1
|
Dadgaryeganeh R, LeBlanc J, Pradhan E, Miao D, Hussein A, Hunter HN, Zeng T, Romero-Nieto C, Baumgartner T. From flat to twisted - multifunctional phosphacyclic nanocarbons based on Vat Orange 3. Chem Sci 2025:d4sc07106a. [PMID: 39882563 PMCID: PMC11774316 DOI: 10.1039/d4sc07106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
The field of π-conjugated organic materials has seen significant advances in recent years. However, enhancing the functionality of well-established, mass-produced compounds remains a considerable challenge, despite being an intriguing strategy for designing high-value organic materials with low production costs. In this context, vat dyes, known for their wide range of colors and extensive use in the textile industry are particularly attractive. Here, we present an innovative approach that conjoins phosphorus heterocycles with the dye Vat Orange 3 (VO3) to yield novel nanocarbons with enhanced functional properties. X-ray crystallography reveals distinct twisting of the scaffold in the solid state, while the modification of the phosphorus centers leads to intriguing and versatile photophysics. Thin-film analyses show unusual, pronounced emission features that switch from green to orange upon aggregation. Furthermore, Lewis-adduct formation induces a fluorescence redshift upon coordination to the phosphorus moiety and cyclic voltammetry confirms the acceptor character of the system. This work demonstrates the versatility of phosphorus-modified vat dyes as value-added organic compounds and paves the way for the development of new functional 2D nanocarbons with broad technological relevance.
Collapse
Affiliation(s)
- Reza Dadgaryeganeh
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| | - Jesse LeBlanc
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| | - Ekadashi Pradhan
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| | - Dandan Miao
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| | - Amaar Hussein
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| | - Howard N Hunter
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| | - Tao Zeng
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| | - Carlos Romero-Nieto
- Facultad de Farmacia, Universidad de Castilla-La Mancha Calle Almansa 14, Edificio Bio-Incubadora Albacete 02008 Spain
| | - Thomas Baumgartner
- Department of Chemistry, York University 4700 Keele St Toronto ON M3J 1P3 Canada
| |
Collapse
|
2
|
Madanchi A, Azek E, Zongo K, Béland LK, Mousseau N, Simine L. Is the Future of Materials Amorphous? Challenges and Opportunities in Simulations of Amorphous Materials. ACS PHYSICAL CHEMISTRY AU 2025; 5:3-16. [PMID: 39867446 PMCID: PMC11758375 DOI: 10.1021/acsphyschemau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025]
Abstract
Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique nouveau (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.g., MAP). Examples are drawn from amorphous silicon and silica literature as well as from molecular glasses. Our outlook stresses the need for new computational methods to extend the time- and length-scales accessible through numerical simulations.
Collapse
Affiliation(s)
- Ata Madanchi
- Department
of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Emna Azek
- Department
of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Karim Zongo
- Department
of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L
3N6, Canada
| | - Laurent K. Béland
- Department
of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L
3N6, Canada
| | - Normand Mousseau
- Département
de Physique, Institut Courtois and Regroupement Québécois
sur les Matériaux de Pointe, Université
de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lena Simine
- Department
of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
3
|
Wang SR, Fang Q, Liu XY, Fang WH, Cui G. Machine learning accelerated nonadiabatic dynamics simulations of materials with excitonic effects. J Chem Phys 2025; 162:024105. [PMID: 39774880 DOI: 10.1063/5.0248228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study presents an efficient methodology for simulating nonadiabatic dynamics of complex materials with excitonic effects by integrating machine learning (ML) models with simplified Tamm-Dancoff approximation (sTDA) calculations. By leveraging ML models, we accurately predict ground-state wavefunctions using unconverged Kohn-Sham (KS) Hamiltonians. These ML-predicted KS Hamiltonians are then employed for sTDA-based excited-state calculations (sTDA/ML). The results demonstrate that excited-state energies, time-derivative nonadiabatic couplings, and absorption spectra from sTDA/ML calculations are accurate enough compared with those from conventional density functional theory based sTDA (sTDA/DFT) calculations. Furthermore, sTDA/ML-based nonadiabatic molecular dynamics simulations on two different materials systems, namely chloro-substituted silicon quantum dot and monolayer black phosphorus, achieve more than 100 times speedup than the conventional linear response time-dependent DFT simulations. This work highlights the potential of ML-accelerated nonadiabatic dynamics simulations for studying the complicated photoinduced dynamics of large materials systems, offering significant computational savings without compromising accuracy.
Collapse
Affiliation(s)
- Sheng-Rui Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Liu SS, Wei X, Zheng Y, Liu S, Xu DH, Li L, Cui G, Liu XY. Conformational and Solvent Effects on the Photoinduced Electron Transfer Dynamics of a Zinc Phthalocyanine-Benzoperylenetriimide Conjugate: A Nonadiabatic Dynamics Simulation. Chemphyschem 2025; 26:e202400631. [PMID: 39385521 DOI: 10.1002/cphc.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Herein, we employed a combination of static electronic structure calculations and nonadiabatic dynamics simulations at linear-response time dependent density functional theory (LR-TDDFT) level with the optimally tuned range-separated hybrid (OT-RSH) functional to explore the ultrafast photoinduced dynamics of a zinc phthalocyanine-benzoperylenetriimide (ZnPc-BPTI) conjugate. Due to the flexibility of the linker, we identified two major conformations: the stacked conformation (ZnPc-BPTI-1) and the extended conformation (ZnPc-BPTI-2). Since the charge transfer states are much lower than the lowest local excitation in ZnPc-BPTI-1, which is contrary to ZnPc-BPTI-2, the ultrafast electron transfer (~3.6 ps) is only observed in the nonadiabatic simulations of ZnPc-BPTI-1 upon local excitation around the absorption maximum of ZnPc. However, when considering the solvent effects in benzonitrile: the lowest S1 states are both charge transfer states from ZnPc to BPTI for different conformers. Subsequent nonadiabatic dynamics simulations indicate that both conformers experience ultrafast electron transfer in benzonitrile with two time constants of 90 [100] fs and 1.40 [1.43] ps. Our present work not only agrees well with previous experimental study, but also points out the important role of conformational changes and solvent effects in regulating the photodynamics of organic donor-acceptor conjugates.
Collapse
Affiliation(s)
- Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Xin Wei
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Yan Zheng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Dong-Hui Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Ganglong Cui
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| |
Collapse
|
5
|
Ayub AR, Akram W, Yaqoob U, Salba, Maqsood N, Rafiq S, Nabat KY, Anwer A, Somaily HH, Alansari A, Iqbal J. Optoelectronic analysis of designed semi-circular shaped thiophene-based bridged Y-series NFAs for organic solar cell applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:125022. [PMID: 39186876 DOI: 10.1016/j.saa.2024.125022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The highly adaptable optoelectronic and morphological properties of non-fullerene acceptors (NFAs) have made them a prominent research topic in the organic solar cell (OSC) field. This work describes the design of new molecules and investigates the potential optoelectronic aspects of remodified Y-series NFAs endowing with five new semi-circular shaped derivatives (BTPB1-BTPB5) based on the DFT-based quantum simulations. The designed molecules possess higher-lying LUMO energy levels with narrowed bandgaps and excellent coherence between the acceptor and core via inserted bridges. The molecules demonstrate a significant red shift and a wide-ranging absorption spectrum extending from 400 nm to 1500 nm, with the most extensive absorption occurring in the near-infrared (NIR) region. Effective π-π stacking and drastically lower binding energy certify facile charge dissociation and transmission rate. Thiophene-based bridge modification decreased reorganization energy by 47 % which results in facile charge transmission and high current density. Theoretically, simulated PCE is achieved as high as 31.49 % owing to the higher-lying LUMOs. The results demonstrate the value of designing systems and exploring new possibilities for developing effective Y-series NFAs-based high-performance organic solar cells.
Collapse
Affiliation(s)
- Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Waqas Akram
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Umer Yaqoob
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Salba
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nimra Maqsood
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, 23002 Anhui, PR China
| | - Sidra Rafiq
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Karim Youssef Nabat
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Arslan Anwer
- Department of Chemistry, University of Education, Lahore, Punjab 54770, Pakistan
| | - H H Somaily
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Abdulkarim Alansari
- Mechanical Engineering Department, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
6
|
Xu Z, Chandresh A, Mauri A, Esmaeilpour M, Monnier V, Odobel F, Heinke L, Wenzel W, Kozlowska M, Diring S, Haldar R, Wöll C. Regulated Charge Transfer in Donor-Acceptor Metal-Organic Frameworks for Highly-Sensitive Photodetectors. Angew Chem Int Ed Engl 2024; 63:e202414526. [PMID: 39531348 DOI: 10.1002/anie.202414526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
In photo-induced charge separation, organic thin films with donor and acceptor chromophores are vital for uses such as artificial photosynthesis and photodetection. The main challenges include optimizing charge separation efficiency and identifying the ideal acceptor/donor ratio. Achieving this is difficult due to the variability in molecular configurations within these typically amorphous organic aggregates. Metal-organic frameworks (MOFs) provide a structured solution by enabling systematic design of donor/acceptor blends with adjustable ratios within a crystalline lattice. We demonstrate this approach by incorporating donor and acceptor naphthalenediimide (NDI) chromophores as linkers in a highly oriented, monolithic MOF thin film. By adjusting the NDI acceptor linker concentration during the layer-by-layer assembly of surface-anchored MOF thin films (SURMOFs), we significantly enhanced charge separation efficiency. Surprisingly, the optimum acceptor concentration was only 3 %, achieving a forty-fold increase in photodetection efficiency compared to baseline NDI donor-based SURMOFs. This unexpected behaviour was clarified through theoretical analysis enabled by the well-defined crystalline structure of the SURMOFs. Using density functional theory and kinetic Monte Carlo simulations, we identified two opposing effects from acceptors: the positive effect of suppressing undesirable charge carrier recombination is offset at high concentrations by a reduction in charge-carrier mobility.
Collapse
Affiliation(s)
- Zhiyun Xu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Mauri
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Meysam Esmaeilpour
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vincent Monnier
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Fabrice Odobel
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stéphane Diring
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Balcı S, Hosseini S, Demirgezer E, Yaşa M, Çırpan A, Toppare L. Carbazole, Fluorene, and Silafluorene Bearing Non-Fullerene Acceptors: Synthesis, Characterization, and Performance in Organic Photovoltaic Devices. Macromol Rapid Commun 2024:e2400728. [PMID: 39660391 DOI: 10.1002/marc.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Due to their tunable energy levels, ability for intense light absorption, stability and ease of purification, non-fullerene acceptors (NFAs) have significantly contributed to the progress of organic photovoltaics (OPVs). Herein, a series of newly designed and synthesized NFAs specifically tailored are presented for OPV applications. A new class of NFAs possessing carbazole, fluorene, silafluorene derivatives, and benzothiadiazoles are synthesized. The electrochemical and optical investigations are conducted thoroughly. The utilization of these new materials with commercial donor polymers P3HT and PTB7-Th in OPVs shows their potential applications for future studies. The optimal performance is achieved with an inverted structured OPV device, which demonstrates a power conversion efficiency (PCE) of 3.77%, an open-circuit voltage (VOC) of 1.06 V, a short-circuit current (JSC) of 9.66 mA cm- 2, and a fill factor (FF) of 37.08%.
Collapse
Affiliation(s)
- Seher Balcı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Shadi Hosseini
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
| | - Elif Demirgezer
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Mustafa Yaşa
- Center for Solar Energy Research and Applications (ODTÜ-GÜNAM), Middle East Technical University, Ankara, 06800, Turkey
| | - Ali Çırpan
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
- Center for Solar Energy Research and Applications (ODTÜ-GÜNAM), Middle East Technical University, Ankara, 06800, Turkey
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara, 06800, Turkey
| | - Levent Toppare
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
8
|
Xu XQ, Li WJ, Zhang DY, Zhu Y, Xu WT, Wang Y, Wang XQ, Wang W, Yang HB. Chiral Rotaxane-Branched Dendrimers as Relays in Artificial Light-Harvesting Systems with Boosted Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202419434. [PMID: 39578231 DOI: 10.1002/anie.202419434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Starting from AIEgen-functionalized chiral [2]rotaxane building block, we have successfully synthesized a new class of chiral rotaxane-branched dendrimers through controllable divergent strategy for the first time, based on which novel chiral artificial light-harvesting systems (LHSs) were successfully constructed in aqueous phase by sequentially introducing achiral donor and acceptor. More importantly, accompanied by the two-step Förster resonance energy transfer (FRET) process in the resultant artificial LHSs, the sequentially amplified circularly polarized luminescence (CPL) performances were achieved, highlighting that the chiral rotaxane-branched dendrimers could serve as excellent relay for both energy transfer and chirality transmission. Impressively, compared with the sole chiral rotaxane-branched dendrimers, the dissymmetry factors (glum) values of the resultant artificial LHSs were amplified by one order of magnitude up to 0.038, enabling their further applications in information storage and encryption. The proof-of concept study provides not only a feasible approach for the efficient amplification of CPL performances but also a novel platform for the construction of novel chiral luminescent materials.
Collapse
Affiliation(s)
- Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
9
|
Tracy DA, Fernandez-Alberti S, Galindo JF, Tretiak S, Roitberg AE. Nonadiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. J Phys Chem B 2024; 128:11426-11434. [PMID: 39530349 DOI: 10.1021/acs.jpcb.4c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this article, the nonadiabatic excited-state Molecular dynamics (NEXMD) package is linked with the SANDER package, provided by AMBERTOOLS. The combination of these software packages enables the simulation of photoinduced dynamics of large multichromophoric conjugated molecules involving several coupled electronic excited states embedded in an explicit solvent by using the quantum/mechanics/molecular mechanics (QM/MM) methodology. The fewest switches surface hopping algorithm, as implemented in NEXMD, is used to account for quantum transitions among the adiabatic excited-state simulations of the photoexcitation and subsequent nonadiabatic electronic transitions, and vibrational energy relaxation of a substituted polyphenylenevinylene oligomer (PPV3-NO2) in vacuum and methanol as an explicit solvent has been used as a test case. The impact of including specific solvent molecules in the QM region is also analyzed. Our NEXMD-SANDER QM/MM implementation provides a useful computational tool to simulate qualitatively solvent-dependent effects, like electron transfer, stabilization of charge-separated excited states, and the role of solvent reorganization in the molecular optical properties, observed in solution-based spectroscopic experiments.
Collapse
Affiliation(s)
- Dustin A Tracy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
10
|
Ren H, Chen JD, Zhang YF, Zhang JL, Chen WS, Li YQ, Tang JX. 20.4% Power conversion efficiency from albedo-collecting organic solar cells under 0.2 albedo. SCIENCE ADVANCES 2024; 10:eadp9439. [PMID: 39485852 PMCID: PMC11529706 DOI: 10.1126/sciadv.adp9439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Highly efficient bifacial organic solar cells (OSCs) have not been reported due to limited thickness of the active layer in conventional configurations, not allowing for efficient harvesting of front sunlight and albedo light. Here, bifacial OSCs are reported with efficiency higher than the monofacial counterparts. The incorporation of pyramid-based asymmetrical optical transmission (AOT) array to a transparent silver electrode suppresses the escaping of front sunlight without sacrificing the harvesting of albedo light. Parasitic absorption induced by the excitation of surface plasmons in an AOT electrode is further reduced by doping organic emitter in electron transport layer and capping high dielectric constant film to silver. The rear electrode achieves a front transmittance of 7% and a rear transmission of 86%. At a conventional albedo of 0.2, the synergistic effect of AOT and minimized optical loss endow the bifacial OSCs with power conversion efficiency of 20.4%. This work paves the way for the utilization of albedo light in OSCs.
Collapse
Affiliation(s)
- Hao Ren
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering (FIE), Macau University of Science and Technology, Taipa, Macao SAR 999078, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing-De Chen
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering (FIE), Macau University of Science and Technology, Taipa, Macao SAR 999078, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Ye-Fan Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering (FIE), Macau University of Science and Technology, Taipa, Macao SAR 999078, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Jia-Liang Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei-Shuo Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering (FIE), Macau University of Science and Technology, Taipa, Macao SAR 999078, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Fux GE, Fowler-Wright P, Beckles J, Butler EP, Eastham PR, Gribben D, Keeling J, Kilda D, Kirton P, Lawrence EDC, Lovett BW, O'Neill E, Strathearn A, de Wit R. OQuPy: A Python package to efficiently simulate non-Markovian open quantum systems with process tensors. J Chem Phys 2024; 161:124108. [PMID: 39315878 DOI: 10.1063/5.0225367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Non-Markovian dynamics arising from the strong coupling of a system to a structured environment is essential in many applications of quantum mechanics and emerging technologies. Deriving an accurate description of general quantum dynamics including memory effects is, however, a demanding task, prohibitive to standard analytical or direct numerical approaches. We present a major release of our open source software package, OQuPy (Open Quantum System in Python), which provides several recently developed numerical methods that address this challenging task. It utilizes the process tensor approach to open quantum systems (OQS) in which a single map, the process tensor, captures all possible effects of an environment on the system. The representation of the process tensor in a tensor network form allows for an exact yet highly efficient description of non-Markovian OQS (NM-OQS). The OQuPy package provides methods to (1) compute the dynamics and multi-time correlations of quantum systems coupled to single and multiple environments, (2) optimize control protocols for NM-OQS, (3) simulate interacting chains of NM-OQS, and (4) compute the mean-field dynamics of an ensemble of NM-OQS coupled to a common central system. Our aim is to provide an easily accessible and extensible tool for researchers of OQS in fields such as quantum chemistry, quantum sensing, and quantum information.
Collapse
Affiliation(s)
- Gerald E Fux
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Piper Fowler-Wright
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Joel Beckles
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Eoin P Butler
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Paul R Eastham
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Dominic Gribben
- Institute for Physics, Johannes Gutenberg University of Mainz, D-55099 Mainz, Germany
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Dainius Kilda
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
| | - Peter Kirton
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Ewen D C Lawrence
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Brendon W Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Eoin O'Neill
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Aidan Strathearn
- Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Roosmarijn de Wit
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
12
|
Gotfredsen H, Hergenhahn J, Duarte F, Claridge TDW, Anderson HL. Bimolecular Sandwich Aggregates of Porphyrin Nanorings. J Am Chem Soc 2024; 146:25232-25244. [PMID: 39186461 PMCID: PMC11403599 DOI: 10.1021/jacs.4c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Extended π-systems often form supramolecular aggregates, drastically changing their optical and electronic properties. However, aggregation processes can be difficult to characterize or predict. Here, we show that butadiyne-linked 8- and 12-porphyrin nanorings form stable and well-defined bimolecular aggregates with remarkably sharp NMR spectra, despite their dynamic structures and high molecular weights (12.7 to 26.0 kDa). Pyridine breaks up the aggregates into their constituent rings, which are in slow exchange with the aggregates on the NMR time scale. All the aggregates have the same general two-layer sandwich structure, as deduced from NMR spectroscopy experiments, including 1H DOSY, 1H-1H COSY, TOCSY, NOESY, and 1H-13C HSQC. This structure was confirmed by analysis of residual dipolar couplings from 13C-coupled 1H-13C HSQC experiments on one of the 12-ring aggregates. Variable-temperature NMR spectroscopy revealed an internal ring-on-ring rotation process by which two π-π stacked conformers interconvert via a staggered conformation. A slower dynamic process, involving rotation of individual porphyrin units, was also detected by exchange spectroscopy in the 8-ring aggregates, implying partial disaggregation and reassociation. Molecular dynamics simulations indicate that the 8-ring aggregates are bowl-shaped and highly fluxional, compared to the 12-ring aggregates, which are cylindrical. This work demonstrates that large π-systems can form surprisingly well-defined aggregates and may inspire the design of other noncovalent assemblies.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Janko Hergenhahn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| |
Collapse
|
13
|
Perez-Castillo R, Freixas VM, Mukamel S, Martinez-Mesa A, Uranga-Piña L, Tretiak S, Gelin MF, Fernandez-Alberti S. Transient-absorption spectroscopy of dendrimers via nonadiabatic excited-state dynamics simulations. Chem Sci 2024; 15:13250-13261. [PMID: 39183915 PMCID: PMC11339953 DOI: 10.1039/d4sc01019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
The efficiency of light-harvesting and energy transfer in multi-chromophore ensembles underpins natural photosynthesis. Dendrimers are highly branched synthetic multi-chromophoric conjugated supra-molecules that mimic these natural processes. After photoexcitation, their repeated units participate in a number of intramolecular electronic energy relaxation and redistribution pathways that ultimately funnel to a sink. Here, a model four-branched dendrimer with a pyrene core is theoretically studied using nonadiabatic molecular dynamics simulations. We evaluate excited-state photoinduced dynamics of the dendrimer, and demonstrate on-the-fly simulations of its transient absorption pump-probe (TA-PP) spectra. We show how the evolutions of the simulated TA-PP spectra monitor in real time photoinduced energy relaxation and redistribution, and provide a detailed microscopic picture of the relevant energy-transfer pathways. To the best of our knowledge, this is the first of this kind of on-the-fly atomistic simulation of TA-PP signals reported for a large molecular system.
Collapse
Affiliation(s)
- Royle Perez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Aliezer Martinez-Mesa
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Llinersy Uranga-Piña
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University Hangzhou 310018 China
| | | |
Collapse
|
14
|
Zhou WL, Wu YG, Wang S, Zhang R, Wang LH, Liu J, Xu X. Laponite-activated AIE supramolecular assembly with modulating multicolor luminescence for logic digital encryption and perfluorinated pollutant detection. Biosens Bioelectron 2024; 258:116343. [PMID: 38718636 DOI: 10.1016/j.bios.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yun-Ga Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Siwei Wang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
15
|
Zhang C, Zhai Y, Gong Z, Duan H, She YB, Yang YF, Su A. Transfer learning across different chemical domains: virtual screening of organic materials with deep learning models pretrained on small molecule and chemical reaction data. J Cheminform 2024; 16:89. [PMID: 39080777 PMCID: PMC11290278 DOI: 10.1186/s13321-024-00886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
Machine learning is becoming a preferred method for the virtual screening of organic materials due to its cost-effectiveness over traditional computationally demanding techniques. However, the scarcity of labeled data for organic materials poses a significant challenge for training advanced machine learning models. This study showcases the potential of utilizing databases of drug-like small molecules and chemical reactions to pretrain the BERT model, enhancing its performance in the virtual screening of organic materials. By fine-tuning the BERT models with data from five virtual screening tasks, the version pretrained with the USPTO-SMILES dataset achieved R2 scores exceeding 0.94 for three tasks and over 0.81 for two others. This performance surpasses that of models pretrained on the small molecule or organic materials databases and outperforms three traditional machine learning models trained directly on virtual screening data. The success of the USPTO-SMILES pretrained BERT model can be attributed to the diverse array of organic building blocks in the USPTO database, offering a broader exploration of the chemical space. The study further suggests that accessing a reaction database with a wider range of reactions than the USPTO could further enhance model performance. Overall, this research validates the feasibility of applying transfer learning across different chemical domains for the efficient virtual screening of organic materials.Scientific contributionThis study verifies the feasibility of applying transfer learning to large language models in different chemical fields to help organic materials perform virtual screening. Through the comparison of transfer learning from different chemical fields to a variety of organic material molecules, the high precision virtual screening of organic materials is realized.
Collapse
Affiliation(s)
- Chengwei Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yushuang Zhai
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ziyang Gong
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Yuan-Bin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - An Su
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
16
|
Das B, Bora SR, Bishen SM, Mishra H, Kalita DJ, Wahab A. Photophysics of a Monoannulated Indigo: Intra- and Intermolecular Charge Transfer. J Phys Chem A 2024; 128:2565-2573. [PMID: 38513220 DOI: 10.1021/acs.jpca.3c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the present work, the photoinduced charge-transfer (CT) behavior of 7-phenyl-6H-pyrido[1,2-a:3,4-b']diindole-6,13(12H)-dione (HCB) as a function of solvent polarity is reported by UV-vis absorption, steady-state and time-resolved fluorescence, and quantum chemical calculations. Calculated excited state energies of HCB at the B3PW91/6-31+G* level in vacuo and in solvents fulfill the energy requirements for singlet fission, which is the most promising path for the generation of highly efficient solar cells. The calculated potential energy curve for the compound reveals that the keto form is the predominant form in the ground state. Large bathochromic shifts in fluorescence with decreasing trends of quantum yield and lifetime indicate the occurrence of intramolecular CT from the indole bicycle to the indolinone moiety of HCB in highly polar solvents. The observed quenching of HCB fluorescence in different solvents without altering the spectral shape upon addition of a donor, triethylamine, is attributed to intermolecular CT, and it was examined in terms of the Stern-Volmer kinetics. The thermodynamics of photoinduced CT processes in HCB was analyzed using the measured photophysical data and cyclic voltammetric redox potentials via the Rehm-Weller equation. Analyses with the semiclassical Marcus theory suggest that both the CT processes fall under the Marcus normal region.
Collapse
Affiliation(s)
- Bidyut Das
- Department of Chemistry, Cotton University, Guwahati 781 001, Assam, India
| | - Smiti Rani Bora
- Department of Chemistry, Gauhati University, Guwahati 781 014, Assam, India
| | - Siddharth Mall Bishen
- Physics Section MMV, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - Hirdyesh Mishra
- Physics Section MMV, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | - Abdul Wahab
- Department of Chemistry, Cotton University, Guwahati 781 001, Assam, India
| |
Collapse
|
17
|
Hung TC, Godinez-Loyola Y, Steinbrecher M, Kiraly B, Khajetoorians AA, Doltsinis NL, Strassert CA, Wegner D. Activating the Fluorescence of a Ni(II) Complex by Energy Transfer. J Am Chem Soc 2024; 146:8858-8864. [PMID: 38513215 PMCID: PMC10996004 DOI: 10.1021/jacs.3c07716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Luminescence of open-shell 3d metal complexes is often quenched due to ultrafast intersystem crossing (ISC) and cooling into a dark metal-centered excited state. We demonstrate successful activation of fluorescence from individual nickel phthalocyanine (NiPc) molecules in the junction of a scanning tunneling microscope (STM) by resonant energy transfer from other metal phthalocyanines at low temperature. By combining STM, scanning tunneling spectroscopy, STM-induced luminescence, and photoluminescence experiments as well as time-dependent density functional theory, we provide evidence that there is an activation barrier for the ISC, which, in most experimental conditions, is overcome. We show that this is also the case in an electroluminescent tunnel junction where individual NiPc molecules adsorbed on an ultrathin NaCl decoupling film on a Ag(111) substrate are probed. However, when an MPc (M = Zn, Pd, Pt) molecule is placed close to NiPc by means of STM atomic manipulation, resonant energy transfer can excite NiPc without overcoming the ISC activation barrier, leading to Q-band fluorescence. This work demonstrates that the thermally activated population of dark metal-centered states can be avoided by a designed local environment at low temperatures paired with directed molecular excitation into vibrationally cold electronic states. Thus, we can envisage the use of luminophores based on more abundant transition metal complexes that do not rely on Pt or Ir by restricting vibration-induced ISC.
Collapse
Affiliation(s)
- Tzu-Chao Hung
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
- Institute
for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Yokari Godinez-Loyola
- Institut
für Anorganische und Analytische Chemie, University of Münster, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), University
of Münster, 48149 Münster, Germany
| | - Manuel Steinbrecher
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Brian Kiraly
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
| | | | - Nikos L. Doltsinis
- Institut
für Festkörpertheorie and Center for Multiscale Theory
and Computation, University of Münster, 48149 Münster, Germany
| | - Cristian A. Strassert
- Institut
für Anorganische und Analytische Chemie, University of Münster, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), University
of Münster, 48149 Münster, Germany
- Cells in
Motion Interfaculty Centre (CiMIC) and Center for Soft Nanoscience
(SoN), University of Münster, 48149 Münster, Germany
| | - Daniel Wegner
- Institute
for Molecules and Materials, Radboud University, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
18
|
Cai Z, Hu R, Xiao Z, Feng J, Zou X, Wen G, Dong G, Zhang W. Charge photogeneration dynamics in non-fullerene polymer solar cells with fluorinated and non-fluorinated acceptors. J Chem Phys 2024; 160:074702. [PMID: 38364001 DOI: 10.1063/5.0177876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
In this work, charge photogeneration and recombination processes of PM6:IDIC-4F and PM6:IDIC blend films were investigated by the steady-state and time-resolved spectroscopies, as well as the time-dependent density functional theory calculations. The peaks in absorption and photoluminescence (PL) spectra of IDIC and IDIC-4F solutions were assigned by combining the experiment and the simulation of UV-vis absorption and PL spectra. For neat acceptor films, the exciton diffusion length of neat IDIC and IDIC-4F films was estimated as ∼28.9 and ∼19.9 nm, respectively. For PM6-based blend films, we find that the fluorine substitution engineering on the IDIC acceptor material can increase the phase separate size of acceptor material in blend films, resulting in the reduction of dissociation efficiencies of acceptor excitons. In addition, we find that the charge recombination in PM6:IDIC-4F is dominated by bimolecular recombination, in comparison to geminate type carrier recombination in PM6:IDIC blend films. In addition, we find that thermal annealing treatment has a weak influence on carrier recombination but slightly reduces the exciton dissociation efficiency of acceptor in PM6:IDIC blend films, leading to a slightly reduced power conversion efficiency of PM6:IDIC solar cells. These results may shed light on the design of high-performance semiconductor molecules for application in solar cells.
Collapse
Affiliation(s)
- Zekai Cai
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Rong Hu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zijie Xiao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Junyi Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Xianshao Zou
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao CN-266 000, China
- Division of Chemical Physics, Lund University, 221 00 Lund, Sweden
| | - Guanzhao Wen
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
19
|
Waketola AG, Hone FG, Geldasa FT, Genene Z, Mammo W, Tegegne NA. Enhancing the Performance of Wide-Bandgap Polymer-Based Organic Solar Cells through Silver Nanorod Integration. ACS OMEGA 2024; 9:8082-8091. [PMID: 38405528 PMCID: PMC10882593 DOI: 10.1021/acsomega.3c08386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
Light trapping induced by the introduction of metallic nanoparticles has been shown to improve photo absorption in organic solar cells (OSCs). Researchers in the fields of plasmonics and organic photovoltaics work together to boost sunlight absorption and photon-electron interactions in order to improve device performance. In this contribution, an inverted OSC was fabricated by using indacenodithieno[3,2-b]thiophene-alt-2,2'-bithiazole (PIDTT-BTz) as a wide-band gap donor copolymer and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. Silver nanorods (Ag-NRs), synthesized by precipitation method, were embedded in the active layer of the solar cell. The device fabricated with 1 wt % Ag-NRs in the active layer showed a 26% improvement in power conversion efficiency (PCE) when exposed to 100 mW/cm2 simulated solar illumination. The role of Ag-NRs in the performance improvement of the OSCs was analyzed systematically using morphological, electrical, and optical characterization methods. The light trapping and exciton generation were improved due to the localized surface plasmon resonance (LSPR) activated in Ag-NRs in the form of longitudinal and transverse modes. The photoactive layers (PIDTT-BTz:PC71BM) with the incorporation of 0.5 and 1 wt % Ag-NR showed increased absorption, while the absorption with 1.5 wt % Ag-NRs appeared to be reduced in the wavelength range from 400 to 580 nm. Ag-NRs play a favorable role in exciton photogeneration and dissociation due to the two LSPR modes generated by the Ag-NRs. In the optimized device, the short-circuit current density (JSC) increased from 11.92 to 14.25 mA/cm2, resulting in an increase in the PCE from 3.94 to 4.93%, which is attributed to the improved light-trapping by LSPR using Ag-NRs.
Collapse
Affiliation(s)
- Alemayehu G. Waketola
- Department
Physics Education, Kotebe University of
Education, Addis
Ababa 31248, Ethiopia
- Department
of Physics, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Fekadu G. Hone
- Department
of Physics, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Fikadu T. Geldasa
- Department
of Applied Physics, Adama Science and Technology
University, P.O. Box 1888, Adama 302120, Ethiopia
| | - Zewdneh Genene
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Goteborg SE412 96, Sweden
| | - Wendimagegn Mammo
- Department
of Chemistry, Addis Ababa University, Addis Ababa 33658, Ethiopia
| | | |
Collapse
|
20
|
Crisci L, Coppola F, Petrone A, Rega N. Tuning ultrafast time-evolution of photo-induced charge-transfer states: A real-time electronic dynamics study in substituted indenotetracene derivatives. J Comput Chem 2024; 45:210-221. [PMID: 37706600 DOI: 10.1002/jcc.27231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Photo-induced charge transfer (CT) states are pivotal in many technological and biological processes. A deeper knowledge of such states is mandatory for modeling the charge migration dynamics. Real-time time-dependent density functional theory (RT-TD-DFT) electronic dynamics simulations are employed to explicitly observe the electronic density time-evolution upon photo-excitation. Asymmetrically substituted indenotetracene molecules, given their potential application as n-type semiconductors in organic photovoltaic materials, are here investigated. Effects of substituents with different electron-donating characters are analyzed in terms of the overall electronic energy spacing and resulting ultrafast CT dynamics through linear response (LR-)TD-DFT and RT-TD-DFT based approaches. The combination of the computational techniques here employed provided direct access to the electronic density reorganization in time and to its spatial and rational representation in terms of molecular orbital occupation time evolution. Such results can be exploited to design peculiar directional charge dynamics, crucial when photoactive materials are used for light-harvesting applications.
Collapse
Affiliation(s)
- Luigi Crisci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | | | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Superiore Meridionale, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, Naples, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
- Scuola Superiore Meridionale, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, Naples, Italy
| |
Collapse
|
21
|
Xiao Y, Yao H, Chen Z, Yang N, Song CE, Wang J, Li Z, Yu Y, Ryu DH, Shin WS, Hao X, Hou J. Morphology Control for Efficient Nonfused Acceptor-Based Organic Photovoltaic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305631. [PMID: 37752745 DOI: 10.1002/smll.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Non-fused electron acceptors have huge advantages in fabricating low-cost organic photovoltaic (OPV) cells. However, morphology control is a challenge as non-fused C─C single bonds bring more molecular conformations. Here, by selecting two typical polymer donors, PBDB-TF and PBQx-TF, the blend morphologies and its impacts on the power conversion efficiencies (PCEs) of non-fused acceptor-based OPV cells are studied. A selenium-containing non-fused acceptor named ASe-5 is designed. The results suggest that PBQx-TF has a lower miscibility with ASe-5 when compared with PBDB-TF. Additionally, the polymer networks may form earlier in the PBQx-TF:ASe-5 blend film due to stronger preaggregation performance, leading to a more obvious phase separation. The PBQx-TF:ASe-5 blend film shows faster charge transfer and suppressed charge recombination. As a result, the PBQx-TF:ASe-5-based device records a good PCE of 14.7% with a higher fill factor (FF) of 0.744, while the PBDB-TF:ASe-5-based device only obtains a moderate PCE of 12.3% with a relatively low FF of 0.662. The work demonstrates that the selection of donors plays a crucial role in controlling the blend morphology and thus improving the PCEs of non-fused acceptor-based OPV cells.
Collapse
Affiliation(s)
- Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Eun Song
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Du Hyeon Ryu
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Won Suk Shin
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Zhang KN, Du XY, Yan L, Pu YJ, Tajima K, Wang X, Hao XT. Organic Photovoltaic Stability: Understanding the Role of Engineering Exciton and Charge Carrier Dynamics from Recent Progress. SMALL METHODS 2024; 8:e2300397. [PMID: 37204077 DOI: 10.1002/smtd.202300397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.
Collapse
Affiliation(s)
- Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lei Yan
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Electrical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
23
|
Hassan AU, Sumrra SH. Structure-based screening of sp 2 hybridized small donor bridges as donor: acceptor switches for optical and photovoltaic applications: DFT way. J Mol Model 2024; 30:36. [PMID: 38206469 DOI: 10.1007/s00894-024-05836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
CONTEXT This research aims to investigate the potential of pyrazine-based small donor moieties as donor-acceptor switches for optical and photovoltaic applications. The designed organic dyes have a high light harvesting efficiency (LHE) and can potentially generate significant electrical energy. METHODS The study focuses on understanding the structural and electronic properties of these dyes through the analysis of dihedral angles, bond lengths, and energies of frontier molecular orbitals The UV-Vis spectroscopy parameters of the designed organic dyes revealed their absorption characteristics, including transition energies, wavelengths (λmax), and oscillator strengths (f). The photovoltaic properties of the developed organic dyes show a range of values: a range of 0.95-0.99 for LHE and a range of 1.77-33.02 W for maximum power output (Pmax) with the highest value for dye DDP5. For their stabilization energies, their natural bond orbitals had values ranging from 0.56 to 128.48 kcal/mol, their E(j)E(i) values from 0.22 to 1.29 a.u, and their Fi,j values from 0.024 to 0.213 kcal/mol. Out of all dyes, the DDP5 produced highest push-pull effect and can be good choice for further studies. The design of these novel organic materials for effective and economical solar energy conversion will be aided by evaluating the potential of 5,10-diphenyl-5,10-dihydrophenazine as a donor moiety and determining the structure-property correlations controlling the photovoltaic performance of the compounds.
Collapse
Affiliation(s)
- Abrar U Hassan
- Lunan Research Institute, Beijing Institute of Technology, 888 Zhengtai Road, Tengzhou, 277599, China.
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan.
| |
Collapse
|
24
|
Zarandi MA, Pathak P, Beltrami N, Walker JN, Zhang F, Brodbelt JS, Schmehl R, Jayawickramarajah J. Heteromeric guanosine (G)-quadruplex derived antenna modules with directional energy transfer. NANOSCALE 2023; 15:19069-19073. [PMID: 37990645 PMCID: PMC11398286 DOI: 10.1039/d3nr04086k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A heteromeric guanosine (G)-quadruplex centered self-assembly approach is developed to prepare compact light-harvesting antenna modules featuring multiple donor dyes and a single toehold region. Due to the mix-and-match nature of our approach, the number and placement of donor dyes can be readily fine-tuned via quadruplex assembly. Moreover, hybridization of the toehold with an acceptor containing sequence results in directional energy transfer ensembles with effective absorption coefficients in the 105 M-1 cm-1 range. These compact antennas exhibit system efficiencies that are comparable to much larger and elaborate DNA architectures containing numerous DNA strands.
Collapse
Affiliation(s)
| | - Pravin Pathak
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA.
| | - Noah Beltrami
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA.
| | - Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Fengqi Zhang
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA.
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Russell Schmehl
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA.
| | | |
Collapse
|
25
|
Sousa C, Sánchez-Mansilla A, Broer R, Straatsma TP, de Graaf C. A Nonorthogonal Configuration Interaction Approach to Singlet Fission in Perylenediimide Compounds. J Phys Chem A 2023; 127:9944-9958. [PMID: 37964533 PMCID: PMC10694806 DOI: 10.1021/acs.jpca.3c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Perylenediimide molecules constitute a family of chromophores that undergo singlet fission, a process in which an excited singlet state converts into lower energy triplets on two neighboring molecules, potentially increasing the efficiency of organic solar cells. Here, the nonorthogonal configuration interaction method is applied to study the effect of the different crystal packing of various perylenediimide derivatives on the relative energies of the singlet and triplet states, the intermolecular electronic couplings, and the relative rates for singlet fission. The analysis of the wave functions and electronic couplings reveals that charge transfer states play an important role in the singlet fission mechanism. Dimer conformations where the PDI molecules are at large displacements along the long axis and short on the short axis are posed as the most favorable for singlet fission. The role of the substituent at the imide group has been inspected concluding that, although it has no effect in the energies, for some conformations it significantly influences the electronic couplings, and therefore, replacing this substituent with hydrogen may introduce artifacts in the computational modeling of the PDI molecules.
Collapse
Affiliation(s)
- C. Sousa
- Departament
de Ciència de Materials i Química Física and
Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - A. Sánchez-Mansilla
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - R. Broer
- Zernike
Institute of Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - T. P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - C. de Graaf
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
26
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
27
|
Liu S, Liu SS, Tang XM, Liu XY, Yang JJ, Cui G, Li L. Solvent effects on the photoinduced charge separation dynamics of directly linked zinc phthalocyanine-perylenediimide dyads: a nonadiabatic dynamics simulation with an optimally tuned screened range-separated hybrid functional. Phys Chem Chem Phys 2023; 25:28452-28464. [PMID: 37846460 DOI: 10.1039/d3cp03517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiao-Mei Tang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
28
|
Park W, Komarov K, Lee S, Choi CH. Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory: Multireference Advantages with the Practicality of Linear Response Theory. J Phys Chem Lett 2023; 14:8896-8908. [PMID: 37767969 PMCID: PMC10561896 DOI: 10.1021/acs.jpclett.3c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The density functional theory (DFT) and linear response (LR) time-dependent (TD)-DFT are of the utmost importance for routine computations. However, the single reference formulation of DFT suffers in the description of open-shell singlet systems such as diradicals and bond-breaking. LR-TDDFT, on the other hand, finds difficulties in the modeling of conical intersections, doubly excited states, and core-level excitations. In this Perspective, we demonstrate that many of these limitations can be overcome by recently developed mixed-reference (MR) spin-flip (SF)-TDDFT, providing an alternative yet accurate route for such challenging situations. Empowered by the practicality of the LR formalism, it is anticipated that MRSF-TDDFT can become one of the major workhorses for general routine tasks.
Collapse
Affiliation(s)
- Woojin Park
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Konstantin Komarov
- Center
for Quantum Dynamics, Pohang University
of Science and Technology, Pohang 37673, South Korea
| | - Seunghoon Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Cheol Ho Choi
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
29
|
Liu J, Ye T, Yu D, Liu SF, Yang D. Recoverable Flexible Perovskite Solar Cells for Next-Generation Portable Power Sources. Angew Chem Int Ed Engl 2023; 62:e202307225. [PMID: 37345965 DOI: 10.1002/anie.202307225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
Flexible perovskite solar cells (FPSCs) with excellent recoverability show a wide range of potential applications in portable power sources. The recoverability of FPSCs requires outstanding bendability of each functional layer, including the flexible substrates, electrodes, perovskite light absorbers, and charge transport materials. This review highlights the recent progress and practical applications of high-recoverability FPSCs, and illustrates the routes toward improvement of the recoverability and environmental stability through the choice of flexible substrates and the preparation of high-quality perovskite films, as well as the optimization of charge-selective contacts. In addition, we explore the intrinsic properties of each functional layer from the physical perspective and analyze how to select suitable functional layers. Additionally, some effective strategies are summarized, including material modification engineering of selective contacts, additives and interface engineering of interlayers, which can release mechanical stress and increase the power-conversion efficiency (PCE) and recoverability of the FPSCs. The challenges of making high-performance FPSCs with long-term stability and high recoverability are discussed. Finally, future applications and perspectives for FPSCs are discussed, aiming to promote more extensive commercialization processes for lightweight and durable FPSCs.
Collapse
Affiliation(s)
- Jieqiong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dongqu Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- School of Physics and Electronic Technology, Liaoning Normal University, Dalian, 116029, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, 116023, China
| | - Dong Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
30
|
Müller K, Schellhammer KS, Gräßler N, Debnath B, Liu F, Krupskaya Y, Leo K, Knupfer M, Ortmann F. Directed exciton transport highways in organic semiconductors. Nat Commun 2023; 14:5599. [PMID: 37699907 PMCID: PMC10497625 DOI: 10.1038/s41467-023-41044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Exciton bandwidths and exciton transport are difficult to control by material design. We showcase the intriguing excitonic properties in an organic semiconductor material with specifically tailored functional groups, in which extremely broad exciton bands in the near-infrared-visible part of the electromagnetic spectrum are observed by electron energy loss spectroscopy and theoretically explained by a close contact between tightly packing molecules and by their strong interactions. This is induced by the donor-acceptor type molecular structure and its resulting crystal packing, which induces a remarkable anisotropy that should lead to a strongly directed transport of excitons. The observations and detailed understanding of the results yield blueprints for the design of molecular structures in which similar molecular features might be used to further explore the tunability of excitonic bands and pave a way for organic materials with strongly enhanced transport and built-in control of the propagation direction.
Collapse
Affiliation(s)
- Kai Müller
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl S Schellhammer
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
| | - Nico Gräßler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Bipasha Debnath
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Yulia Krupskaya
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062, Dresden, Germany
| | - Martin Knupfer
- Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Frank Ortmann
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748, Garching b. München, Germany.
| |
Collapse
|
31
|
Rafiq S, Weingartz NP, Kromer S, Castellano FN, Chen LX. Spin-vibronic coherence drives singlet-triplet conversion. Nature 2023; 620:776-781. [PMID: 37468632 DOI: 10.1038/s41586-023-06233-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/18/2023] [Indexed: 07/21/2023]
Abstract
Design-specific control over the transitions between excited electronic states with different spin multiplicities is of the utmost importance in molecular and materials chemistry1-3. Previous studies have indicated that the combination of spin-orbit and vibronic effects, collectively termed the spin-vibronic effect, can accelerate quantum-mechanically forbidden transitions at non-adiabatic crossings4,5. However, it has been difficult to identify precise experimental manifestations of the spin-vibronic mechanism. Here we present coherence spectroscopy experiments that reveal the interplay between the spin, electronic and vibrational degrees of freedom that drive efficient singlet-triplet conversion in four structurally related dinuclear Pt(II) metal-metal-to-ligand charge-transfer (MMLCT) complexes. Photoexcitation activates the formation of a Pt-Pt bond, launching a stretching vibrational wavepacket. The molecular-structure-dependent decoherence and recoherence dynamics of this wavepacket resolve the spin-vibronic mechanism. We find that vectorial motion along the Pt-Pt stretching coordinates tunes the singlet and intermediate-state energy gap irreversibly towards the conical intersection and subsequently drives formation of the lowest stable triplet state in a ratcheting fashion. This work demonstrates the viability of using vibronic coherences as probes6-9 to clarify the interplay among spin, electronic and nuclear dynamics in spin-conversion processes, and this could inspire new modular designs to tailor the properties of excited states.
Collapse
Affiliation(s)
- Shahnawaz Rafiq
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Nicholas P Weingartz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Sarah Kromer
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
32
|
Camero DM, Grinalds NJ, Kornman CT, Barba S, Li L, Weldeab AO, Castellano RK, Xue J. Thin-Film Morphology and Optical Properties of Photoisomerizable Donor-Acceptor Oligothiophenes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25134-25147. [PMID: 35766151 DOI: 10.1021/acsami.2c05946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
It was recently reported that the most popular electron-accepting units introduced to π-conjugated oligomers studied for organic photovoltaic applications are susceptible to unwanted and even destructive photochemical reactions. The consequences of Z/E photoisomerization of the popular 2-(1,1-dicyanomethylene)rhodanine (RCN) unit on the optical and morphological properties of a homologous series of RCN-functionalized oligothiophenes are studied here. Oligomers consisting of one, two, or three thiophene units were studied as pure Z isomers and with E isomer compositions of 25, 53, and 45%, respectively, for Z/E mixtures. Solutions of Z isomers and Z/E mixtures were characterized by UV-vis and photoluminescence spectroscopy, wherein changes to optical properties were evaluated on the basis of E isomer content. X-ray diffraction of thin-film Z/E mixtures reveals crystalline domains of both Z and E forms after thermal annealing for mono- and bithiophene oligomers, with greater interplanar spacing for E crystalline domains than the Z counterparts along the substrate normal direction. The surface morphology viewed by atomic force microscopy also shows fiberlike structures for the E form with a much larger aspect ratio than for the Z domains in the bithiophene oligomer. Optical characterization reveals drastic changes in the solid state upon introduction of the E form for the mono- and bithiophene derivatives, whereas subtle consequences are noted for the terthiophene analogue. Most notably, a 132 nm redshift in maximum absorption occurs for the bithiophene oligomer films containing 53% E isomer compared to the pure Z counterpart. Finally, although solid-state photoisomerization experiments find no evidence of Z → E isomerization in polycrystalline Z films, E → Z isomerization is observed and becomes more restrictive in films with higher crystallinity (i.e., after thermal annealing). This structure-property study, which elucidates the consequences of the RCN configuration on solid-state packing and optical properties, is expected to guide the development of more efficient and stable organic optoelectronic devices.
Collapse
Affiliation(s)
- David M Camero
- Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, Florida 32611, United States
| | - Nathan J Grinalds
- Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, Florida 32611, United States
| | - Cory T Kornman
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Stefano Barba
- Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, Florida 32611, United States
| | - Lei Li
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, South Carolina 29634, United States
| | - Asmerom O Weldeab
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Jiangeng Xue
- Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, Florida 32611, United States
| |
Collapse
|
33
|
Komarov K, Mironov V, Lee S, Pham BQ, Gordon MS, Choi CH. High-performance strategies for the recent MRSF-TDDFT in GAMESS. J Chem Phys 2023; 158:2890476. [PMID: 37184015 DOI: 10.1063/5.0148005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
Multiple ERI (Electron Repulsion Integral) tensor contractions (METC) with several matrices are ubiquitous in quantum chemistry. In response theories, the contraction operation, rather than ERI computations, can be the major bottleneck, as its computational demands are proportional to the multiplicatively combined contributions of the number of excited states and the kernel pre-factors. This paper presents several high-performance strategies for METC. Optimal approaches involve either the data layout reformations of interim density and Fock matrices, the introduction of intermediate ERI quartet buffer, and loop-reordering optimization for a higher cache hit rate. The combined strategies remarkably improve the performance of the MRSF (mixed reference spin flip)-TDDFT (time-dependent density functional theory) by nearly 300%. The results of this study are not limited to the MRSF-TDDFT method and can be applied to other METC scenarios.
Collapse
Affiliation(s)
- Konstantin Komarov
- Center for Quantum Dynamics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Vladimir Mironov
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Buu Q Pham
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
34
|
Teng CP, Tan MY, Toh JPW, Lim QF, Wang X, Ponsford D, Lin EMJ, Thitsartarn W, Tee SY. Advances in Cellulose-Based Composites for Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103856. [PMID: 37241483 DOI: 10.3390/ma16103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.
Collapse
Affiliation(s)
- Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ming Yan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jessica Pei Wen Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Esther Marie JieRong Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
35
|
Rehhagen C, Rather SR, Schwarz KN, Scholes GD, Lochbrunner S. Comparison of Frenkel and Excimer Exciton Diffusion in Perylene Bisimide Nanoparticles. J Phys Chem Lett 2023; 14:4490-4496. [PMID: 37155571 DOI: 10.1021/acs.jpclett.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Exciton migration is an important process for light harvesting with organic systems and often the bottleneck. Especially the formation of trap states hinders the mobility considerably. Although excimer excitons are often referred to as traps, their mobility has been demonstrated while their nature is still unclear. Here, we compare the mobility of singlet and excimer excitons in nanoparticles consisting of the same type of perylene bisimide molecules. By changing the preparation conditions, nanoparticles with different intermolecular coupling strengths are prepared. Femtosecond transient absorption spectroscopy reveals the formation of excimer excitons from Frenkel excitons. The mobility of both exciton types is determined by evaluating exciton-exciton annihilation processes. In the lower coupling regime, singlet mobility is observed, whereas for stronger coupling the dynamics is dominated by a 10-fold increased excimer mobility. The excimer mobility can thus even be higher than the singlet mobility and is affected by the intermolecular electronic coupling.
Collapse
Affiliation(s)
- Chris Rehhagen
- Institute for Physics and Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Shahnawaz R. Rather
- Frick Laboratory, Princeton University, Princeton, New Jersey 08540, United States
| | - Kyra N Schwarz
- Frick Laboratory, Princeton University, Princeton, New Jersey 08540, United States
| | - Gregory D Scholes
- Frick Laboratory, Princeton University, Princeton, New Jersey 08540, United States
| | - Stefan Lochbrunner
- Institute for Physics and Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
36
|
Kim D, Lee S, Park J, Lee J, Choi HC, Kim K, Ryu S. In-plane and out-of-plane excitonic coupling in 2D molecular crystals. Nat Commun 2023; 14:2736. [PMID: 37173328 PMCID: PMC10182054 DOI: 10.1038/s41467-023-38438-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Understanding the nature of molecular excitons in low-dimensional molecular solids is of paramount importance in fundamental photophysics and various applications such as energy harvesting, switching electronics and display devices. Despite this, the spatial evolution of molecular excitons and their transition dipoles have not been captured in the precision of molecular length scales. Here we show in-plane and out-of-plane excitonic evolution in quasilayered two-dimensional (2D) perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) crystals assembly-grown on hexagonal boron nitride (hBN) crystals. Complete lattice constants with orientations of two herringbone-configured basis molecules are determined with polarization-resolved spectroscopy and electron diffraction methods. In the truly 2D limit of single layers, two Frenkel emissions Davydov-split by Kasha-type intralayer coupling exhibit energy inversion with decreasing temperature, which enhances excitonic coherence. As the thickness increases, the transition dipole moments of newly emerging charge transfer excitons are reoriented because of mixing with the Frenkel states. The current spatial anatomy of 2D molecular excitons will inspire a deeper understanding and groundbreaking applications of low-dimensional molecular systems.
Collapse
Affiliation(s)
- Dogyeong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Sol Lee
- Department of Physics, Yonsei University, Seoul, 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Korea
| | - Jiwon Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Jinho Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul, 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Korea
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
37
|
Negrin-Yuvero H, Freixas VM, Ondarse-Alvarez D, Alfonso-Hernandez L, Rojas-Lorenzo G, Bastida A, Tretiak S, Fernandez-Alberti S. Vibrational Funnels for Energy Transfer in Organic Chromophores. J Phys Chem Lett 2023; 14:4673-4681. [PMID: 37167537 DOI: 10.1021/acs.jpclett.3c00748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways. The ultimate confirmation of their role on the interchromophoric energy transfer can be achieved by performing nonadiabatic excited-state molecular dynamics simulations by selectively freezing the nuclear motions in question. Our results point out this strategy as a useful tool to identify and evaluate the impact of these vibrational funnels on the energy transfer processes and guide the in silico design of materials with tunable properties and enhanced functionalities. Our work encourages applications of this methodology to different chemical and biochemical processes such as reactive scattering and protein conformational changes, to name a few.
Collapse
Affiliation(s)
- Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Victor Manuel Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Dianelys Ondarse-Alvarez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Laura Alfonso-Hernandez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - German Rojas-Lorenzo
- Departamento de Física Atómica y Molecular, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana 10400, Cuba
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos 87545, New Mexico, USA
| | | |
Collapse
|
38
|
Yang N, Ryu DH, Lee S, Bai Y, Kim SI, Seo JH, Song CE, Hwang DH. Non-Fullerene Acceptors with Benzodithiophene-Based Fused Planar Ring Cores for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21306-21313. [PMID: 37079770 DOI: 10.1021/acsami.3c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fused aromatic rings are widely employed in organic solar cell (OSC) materials due to their planarity and rigidity. Here, we designed and synthesized four two-dimensional non-fullerene acceptors, D6-4F, D6-4Cl, DTT-4F, and DTT-4Cl, based on two new fused planar ring structures of f-DTBDT-C6 and f-DTTBDT. Owing to the desirable phase separation formed in the blend films and the higher energy levels induced by the extra alkyl groups, PM6:D6-4F-based devices achieved a high VOC = 0.91 V with PCE = 11.10%, FF = 68.54%, and JSC = 17.75 mA/cm2. Because of the longer π-conjugation of the f-DTTBDT core with nine fused rings, DTT-4F and DTT-4Cl showed high molar extinction coefficients and broad absorption bands that enhanced the current density of OSCs. Finally, the PM6:DTT-4F-based devices achieved a JSC = 19.82 mA/cm2 with PCE = 9.68%, VOC = 0.83 V, and FF = 58.85%.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeon Ryu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Suha Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yongqi Bai
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Seo Il Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Hoon Seo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Chang Eun Song
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Do-Hoon Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
39
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
40
|
Perrella F, Petrone A, Rega N. Understanding Charge Dynamics in Dense Electronic Manifolds in Complex Environments. J Chem Theory Comput 2023; 19:626-639. [PMID: 36602443 PMCID: PMC9878732 DOI: 10.1021/acs.jctc.2c00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Photoinduced charge transfer (CT) excited states and their relaxation mechanisms can be highly interdependent on the environment effects and the consequent changes in the electronic density. Providing a molecular interpretation of the ultrafast (subpicosecond) interplay between initial photoexcited states in such dense electronic manifolds in condensed phase is crucial for improving and understanding such phenomena. Real-time time-dependent density functional theory is here the method of choice to observe the charge density, explicitly propagated in an ultrafast time domain, along with all time-dependent properties that can be easily extracted from it. A designed protocol of analysis for real-time electronic dynamics to be applied to time evolving electronic density related properties to characterize both in time and in space CT dynamics in complex systems is here introduced and validated, proposing easy to be read cross-correlation maps. As case studies to test such tools, we present the photoinduced charge-transfer electronic dynamics of 5-benzyluracil, a mimic of nucleic acid/protein interactions, and the metal-to-ligand charge-transfer electronic dynamics in water solution of [Ru(dcbpy)2(NCS)2]4-, dcbpy = (4,4'-dicarboxy-2,2'-bipyridine), or "N34-", a dye sensitizer for solar cells. Electrostatic and explicit ab initio treatment of solvent molecules have been compared in the latter case, revealing the importance of the accurate modeling of mutual solute-solvent polarization on CT kinetics. We observed that explicit quantum mechanical treatment of solvent slowed down the charge carriers mobilities with respect to the gas-phase. When all water molecules were modeled instead as simpler embedded point charges, the electronic dynamics appeared enhanced, with a reduced hole-electron distance and higher mean velocities due to the close fixed charges and an artificially increased polarization effect. Such analysis tools and the presented case studies can help to unveil the influence of the electronic manifold, as well as of the finite temperature-induced structural distortions and the environment on the ultrafast charge motions.
Collapse
Affiliation(s)
- Fulvio Perrella
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
| | - Alessio Petrone
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
| | - Nadia Rega
- Department
of Chemical Sciences, University of Napoli
Federico II, Complesso Universitario di
M.S. Angelo, via Cintia 21, I-80126, Napoli, Italy
- Scuola
Superiore Meridionale, Largo San Marcellino 10, I-80138, Napoli, Italy
- Istituto
Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italia
- CRIB,
Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio 80, I-80125, Napoli, Italy
| |
Collapse
|
41
|
Abbas F, Mohammadi MD, Louis H, Agwamba EC. High-performance non-fullerene acceptor-analogues designed from dithienothiophen [3,2-b]-pyrrolobenzothiadiazole (TPBT) donor materials. J Mol Model 2023; 29:31. [PMID: 36595085 DOI: 10.1007/s00894-022-05435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
CONTEXT Density functional theory (DFT) method was employed to investigate the electronic structure properties, excited state dynamics, charge transfer, and photovoltaic potential of benzo [1,2,5] thiadiazole fused to 3,7-dimethyl-3a,6,7,7b-tetrahydro-5H-thieno[2',3':4,5]thieno[3,2-b]pyrrole to form 3,9,12,13-tetramethyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4,5]pyrrolo[3.2-g]thieno[2',3':4,5]thieno[3,2-b]indole as the acceptor (A), bridge with thiophene as π-spacer to the donor moieties (D) which are 2,3-dihydrobenzo [b]thiophene-6-carboxylic acid (M4) and functionalized R, M1, M2, M3, and M5 to give a D-π-A-π-D. Here is the reverse combination for our molecules: the A-π-D-π-A type of chromophore configuration. It is also observed that tuning the dono-bridge configuration significantly increases the ease of charge transfer as the energy gap decreases in the order of 1.29 eV in M4 < 1.59 eV in M3 < 1.67 eV < 1.99 in M2 and 2.06 eV. The reorganization energy (RE) of M3 (0.0031) and M5 (0.0031) indicates an increase in the order of M3 > M5 > R > M2 > M4 > M1. The HOMO-LUMO indicates that the reactivity decreased, while the stability increased for the reference R at 0.990 eV, compared to the designed molecules M1-M5, with M1 being the least stable at 0.970 eV, while M4 exhibited the highest stability at 1.550 eV. The stability of the designed molecule decreased in the order of M4:1.550 > M3:1.257 > M5:1.197 > M2:1.010 > M1:0.970. Therefore, all results point to the electron-deficient core as an effective end-capped electron acceptor in M1-M5 compounds. As the ideal pair for successfully optimizing optoelectronic properties by reducing the HOMO-LUMO energy levels, reorganization energy, and binding energy and enhancing the absorption maximum and open-circuit voltage values in these designed molecules. METHODS DFT and TDDFT calculations were performed with Gaussian 16 program. The modelled compounds were optimized fully using the CAM-B3LYP, WB97XD, B3LYP, and MPW1PW91 functionals with the 6-31 G (d,p) basis set. The graphs for the density of states were plotted using the PyMOlyze software. Other molecular properties like the transition density matrix (TDM) and electron density difference maps (EDD) were rendered via the Multiwfn software.
Collapse
Affiliation(s)
- Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mohsen D Mohammadi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.,Department of Chemistry, Covenant University, Ota, Nigeria
| |
Collapse
|
42
|
Ibrahim AR, Al-Saadi BS, Husband J, Ismail AH, Baqi Y, Abou-Zied OK. Electron transfer from a new chalcone dye to TiO2 nanoparticles: Synthesis, photophysics, and excited-state dynamics. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Jayachandran A, Mueller S, Brixner T. Fluorescence-Detected Two-Quantum Photon Echoes via Cogwheel Phase Cycling. J Phys Chem Lett 2022; 13:11710-11719. [PMID: 36512681 DOI: 10.1021/acs.jpclett.2c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) electronic spectroscopy can separate homogeneous and inhomogeneous broadening. While established methods usually probe a photon-echo signal, i.e., a third-order response, to access the homogeneous line width of singly excited states, the homogeneous line width of doubly excited states remained spectroscopically inaccessible. Here we demonstrate the acquisition of two-quantum (2Q) photon echoes using fluorescence-detected 2D spectroscopy. In these eighth-order signals, 2Q coherences are rephased with themselves, leading to line-narrowed 2Q-2Q 2D spectra. By using cogwheel phase cycling, adapted from nuclear magnetic resonance spectroscopy, we isolate the 2Q-2Q 2D spectra of a squaraine dimer and a squaraine polymer and verify the same selectivity of cogwheel phase cycling compared to traditional "nested" phase cycling. The observed difference, between the two systems, in the homogeneous line width of the biexciton can be rationalized as a signature of the interplay of exciton-exciton annihilation, exciton diffusion, and exciton delocalization.
Collapse
Affiliation(s)
- Ajay Jayachandran
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Mueller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
44
|
Lalisse RF, Hadad CM, Brückner C, Guberman-Pfeffer MJ. [3 + 2]-Cycloadditions with Porphyrin β,β'-Bonds: Theoretical Basis of the Counterintuitive meso-Aryl Group Influence on the Rates of Reaction. J Org Chem 2022; 87:16473-16482. [PMID: 36444511 DOI: 10.1021/acs.joc.2c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Removal of a β,β'-bond from meso-tetraarylporphyrin using [3 + 2]-cycloadditions generates meso-tetraarylhydroporphyrins. Literature evidence indicates that meso-tetraphenylporphyrins react more sluggishly with 1,3-dipoles such as ylides and OsO4 (in the presence of pyridine) than meso-tetrakis(pentafluorophenyl)porphyrin. The trend is counterintuitive for the reaction with OsO4, as this formal oxidation reaction is expected to proceed more readily with more electron-rich substrates. This work presents a density functional theory-based computational study of the frontier molecular orbital (FMO) interactions and reaction profile thermodynamics involved in the reaction of archetypical cycloaddition reactions (a simple ylide, OsO4, OsO4·py, OsO4·(py)2, and ozone) with the β,β'-double bonds of variously fluorinated meso-arylporphyrins. The trend observed for the Type I cycloaddition of an ylide is straightforward, as lowering the LUMO of the porphyrin with increasing meso-phenyl-fluorination also lowers the reaction barrier. The corresponding simple FMO analyses of Type III cycloadditions do not correctly model the reaction energetics. This is because increasing fluorination leads to lowering of the porphyrin HOMO-2, thus increasing the reaction barrier. However, coordination of pyridine to OsO4 preorganizes the transition state complex; lowering of the energy barrier by the preorganization exceeds the increase in repulsive orbital interactions, overall accelerating the cycloaddition and rationalizing the counterintuitive experimental findings.
Collapse
Affiliation(s)
- Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, Connecticut 06269-3060, United States
| | - Matthew J Guberman-Pfeffer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, Connecticut 06510, United States.,Microbial Sciences Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, United States
| |
Collapse
|
45
|
Feng J, Hu R, Jiang J, Cai Z, Pan S, Zou X, Dong G, Zhao N, Zhang W. Aggregation-Induced Emission in a Polymeric Photovoltaic Donor Material. THE JOURNAL OF PHYSICAL CHEMISTRY C 2022; 126:20275-20283. [DOI: 10.1021/acs.jpcc.2c06848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junyi Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Rong Hu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing402160, China
| | - Jianjun Jiang
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Zekai Cai
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Shusheng Pan
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou510006, China
| | - Xianshao Zou
- Division of Chemical Physics, Lund University, Lund22100, Sweden
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou515041, China
| | - Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan523808, China
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou510006, China
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
46
|
Choe MS, Choi S, Lee HS, Chon B, Shin JY, Kim CH, Son HJ, Kang SO. Sustainable Carbon Dioxide Reduction of the P3HT Polymer-Sensitized TiO 2/Re(I) Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50718-50730. [PMID: 36331558 DOI: 10.1021/acsami.2c09924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a p-type π-conjugated polymer chain, poly(3-hexylthiophene-2,5-diyl) (P3HT), was physically adsorbed onto n-type TiO2 nanoparticles functionalized with a molecular CO2 reduction catalyst, (4,4-Y2-bpy)ReI(CO)3Cl (ReP, Y = CH2PO(OH)2), to generate a new type of P3HT-heterogenized hybrid system (P3HT/TiO2/ReP), and its photosensitizing properties were assessed in a heteroternary system for photochemical CO2 reduction. We found that P3HT immobilization on TiO2 facilitated photoinduced electron transfer (PET) from photoactivated P3HT* to the n-type TiO2 semiconductor via rapid interfacial electron injection (∼65 ps) at the P3HT and TiO2 surface interface (P3HT* → TiO2). With such effective charge separation, the heterogenization of P3HT onto TiO2 resulted in a steady electron supply toward the co-adsorbed Re(I) catalyst, attaining durable catalytic activity with a turnover number (TON) of ∼5300 over an extended time period of 655 h over five consecutive photoreactions, without deformation of the adsorbed P3HT polymer. The long-period structural stability of TiO2-adsorbed P3HT was verified based on a comparative analysis of its photophysical properties before and after 655 h of photolysis. To our knowledge, this conversion activity is the highest reported so far for polymer-sensitized photochemical CO2 reduction systems. This investigation provides insights and design guidelines for photocatalytic systems that utilize organic photoactive polymers as photosensitizing units.
Collapse
Affiliation(s)
- Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Bumsoo Chon
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
47
|
Panda DP, Swain D, Chaudhary M, Mishra S, Bhutani G, De AK, Waghmare UV, Sundaresan A. Electron-Phonon Coupling Mediated Self-Trapped-Exciton Emission and Internal Quantum Confinement in Highly Luminescent Zero-Dimensional (Guanidinium) 6Mn 3X 12 (X = Cl and Br). Inorg Chem 2022; 61:17026-17036. [PMID: 36242586 DOI: 10.1021/acs.inorgchem.2c01581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a large Stokes shift and broad emission band in a Mn-based organic-inorganic hybrid halide, (guanidinium)6Mn3Br12 [GuMBr], consisting of trimeric units of distorted MnBr6 octahedra representing a zero-dimensional compound with a liquid like crystalline lattice. Analysis of the photoluminescence (PL) line width and Raman spectra reveals the effects of electron-phonon coupling, suggestive of the formation of Frenkel-like bound excitons. These bound excitons, regarded as the self-trapped excitons (STEs), account for the large Stokes shift and broad emission band. The excited-state dynamics was studied using femtosecond transient absorption spectroscopy, which confirms the STE emission. Further, this compound is highly emissive with a PL quantum yield of ∼50%. With chloride ion incorporation, we observe enhancement of the emissive properties and attribute it to the effects of intrinsic quantum confinement. Localized electronic states in flat bands lining the gap and their strong coupling with phonons are confirmed with first-principles calculations.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology, IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Mohit Chaudhary
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - Samita Mishra
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab140306, India
| | - Umesh V Waghmare
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| | - A Sundaresan
- School of Advanced Materials and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore560064, India
| |
Collapse
|
48
|
Anitha K, Nataraj A, Narayana B, Karthick T. Spectral Characteristics, DFT Exploration, Electronic Properties, Molecular Docking and Biological Activity of 2E-1-(3-Bromothiophene-2-yl)-3-(1, 3-Benzodioxol-5-yl)Prop-2-en-1-One Molecule. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2127802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
Affiliation(s)
- K. Anitha
- Department of Physics, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - A. Nataraj
- Department of Physics, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Badiadka Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalore, Karnataka, India
| | - T. Karthick
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Tanjavur, Tamil Nadu, India
| |
Collapse
|
49
|
Titov E. Effect of conformational disorder on exciton states of an azobenzene aggregate. Phys Chem Chem Phys 2022; 24:24002-24006. [PMID: 36178007 DOI: 10.1039/d2cp02774g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azobenzene is a prototypical molecular photoswitch, widely used to trigger a variety of transformations at different length scales. In systems like self-assembled monolayers or micelles, azobenzene chromophores may interact with each other, which gives rise to the emergence of exciton states. Here, using first-principles calculations, we investigate how conformational disorder (induced, e.g., by thermal fluctuations) affects localization of these states, on an example of an H-type azobenzene tetramer. We find that conformational disorder leads to (partial) exciton localization on a single-geometry level, whereas ensemble-averaging results in a delocalized picture. The ππ* and nπ* excitons at high and low temperatures are discussed.
Collapse
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
50
|
Reis RL, Filho DADS. The effect of positional disorder and the Beer-Lambert law in organic photovoltaics : A kinetic Monte Carlo simulation analysis. J Mol Model 2022; 28:330. [PMID: 36151484 DOI: 10.1007/s00894-022-05280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
It is urgent to address climate change by radically changing our energy sources. Organic photovoltaics (OPVs) are a competitive clean energy emerging technology and will undoubtedly have a market niche in a world that needs to take advantage of every possible type of renewable energy. Recent studies have brought relevant improvements on internal efficiency, focusing on two properties at the interface: energetic disorder and bending. However, how positional disorder affects internal efficiency is still an open question. Here, we show that positional disorder is desired at the interface, but only up to a threshold value of 0.2 nm for poly p-phenylene vinylene. Using a kinetic Monte Carlo simulator, we realized that not enough excitons were reaching the interface, and introduced the Beer-Lambert law of attenuance to correct it. Furthermore, we realized that the same disorder that facilitates charge separation at the interface diminishes exciton and charge mobility in bulk, so we propose here a new morphology for the active layer of OPVs. Our suggestion implicates in better overall performance, improving not just the internal but the overall cell efficiency.
Collapse
Affiliation(s)
- Renata Lopes Reis
- Instituto de Física, Universidade de Brasília, Campus Darcy Ribeiro, 70919-970, Brasília, DF, Brazil.
| | - Demétrio A da Silva Filho
- Instituto de Física, Universidade de Brasília, Campus Darcy Ribeiro, 70919-970, Brasília, DF, Brazil
| |
Collapse
|