusion.
Collapse
Affiliation(s)
- Raewyn M. Town
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Herman P. van Leeuwen
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | | |
Collapse
|