1
|
Kayembe J, Sekelwa C, Bassey K. Comparative analysis of phytonutrients of Moringa oleifera leaves from South Africa and Nigeria, and their antimicrobial and antioxidant potentials by UPLC-ESI-QToF-MS and OPLS-DA chemometric analysis. Front Nutr 2025; 11:1490484. [PMID: 39931176 PMCID: PMC11807820 DOI: 10.3389/fnut.2024.1490484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025] Open
Abstract
Background Moringa oleifera Lam. has bioactive phytonutrients in abundance and offers diverse health benefits. The leaves of this plant have established significance in traditional medicine and nutrition. It is traditionally used by Nigerian and South African mothers to mitigate undernutrition. Usually, the powder leaves are added to porridge to feed the children. This study aimed to conduct a comparative analysis of the phytonutrients (nutrients protectors) or supplements, antioxidant, and antimicrobial potentials of M. oleifera leaves from Nigeria and South Africa to benchmark quality control protocols for commercial beverages such as Moringa porridge. Methods Standard techniques, including high-performance liquid chromatography-photodiode array and ultra-high-performance liquid chromatography electrospray ionization quadruple time-of-flight mass spectrometry (UPLC-ESI-QToF-MS) and chemometrics orthogonal partial least square discriminant analysis (OPLS-DA) were employed for phytoconstituents fingerprinting. Whereas the antioxidant potentials of the extracts were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide scavenging assays, the antimicrobial potentials of the extracts were evaluated using minimum inhibitory concentrations protocol. Results The chemometric analysis with a line regression (R2) = 0.97 revealed 70% significant similarities in the phytonutrients of samples between the two regions and an intriguing 30% variation within the same plant species. In addition, kaempferol, quercetin, luteolin, tangutorid E, and podophyllotoxin, among others were annotated as the major phytonutrients in the samples. The antioxidant assays unveiled concentration-dependent trends with scavenging activity of up to 98% (half-maximal inhibitory concentration [IC50] = 0.14 mg/mL) for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 87% (IC50 = 0.28 mg/mL) for hydrogen peroxide assay. All the test extracts did not exhibit good to significant antibacterial inhibitory effect (minimum inhibitory concentration [MIC] = 1.25 mg/mL) compared to ciprofloxacin (MIC = 0.0156-0.0039 mg/mL). Conclusion The variations in the phytonutrients of the same M. oleifera species harvested from different countries could have dire consequences including potential health risks and even death. This study should serve as a benchmark toward the phytonutrients and marketing implications on the quality of products formulated with samples harvested from different growth environments and exists as a reference for further research into the cultivation and marketing of M. oleifera leaves in South Africa.
Collapse
Affiliation(s)
- Jonathan Kayembe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Cosa Sekelwa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Kokoette Bassey
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| |
Collapse
|
2
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2025; 42:93-112. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
3
|
Rivera-Pérez A, Acosta Motos M, Garrido Frenich A. Revealing the sterilization impact on paprika fingerprint: Key markers identified using untargeted metabolomics by liquid chromatography-Orbitrap high-resolution mass spectrometry. Food Chem 2025; 463:141385. [PMID: 39332367 DOI: 10.1016/j.foodchem.2024.141385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Paprika (Capsicum annuum L.) is a popular spice known for its unique properties. Spices are susceptible to microbiological risks arising from harvest factors such as high moisture or environmental contamination. To ensure microbiological safety, post-harvest processing based on heat sterilization, free of chemicals and radiation, is becoming essential in the European market. This study introduces a novel metabolomics approach using ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole-Orbitrap-high-resolution mass spectrometry (HRMS) to assess the sterilization impact on paprika's metabolomic composition. Sterilized and untreated samples were distinguished by OPLS-DA, achieving perfect predictability with high-quality parameters (R2Y = 0.988, Q2 = 0.904). The methodology identified 19 key markers, including fatty acids, amino acids, etc. Sterilization reduced fatty acids such as linoleic acid but increased other metabolites such as DL-malic acid and flazin. This research introduces new metabolomics strategies to ensure paprika quality and other valuable spices, focusing on unexplored sterilization processes.
Collapse
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| | - Manuel Acosta Motos
- La Margarita Food & Services, Diego Pérez Riquelme e Hijos S.L.U. Polígono Industrial La Jaira, 7, 30640 Abanilla, Murcia, Spain
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| |
Collapse
|
4
|
Cho IH, Peterson DG. Analytical approaches to flavor research and discovery: from sensory-guided techniques to flavoromics methods. Food Sci Biotechnol 2025; 34:19-29. [PMID: 39758716 PMCID: PMC11695657 DOI: 10.1007/s10068-024-01765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
This review examines analytical methodology for food flavor analysis. Traditionally, flavor chemistry research has relied on sensory-guided chromatography techniques to identify individual compounds responsible for aroma or taste activity. Among the over 12,000 volatile compounds identified in foods, hundreds have been linked to aroma characteristics, and many taste-active compounds have also been discovered. However analytical methods based on singular compound evaluation are not without limitation and can overlook drivers of flavor perception by ignoring potential stimuli (i.e. antagonists, modulators), interactions among stimuli, and sub-threshold activity. More recently, chemical profiling methods coupled with multivariate analysis, termed flavoromics, have led to advances in flavor research. Utilization of flavoromic methods provides additional opportunities to define chemical stimuli that influence flavor profiles and qualities of food, as well as their contributions to complex perceptions, such as consumer acceptance.
Collapse
Affiliation(s)
- In Hee Cho
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538 Korea
| | - Devin G. Peterson
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
5
|
Kanjana N, Ahmed MA, Shen Z, Li Y, Zhang L. Optimization of the determination of volatile organic compounds in plant tissue and soil samples: Untargeted metabolomics of main active compounds. MethodsX 2024; 13:102914. [PMID: 39253006 PMCID: PMC11382208 DOI: 10.1016/j.mex.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
This review critically assesses the determination of low molecular weight volatiles by different methods, providing context for the development of suitable techniques to determine volatile content in plant tissue and soil samples as well as the associated analytical challenges. Although sensitive analytical methods have been reported in recent decades, studies on their application in modern investigative techniques are lacking. Herein, the latest sampling methods in volatile biochemistry, current advancements in the understanding of these analytes, and the significance of these findings for other types of volatiles are summarized. Gas chromatography, high-performance liquid chromatography, ion chromatography, thin-film microextraction, and real-time monitoring techniques are discussed and critically determined. This review concerns the methods most suitable for future research in this area.
Collapse
Affiliation(s)
- Nipapan Kanjana
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Muhammad Afaq Ahmed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
6
|
Szeitz A, Sutton AG, Hallam SJ. A matrix-centered view of mass spectrometry platform innovation for volatilome research. Front Mol Biosci 2024; 11:1421330. [PMID: 39539739 PMCID: PMC11557394 DOI: 10.3389/fmolb.2024.1421330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Volatile organic compounds (VOCs) are carbon-containing molecules with high vapor pressure and low water solubility that are released from biotic and abiotic matrices. Because they are in the gaseous phase, these compounds tend to remain undetected when using conventional metabolomic profiling methods. Despite this omission, efforts to profile VOCs can provide useful information related to metabolic status and identify potential signaling pathways or toxicological impacts in natural or engineered environments. Over the past several decades mass spectrometry (MS) platform innovation has instigated new opportunities for VOC detection from previously intractable matrices. In parallel, volatilome research linking VOC profiles to other forms of multi-omic information (DNA, RNA, protein, and other metabolites) has gained prominence in resolving genotype/phenotype relationships at different levels of biological organization. This review explores both on-line and off-line methods used in VOC profiling with MS from different matrices. On-line methods involve direct sample injection into the MS platform without any prior compound separation, while off-line methods involve chromatographic separation prior to sample injection and analyte detection. Attention is given to the technical evolution of platforms needed for increasingly resolved VOC profiles, tracing technical progress over time with particular emphasis on emerging microbiome and diagnostic applications.
Collapse
Affiliation(s)
- Andras Szeitz
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annika G. Sutton
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Steven J. Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Luo H, Akkermans S, Verheyen D, Wang J, Polanska M, Van Impe JFM. Tuning and modeling cheese flavor. Compr Rev Food Sci Food Saf 2024; 23:e13420. [PMID: 39217506 DOI: 10.1111/1541-4337.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Flavor is a major sensory attribute affecting consumers' preference for cheese products. Differences in cheesemaking change the cheese microenvironment, thereby affecting cheese flavor profiles. A framework for tuning cheese flavor is proposed in this study, which depicts the full picture of flavor development and modulation, from manufacturing and ripening factors through the main biochemical pathways to flavor compounds and flavor notes. Taking semi-hard and hard cheeses as examples, this review describes how cheese flavor profiles are affected by milk type and applied treatment, fat and salt content, microbiota composition and microbial interactions, ripening time, temperature, and environmental humidity, together with packaging method and material. Moreover, these factors are linked to flavor profiles through their effects on proteolysis, the further catabolism of amino acids, and lipolysis. Acids, alcohols, ketones, esters, aldehydes, lactones, and sulfur compounds are key volatiles, which elicit fruity, sweet, rancid, green, creamy, pungent, alcoholic, nutty, fatty, and sweaty flavor notes, contributing to the overall flavor profiles. Additionally, this review demonstrates how data-driven modeling techniques can link these influencing factors to resulting flavor profiles. This is done by providing a comprehensive review on the (i) identification of key factors and flavor compounds, (ii) discrimination of cheeses, and (iii) prediction of flavor notes. Overall, this review provides knowledge tools for cheese flavor modulation and sheds light on using data-driven modeling techniques to aid cheese flavor analysis and flavor prediction.
Collapse
Affiliation(s)
- Huabin Luo
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Davy Verheyen
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jian Wang
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Monika Polanska
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
8
|
Zheng W, Pang K, Min Y, Wu D. Prospect and Challenges of Volatile Organic Compound Breath Testing in Non-Cancer Gastrointestinal Disorders. Biomedicines 2024; 12:1815. [PMID: 39200279 PMCID: PMC11351786 DOI: 10.3390/biomedicines12081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Breath analysis, despite being an overlooked biomatrix, has a rich history in disease diagnosis. However, volatile organic compounds (VOCs) have yet to establish themselves as clinically validated biomarkers for specific diseases. As focusing solely on late-stage or malignant disease biomarkers may have limited relevance in clinical practice, the objective of this review is to explore the potential of VOC breath tests for the diagnosis of non-cancer diseases: (1) Precancerous conditions like gastro-esophageal reflux disease (GERD) and Barrett's esophagus (BE), where breath tests can complement endoscopic screening; (2) endoluminal diseases associated with autoinflammation and dysbiosis, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and coeliac disease, which currently rely on biopsy and symptom-based diagnosis; (3) chronic liver diseases like cirrhosis, hepatic encephalopathy, and non-alcoholic fatty liver disease, which lack non-invasive diagnostic tools for disease progression monitoring and prognostic assessment. A literature search was conducted through EMBASE, MEDLINE, and Cochrane databases, leading to an overview of 24 studies. The characteristics of these studies, including analytical platforms, disorder type and stage, group size, and performance evaluation parameters for diagnostic tests are discussed. Furthermore, how VOCs can be utilized as non-invasive diagnostic tools to complement existing gold standards is explored. By refining study designs, sampling procedures, and comparing VOCs in urine and blood, we can gain a deeper understanding of the metabolic pathways underlying VOCs. This will establish breath analysis as an effective non-invasive method for differential diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
| | - Ke Pang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Yiyang Min
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (K.P.); (Y.M.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Rajendran S, Khomenko I, Silcock P, Betta E, Biasioli F, Bremer P. Impact of Different Carbon Sources on Volatile Organic Compounds (VOCs) Produced during Fermentation by Levilactobacillus brevis WLP672 Measured Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Molecules 2024; 29:3275. [PMID: 39064855 PMCID: PMC11279293 DOI: 10.3390/molecules29143275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial fermentation is considered to be a cost-effective means of generating desired flavour compounds from plant-based substrates. However, the wide range of substrates present in plants makes it challenging to understand how individual components impact on flavour volatile organic compound (VOC) production. To simplify this, a defined medium can be used to better understand VOCs production with regard to individual compounds. In the current study, the VOCs produced by the lactic acid bacterium, Levilactobacillus brevis WLP672, growing in a defined medium containing different carbon sources (either glucose (DM), fructose (DMFr) or citrate (DMCi)) under a range of fermentation conditions (time: 0, 7, and 14 days; and temperature: 25 and 35 °C) were assessed using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Among the detected mass peaks (m/z), after 7 days of fermentation, the concentrations of m/z 45.033 (t.i. acetaldehyde), m/z 49.011 (t.i. methanethiol), and m/z 89.060 (t.i. ethyl acetate) were significantly (p < 0.05) higher in DM at 35 °C than all other treatments at either temperature. The knowledge obtained will help to produce desirable LAB fermentation flavour VOCs or VOC mixtures that could be used in developing plant-based analogues with acceptable sensory properties.
Collapse
Affiliation(s)
- Sarathadevi Rajendran
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (S.R.); (P.B.)
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 44000, Sri Lanka
| | - Iuliia Khomenko
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- ONFoods-Research and Innovation Network on Food and Nutrition Sustainability, Safety and Security-Working ON Foods, 43121 Parma, Italy
| | - Patrick Silcock
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (S.R.); (P.B.)
| | - Emanuela Betta
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- ONFoods-Research and Innovation Network on Food and Nutrition Sustainability, Safety and Security-Working ON Foods, 43121 Parma, Italy
| | - Franco Biasioli
- Sensory Quality Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 Trento, Italy; (I.K.); (E.B.); (F.B.)
- ONFoods-Research and Innovation Network on Food and Nutrition Sustainability, Safety and Security-Working ON Foods, 43121 Parma, Italy
| | - Phil Bremer
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (S.R.); (P.B.)
| |
Collapse
|
10
|
Dou M, Huang J, Yu M, Li H, Song Y, Peng Z, Du S, Bai J. HPLC combined with chemometrics for quality control of Huamoyan Granules or Capsules. CHINESE HERBAL MEDICINES 2024; 16:449-456. [PMID: 39072197 PMCID: PMC11283216 DOI: 10.1016/j.chmed.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 07/30/2024] Open
Abstract
Objective Huamaoyan Granules (HMYG) and Huamaoyan Capsules (HMYC) are Chinese patent medicines with different dosage forms of the same prescription. Due to the different preparation process, the chemical composition of these Chinese patent medicines varies greatly among different forms, but there were few studies on the difference comparison and quality control of them. In order to improve the effectiveness and safety in its clinical application, an idea combining high performance liquid chromatography (HPLC) and chemometrics was put forward to study the quality control of Chinese patent medicines in different dosage forms of the same prescription. Methods The differential markers of HMYG and HMYC were explored based on HPLC fingerprint and chemometrics including orthogonal projections to latent structures-discriminant analysis (OPLS-DA), principal component analysis (PCA), and hierarchical cluster analysis (HCA). Finally, the quantitative analysis method of related components was established by HPLC. Results A quality control method for HMYG and HMYC was established. Firstly, the chemical components of HMYG and HMYC were systematically analyzed by HPLC fingerprinting. Further exploration showed that there were 20 characteristic peaks and 57 common peaks. Then, the potential differential markers between HMYG and HMYC were explored by chemometrics, and the differential markers were screened after intersection with the 20 characteristic peaks. Finally, HPLC quantitative analysis methods for nine components were established, including seven differential markers (neochlorogenic acid, protocatechualdehyde, chlorogenic acid, cryptochlorogenic acid, caffeic acid, rosmarinic acid and salvianolic acid A). The results of HPLC quantitative analysis showed that the contents of eight components in HMYG and HMYC samples were significantly different. According to the above results, the differential markers between HMYG and HMYC screened based on HPLC fingerprint and chemometrics can effectively characterize the differences between the two dosage forms. Conclusion The present work provides a rapid and effective method for routine quality evaluation and control of HMYG and HMYC. This work also provides feasible methods for the quality evaluation and control of Chinese patent medicines with different dosage forms of the same prescription.
Collapse
Affiliation(s)
- Minhang Dou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiayi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mimi Yu
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing 102206, China
| | - Huahua Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziwei Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
11
|
Wang Y, Zhao C, Lu A, Dong D, Gong W. Unveiling the hidden impact: How biodegradable microplastics influence CO 2 and CH 4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134294. [PMID: 38669928 DOI: 10.1016/j.jhazmat.2024.134294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Biodegradable plastics promise eco-friendliness, yet their transformation into microplastics (bio-MPs) raises environmental alarms. However, how those bio-MPs affect the greenhouse gases (GHGs) and volatile organic compounds (VOCs) in soil ecosystems remains largely unexplored. Here, we investigated the effects of diverse bio-MPs (PBAT, PBS, and PLA) on GHGs and VOCs emission in typical paddy or upland soils. We monitored the carbon dioxide (CO2) and methane (CH4) fluxes in-situ using the self-developed portable optical gas sensor and analyzed VOC profiles using a proton-transfer reaction mass spectrometer (PTR-MS). Our study has revealed that, despite their biodegradable nature, bio-MPs do not always promote soil GHG emissions as previously thought. Specifically, PBAT and PLA significantly increased CO2 and CH4 emissions up to 1.9-7.5 and 115.9-178.5 fold, respectively, compared to the control group. While PBS exhibited the opposite trend, causing a decrease of up to 39.9% for CO2 and up to 39.9% for CH4. In addition, different types of bio-MPs triggered distinct soil VOC emission patterns. According to the Mann-Whitney U-test and Partial Least Squares Discriminant Analysis (PLS-DA), a recognizable VOC pattern associated with different bio-MPs was revealed. This study claims the necessity of considering polymer-specific responses when assessing the environmental impact of Bio-MPs, and providing insights into their implications for climate change.
Collapse
Affiliation(s)
- Yihao Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunjiang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anxiang Lu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Daming Dong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wenwen Gong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
12
|
Pérez-Vásquez A, Peña-Álvarez A, Mata R. GC-MS AND Chemometric Analysis of the Essential Oils Obtained from Mexican Commercial Chamomilla Recutita Teas. Chem Biodivers 2024; 21:e202400333. [PMID: 38502786 DOI: 10.1002/cbdv.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
The essential oils prepared by hydrodistillation of twenty-one brands of German chamomile (S1-S21) commercialized in Mexico were analyzed by GS-MS. Altogether, twenty-four different compounds were identified in the analyzed samples, varying from 77 to 100 % of the total composition. Multivariate analyses were applied to explore similarity/dissimilarity and correlation between all samples; the results revealed a strong correlation among samples S4, S5, and S7-S21 due to the presence of (Z)-en-yn-dicycloether [(Z)-tonghaosu], α-bisabolol, β-farnesene, β-eudesmol, and xanthoxylin. The samples S1-S3 and S6 were clustered separately. Samples S1, S3, and S6 were characterized by their higher content of bisabolol oxide A (38.78 %, 51.84 %, and 70.46 %, respectively) as most known chemotypes of German chamomile, but only S1 and S3 contained chamazulene. Finally, S2 differed from the others because of its high content of (E)-anethole (62.28 %), suggesting a case of adulteration or substitution of the crude drug employed for manufacturing the product.
Collapse
Affiliation(s)
- Araceli Pérez-Vásquez
- Department of Pharmacy, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510, Mexico City, Mexico
| | - Araceli Peña-Álvarez
- Department of Analytical Chemistry, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510, Mexico City, Mexico
| | - Rachel Mata
- Department of Pharmacy, Facultad de Química, Universidad Nacional Autónoma de Mexico, 04510, Mexico City, Mexico
| |
Collapse
|
13
|
Vermeer E, Jagt JZ, Stewart TK, Covington JA, Struys EA, de Jonge R, de Boer NKH, de Meij TGJ. Faecal Volatile Organic Compound Analysis in De Novo Paediatric Inflammatory Bowel Disease by Gas Chromatography-Ion Mobility Spectrometry: A Case-Control Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2727. [PMID: 38732837 PMCID: PMC11086370 DOI: 10.3390/s24092727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The gut microbiota and its related metabolites differ between inflammatory bowel disease (IBD) patients and healthy controls. In this study, we compared faecal volatile organic compound (VOC) patterns of paediatric IBD patients and controls with gastrointestinal symptoms (CGIs). Additionally, we aimed to assess if baseline VOC profiles could predict treatment response in paediatric IBD patients. We collected faecal samples from a cohort of de novo therapy-naïve paediatric IBD patients and CGIs. VOCs were analysed using gas chromatography-ion mobility spectrometry (GC-IMS). Response was defined as a combination of clinical response based on disease activity scores, without requiring treatment escalation. We included 109 paediatric IBD patients and 75 CGIs, aged 4 to 17 years. Faecal VOC profiles of paediatric IBD patients were distinguishable from those of CGIs (AUC ± 95% CI, p-values: 0.71 (0.64-0.79), <0.001). This discrimination was observed in both Crohn's disease (CD) (0.75 (0.67-0.84), <0.001) and ulcerative colitis (UC) (0.67 (0.56-0.78), 0.01) patients. VOC profiles between CD and UC patients were not distinguishable (0.57 (0.45-0.69), 0.87). Baseline VOC profiles of responders did not differ from non-responders (0.70 (0.58-0.83), 0.1). In conclusion, faecal VOC profiles of paediatric IBD patients differ significantly from those of CGIs.
Collapse
Affiliation(s)
- Eva Vermeer
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jasmijn Z. Jagt
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Trenton K. Stewart
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (T.K.S.); (J.A.C.)
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (T.K.S.); (J.A.C.)
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (E.A.S.); (R.d.J.)
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (E.A.S.); (R.d.J.)
| | - Nanne K. H. de Boer
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
Ren T, Lin Y, Su Y, Ye S, Zheng C. Machine Learning-Assisted Portable Microplasma Optical Emission Spectrometer for Food Safety Monitoring. Anal Chem 2024; 96:5170-5177. [PMID: 38512240 DOI: 10.1021/acs.analchem.3c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To meet the needs of food safety for simple, rapid, and low-cost analytical methods, a portable device based on a point discharge microplasma optical emission spectrometer (μPD-OES) was combined with machine learning to enable on-site food freshness evaluation and detection of adulteration. The device was integrated with two modular injection units (i.e., headspace solid-phase microextraction and headspace purge) for the examination of various samples. Aromas from meat and coffee were first introduced to the portable device. The aroma molecules were excited to specific atomic and molecular fragments at excited states by room temperature and atmospheric pressure microplasma due to their different atoms and molecular structures. Subsequently, different aromatic molecules obtained their own specific molecular and atomic emission spectra. With the help of machine learning, the portable device was successfully applied to the assessment of meat freshness with accuracies of 96.0, 98.7, and 94.7% for beef, pork, and chicken meat, respectively, through optical emission patterns of the aroma at different storage times. Furthermore, the developed procedures can identify beef samples containing different amounts of duck meat with an accuracy of 99.5% and classify two coffee species without errors, demonstrating the great potential of their application in the discrimination of food adulteration. The combination of machine learning and μPD-OES provides a simple, portable, and cost-effective strategy for food aroma analysis, potentially addressing field monitoring of food safety.
Collapse
Affiliation(s)
- Tian Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yubin Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Simin Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Zhao H, Zhang S, Ma D, Liu Z, Qi P, Wang Z, Di S, Wang X. Review of fruits flavor deterioration in postharvest storage: Odorants, formation mechanism and quality control. Food Res Int 2024; 182:114077. [PMID: 38519167 DOI: 10.1016/j.foodres.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/24/2024]
Abstract
Fruits flavor deterioration is extremely likely to occur during post-harvest storage, which not only damages quality but also seriously affects its market value. This work focuses on the study of fruits deterioration odorants during storage by describing their chemical compositions (i.e., alcohols, aldehydes, acids, and sulfur-containing compounds). Besides, the specific flavor deterioration mechanisms (i.e., fermentation metabolism, lipid oxidation, and amino acid degradation) inducing by factors (temperature, oxygen, microorganisms, ethylene) are summarized. Moreover, quality control strategies to mitigate fruits flavor deterioration by physical (temperature control, hypobaric treatment, UV-C, CA) and chemical (1-MCP, MT, NO, MeJA) techniques are also proposed. This review will provide useful references for fruits flavor control technologies development.
Collapse
Affiliation(s)
- Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Suling Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Di Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
16
|
Thong A, Basri N, Chew W. Comparison of untargeted gas chromatography-mass spectrometry analysis algorithms with implications to the interpretation and putative identification of volatile aroma compositions. J Chromatogr A 2024; 1713:464519. [PMID: 38039625 DOI: 10.1016/j.chroma.2023.464519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
The aroma profiling process requires the identification of the volatile compounds in a sample or its headspace. Typically, the identification of compounds relies on automated feature finding and matching algorithms to (putatively) identify and report compounds based on retention index and mass spectra matching against a compound library. We investigated the use of five different workflows and proposed three metrics (target accuracy A, identification percentage I, uniqueness U) to quantify their impact on generated aroma profiles of a mixture of fragrance standards and a commercial grade essential oil. All workflows accurately identified target compounds (100% in standards, >90% in samples) and reported similar compound identities for major GC-MS features, but beyond that could differ by up to 40-50%. Despite the variances, different workflows did not report conflicting compound identities. Aroma compositions primarily contained unreported or extra (putatively) identified compounds due to variations in mass spectral elucidations within the various workflows. Considering these differences, we show how the proposed metrics, I and U, could be modified to help the analyst interpret and evaluate reported volatile aroma compositions of unknown materials.
Collapse
Affiliation(s)
- Aaron Thong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, 31 Biopolis Way, #01-02, 138669, Singapore
| | - Nurhidayah Basri
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, 31 Biopolis Way, #01-02, 138669, Singapore
| | - Wee Chew
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, 31 Biopolis Way, #01-02, 138669, Singapore.
| |
Collapse
|
17
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ma Z, Liu G, Yang Z, Zhang G, Sun L, Wang M, Ren X. Species Differentiation and Quality Evaluation for Atractylodes Medicinal Plants by GC/MS Coupled with Chemometric Analysis. Chem Biodivers 2023; 20:e202300793. [PMID: 37485567 DOI: 10.1002/cbdv.202300793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The utilization of rhizomes from the genus Atractylodes has been challenging due to their closely related origins. In this study, we developed an analytical strategy to differentiate Atractylodes lancea (A. lancea), Atractylodes chinensis (A. chinensis), Atractylodes japonica (A. japonica), and Atractylodes macrocephala (A. macrocephala), and compared their volatile compositions. Gas chromatography-mass spectrometry (GC/MS) was used to analyze the volatile profiles of essential oils extracted from 59 batches of samples. Chemometric methods enabled a better understanding of the differences in volatile oils between the four species and identified significant components affecting their classification and quality. A total of 50 volatile components were identified from the essential oils by GC/MS. Unsupervised and supervised chemometric analyses accurately distinguished A. lancea, A. chinensis, A. japonica, and A. macrocephala. Furthermore, five characteristic chemical markers, namely hinesol, β-eudesmol, atractylon, atractylodin and atractylenolide I, were obtained, and their respective percentage contents in individual species and samples were determined. This study provides a valuable reference for the quality evaluation of medicinal plants with essential oils and holds significance for species differentiation and the rational clinical application of Atractylodes herbs.
Collapse
Affiliation(s)
- Zicheng Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqiang Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zijie Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
19
|
Pan X, Bi S, Lao F, Wu J. Factors affecting aroma compounds in orange juice and their sensory perception: A review. Food Res Int 2023; 169:112835. [PMID: 37254409 DOI: 10.1016/j.foodres.2023.112835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Orange juice is the most widely consumed fruit juice globally because of its pleasant aromas and high nutritional value. Aromas, contributed by free and bound aroma compounds, are an important attribute and determine the quality of orange juice and consumer choices. Aldehydes, alcohols, esters, and terpenoids have been shown to play important roles in the aroma quality of orange juice. Many factors affect the aroma compounds in orange juice, such as genetic makeup, maturity, processing, matrix compounds, packaging, and storage. This paper reviews identified aroma compounds in free and bound form, the biosynthetic pathways of aroma-active compounds, and factors affecting aroma from a molecular perspective. This review also outlines the effect of variations in aroma on the sensory profile of orange juice and discusses the sensory perception pathways in human systems. Sensory perception of aromas is affected by aroma variations but also converges with taste perception. This review could provide critical information for further research on the aromas of orange juice and their manipulation during the development of products.
Collapse
Affiliation(s)
- Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China; College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
20
|
Refaat Fahim J, Darwish AG, El Zawily A, Wells J, Abourehab MA, Yehia Desoukey S, Zekry Attia E. Exploring the volatile metabolites of three Chorisia species: Comparative headspace GC–MS, multivariate chemometrics, chemotaxonomic significance, and anti-SARS-CoV-2 potential. Saudi Pharm J 2023; 31:706-726. [PMID: 37181141 PMCID: PMC10172601 DOI: 10.1016/j.jsps.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chorisia (syn. Ceiba) species are important ornamental, economic, and medicinal plants that are endowed with a diversity of secondary metabolites; however, their volatile organic compounds (VOCs) have been scarcely studied. Therefore, this work explores and compares the headspace floral volatiles of three common Chorisia species, namely Chorisia chodatii Hassl., Chorisia speciosa A. St.-Hil, and Chorisia insignis H.B.K. for the first time. A total of 112 VOCs of varied biosynthetic origins were identified at different qualitative and quantitative ratios, encompassing isoprenoids, fatty acid derivatives, phenylpropanoids, and others. Flowers of the investigated species showed perceptibly differentiated volatile profiles, with those emitted by C. insignis being dominated by non-oxygenated compounds (56.69 %), whereas oxygenated derivatives prevailed among the volatiles of C. chodatii (66.04 %) and C. speciosa (71.53 %). The variable importance in the projection (VIP) in the partial least-squares-discriminant (PLS-DA) analysis described 25 key compounds among the studied species, of which linalool was verified as the most important aroma compound based on VIP values and significance analysis, and it could represent the most typical VOC among these Chorisia species. Furthermore, molecular docking and dynamics analyses of both the major and the key VOCs displayed their moderate to promising binding interactions with four main proteins of SARS-CoV-2, including Mpro, PLpro, RdRp, and spike S1 subunit RBD. The current results collectively cast new light on the chemical diversity of the VOCs of Chorisia plants as well as their chemotaxonomic and biological relevance.
Collapse
|
21
|
de Sousa DB, da Silva GS, Serrano LAL, Martins MVV, Rodrigues THS, Lima MAS, Zocolo GJ. Metabolomic Profile of Volatile Organic Compounds from Leaves of Cashew Clones by HS-SPME/GC-MS for the Identification of Candidates for Anthracnose Resistance Markers. J Chem Ecol 2023; 49:87-102. [PMID: 36631524 DOI: 10.1007/s10886-022-01402-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Anthracnose caused by Colletotrichum gloeosporioides affects the leaves, inflorescences, nuts, and peduncles of cashew trees (Anacardium occidentale). The use of genetically improved plants and the insertion of dwarf cashew clones that are more resistant to phytopathogens are strategies to minimize the impact of anthracnose on cashew production. However, resistance mechanisms related to the biosynthesis of secondary metabolites remain unknown. Thus, this study promoted the investigation of the profile of volatile organic compounds of resistant cashew clone leaves ('CCP 76', 'BRS 226' and 'BRS 189') and susceptible ('BRS 265') to C. gloeosporioides, in the periods of non-infection and infection of the pathogen in the field (July-December 2019 - Brazil). Seventy-eight compounds were provisionally identified. Chemometric analyses, such as Principal Component Analysis (PCA), Discriminating Partial Least Squares Analysis (PLS-DA), Discriminating Analysis of Orthogonal Partial Least Squares (OPLS-DA), and Hierarchical Cluster Analysis (HCA), separated the samples into different groups, highlighting hexanal, (E)-hex-2-enal, (Z)-hex-2-en-1-ol, (E)-hex-3-en-1-ol, in addition to α-pinene, α-terpinene, γ-terpinene, β-pinene, and δ-3-carene, in the samples of the resistant clones in comparison to the susceptible clone. According to the literature, these metabolites have antimicrobial activity and are therefore chemical marker candidates for resistance to C. gloeosporioides in cashew trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary Anne Sousa Lima
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | |
Collapse
|
22
|
Xiang L, Zhu W, Jiang B, Chen J, Zhou L, Zhong F. Volatile compounds analysis and biodegradation strategy of beany flavor in pea protein. Food Chem 2023; 402:134275. [DOI: 10.1016/j.foodchem.2022.134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
23
|
Wang L, Chen S, Xu Y. Distilled beverage aging: A review on aroma characteristics, maturation mechanisms, and artificial aging techniques. Compr Rev Food Sci Food Saf 2023; 22:502-534. [PMID: 36527314 DOI: 10.1111/1541-4337.13080] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
The market value of distilled beverage relies on its quality with a major contribution of distinctive and fascinating aromas. The aroma of distilled beverage is built on the basis of chemical components and can be modified through a series of physical and chemical processes such as aging. Revealing the hidden knowledge behind the evolution of numerous chemical components during these physicochemical processes in distilled beverages is not only significant but also challenging due to its complex system. In this review, the trends in the changes of associated aroma compounds over aging are proposed on the basis of understanding the relationship between chemical components and aroma profiles of numerous typical distilled beverages. The different aging systems, both classical platforms from Eastern countries (pottery jars) to Western countries (wood barrels), and modern platforms such as artificial aging technologies are outlined and compared with their respective applications. Optimizing aging processes is a challenging but imperative step, which warrants further fundamental knowledge from targeting aging-related molecules to the exploration of multitude physicochemical reaction mechanisms that occur during this process, such as the formation of potent odorant compounds in specific containers and environments, as well as mass transfer processes between solid and liquid interfaces. Understanding these maturation mechanisms of distilled beverages expressed by chemosensory signature holds promise for major improvements in future aging technologies that can efficiently yield stable and high-quality products.
Collapse
Affiliation(s)
- Lulu Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Barros LDSP, Santos da Cruz EDN, de Araújo Guimarães B, Setzer WN, Veras Mourão RH, do Rosário da Silva JK, Silva da Costa J, Baia Figueiredo PL. Chemometric analysis of the seasonal variation in the essential oil composition and antioxidant activity of a new geraniol chemotype of Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson from the Brazilian Amazon. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Vilar EG, O'Sullivan MG, Kerry JP, Kilcawley KN. Volatile organic compounds in beef and pork by gas chromatography‐mass spectrometry: A review. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elena Garicano Vilar
- Food Quality & Sensory Science Department Teagasc Food Research Centre, Moorepark Ireland
- School of Food and Nutritional Science University College Cork Cork Ireland
| | | | - Joseph P. Kerry
- School of Food and Nutritional Science University College Cork Cork Ireland
| | - Kieran N. Kilcawley
- Food Quality & Sensory Science Department Teagasc Food Research Centre, Moorepark Ireland
- School of Food and Nutritional Science University College Cork Cork Ireland
| |
Collapse
|
26
|
Evaluation of germination effect on volatile compounds of different faba bean cultivars using HS-SPME/GC-MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Li X, Xu X, Chen M, Xu M, Wang W, Liu C, Yu L, Liu W, Yang W. The field phenotyping platform's next darling: Dicotyledons. FRONTIERS IN PLANT SCIENCE 2022; 13:935748. [PMID: 36092402 PMCID: PMC9449727 DOI: 10.3389/fpls.2022.935748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The genetic information and functional properties of plants have been further identified with the completion of the whole-genome sequencing of numerous crop species and the rapid development of high-throughput phenotyping technologies, laying a suitable foundation for advanced precision agriculture and enhanced genetic gains. Collecting phenotypic data from dicotyledonous crops in the field has been identified as a key factor in the collection of large-scale phenotypic data of crops. On the one hand, dicotyledonous plants account for 4/5 of all angiosperm species and play a critical role in agriculture. However, their morphology is complex, and an abundance of dicot phenotypic information is available, which is critical for the analysis of high-throughput phenotypic data in the field. As a result, the focus of this paper is on the major advancements in ground-based, air-based, and space-based field phenotyping platforms over the last few decades and the research progress in the high-throughput phenotyping of dicotyledonous field crop plants in terms of morphological indicators, physiological and biochemical indicators, biotic/abiotic stress indicators, and yield indicators. Finally, the future development of dicots in the field is explored from the perspectives of identifying new unified phenotypic criteria, developing a high-performance infrastructure platform, creating a phenotypic big data knowledge map, and merging the data with those of multiomic techniques.
Collapse
Affiliation(s)
- Xiuni Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiangyao Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Menggen Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Mei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wenyan Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Chunyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Liang Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
28
|
Rapid identification for the species discrimination of Curcumae Rhizoma using spectrophotometry and flash gas chromatography e-nose combined with chemometrics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Erika C, Ulrich D, Naumann M, Smit I, Horneburg B, Pawelzik E. Flavor and Other Quality Traits of Tomato Cultivars Bred for Diverse Production Systems as Revealed in Organic Low-Input Management. Front Nutr 2022; 9:916642. [PMID: 35911109 PMCID: PMC9331900 DOI: 10.3389/fnut.2022.916642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
This study was conducted to determine the volatile organic compounds (VOCs) associated with fruit flavor in diverse tomato cultivars (salad and cocktail cultivars) under organic low-input production. For this objective, 60 cultivars deriving from very diverse breeding programs 1880-2015 were evaluated in 2015, and a subset of 20 cultivars was selected for further evaluation in 2016. The diversity of instrumentally determined traits, especially for VOCs concentration and sensory properties (fruit firmness, juiciness, skin firmness, sweetness, sourness, aroma, and acceptability), was investigated at two harvest dates. The evaluation of the cultivars exhibited a wide range of variation for all studied traits, with the exception of a few VOCs. Cultivar had the most important effect on all instrumentally determined traits, while the influence of cultivar × harvest date × year interaction was significant for 17 VOCs, but not for total soluble solid (TSS) and titratable acidity (TA). The VOCs with the highest proportion (>8%) were hexanal, 6-methyl-5-heptene-2-one, 2-isobutylthiazole, and (E)-2-hexenal, which were identified in all cultivars. Twelve VOCs significantly correlated with one or more sensory attributes and these VOCs also allowed differentiation of the fruit type. Among these VOCs, phenylethyl alcohol and benzyl alcohol positively correlated with acceptability in the cocktail cultivars, whereas 2-isobuthylthiazole and 6-methyl-5-hepten-2-ol negatively correlated with acceptability in the salad cultivars. As a result of this study, organic breeders are recommended to use cultivars from a wide range of breeding programs to improve important quality and agronomic traits. As examples, salad tomatoes "Campari F1", "Green Zebra", and "Auriga", as well as cocktail tomatoes "Supersweet 100 F1", "Sakura F1", and "Black Cherry" showed higher scores for the sensory attributes aroma and acceptability under organic low-input growing conditions. It remains a challenge for breeders and growers to reduce the trade-off of yield and quality.
Collapse
Affiliation(s)
- Cut Erika
- Division Quality of Plant Products, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Detlef Ulrich
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Marcel Naumann
- Division Quality of Plant Products, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Inga Smit
- Division Quality of Plant Products, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Bernd Horneburg
- Section of Genetic Resources and Organic Plant Breeding, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Elke Pawelzik
- Division Quality of Plant Products, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Qualitative and quantitative determination of butanol in latex paint by fast gas chromatography proton transfer reaction mass spectrometry. J Chromatogr A 2022; 1676:463210. [PMID: 35700573 DOI: 10.1016/j.chroma.2022.463210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/13/2023]
Abstract
Butanol is a common organic solvent used in latex paint, and one of its isomers, tert-butanol, is toxic and can cause potential harm to the human body. Therefore, it is of great significance to develop a qualitative and quantitative detection method for butanol isomers. In this study, we combined the advantages of rapid detection of proton transfer reaction mass spectrometry (PTR-MS) with the separation and qualitative capabilities of gas chromatography-mass spectrometry (GC-MS) to achieve the detection of isomers, building a fast gas chromatography proton transfer reaction mass spectrometry (FastGC-PTR-MS) equipment. Firstly, the developed technology was optimized using standard samples of several common volatile organic compounds. The retention times of acetonitrile, acetone, and alcohols were less than 50 s, and the retention times of the benzene series were less than 110 s, on the premise that these isomers could be basically separated (resolution R > 1.0). Compared with a commercial GC-MS equipment, the detection times were shortened by 5-6 times and 2-4 times, respectively. Then the FastGC-PTR-MS was applied to detect the isomers of butanol in latex paint. The results showed that the headspace of brand D latex paint mainly contained five substances: tert-butanol, n-butanol, acetaldehyde, methanol, and acetone. Tert-butanol and n-butanol could be completely separated (R > 1.5). The concentration of tert-butanol was 4.41 ppmv, far below the 100 ppmv maximum allowable workplace concentration. The developed FastGC-PTR-MS can be used for rapid qualitative and quantitative detection of butanol isomers in latex paint. The new equipment has the potential to play an important role in indoor environmental safety applications.
Collapse
|
31
|
He W, Chen Z, Chung HY. Dynamic correlations between major enzymatic activities, physicochemical properties and targeted volatile compounds in naturally fermented plain sufu during production. Food Chem 2022; 378:131988. [PMID: 35078100 DOI: 10.1016/j.foodchem.2021.131988] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
Dynamic changes and correlations between physicochemical properties, 14 targeted volatile compounds (TVCs) and six groups of enzyme activities during eight production stages of naturally fermented plain sufu were explored. Multiple factor analysis was used to discriminate between and group the samples into three clusters: cluster I comprised tofu and pehtze; cluster II comprised dried pehtze and salted pehtze; cluster III involved the aging stages. Clusters I and II were characterised by higher enzyme activities, while cluster III was characterised by the presence of diverse TVCs. Protease and esterase were strongly correlated with most of the TVCs. Esterase, in particular, contributed to the formation of three high molecular weight esters, namely, ethyl dodecanoate, ethyl (Z)-9-octadecenoate and ethyl (Z, Z)-9,12-octadecadienoate. The enzymes found contributed to the texture and flavour of naturally fermented sufu and will provide a good guide and control for using the enzymes directly to ripen sufu products.
Collapse
Affiliation(s)
- Wenmeng He
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhu Hai, China; Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zixing Chen
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
32
|
Hall RD, D'Auria JC, Silva Ferreira AC, Gibon Y, Kruszka D, Mishra P, van de Zedde R. High-throughput plant phenotyping: a role for metabolomics? TRENDS IN PLANT SCIENCE 2022; 27:549-563. [PMID: 35248492 DOI: 10.1016/j.tplants.2022.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 05/17/2023]
Abstract
High-throughput (HTP) plant phenotyping approaches are developing rapidly and are already helping to bridge the genotype-phenotype gap. However, technologies should be developed beyond current physico-spectral evaluations to extend our analytical capacities to the subcellular level. Metabolites define and determine many key physiological and agronomic features in plants and an ability to integrate a metabolomics approach within current HTP phenotyping platforms has huge potential for added value. While key challenges remain on several fronts, novel technological innovations are upcoming yet under-exploited in a phenotyping context. In this review, we present an overview of the state of the art and how current limitations might be overcome to enable full integration of metabolomics approaches into a generic phenotyping pipeline in the near future.
Collapse
Affiliation(s)
- Robert D Hall
- BU Bioscience, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands; Laboratory of Plant Physiology, Wageningen University, 6700 AA, Wageningen, The Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, Leiden, The Netherlands.
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
| | - Antonio C Silva Ferreira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; Faculty of AgriSciences, University of Stellenbosch, Matieland 7602, South Africa; Cork Supply Portugal, S.A., Rua Nova do Fial, 4535, Portugal
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine - Bordeaux, Avenue Edouard Bourlaux, Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d'Ornon, France PMB-Metabolome, INRAE, Centre INRAE de Nouvelle, Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Dariusz Kruszka
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Puneet Mishra
- Food and Biobased Research, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Rick van de Zedde
- Plant Sciences Group, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
33
|
Zha W, Zhang F, Shao J, Ma X, Zhu J, Sun P, Wu R, Zi J. Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil. Nat Commun 2022; 13:2508. [PMID: 35523896 PMCID: PMC9076924 DOI: 10.1038/s41467-022-30294-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Plant essential oils (PEOs) are widely used in cosmetic and nutraceutical industries. The component ratios of PEOs determine their qualities. Controlling the component ratios is challenging in construction of PEO biotechnological platforms. Here, we explore the catalytic reaction pathways of both product-promiscuous and product-specific santalene synthases (i.e., SaSSy and SanSyn) by multiscale simulations. F441 of SanSyn is found as a key residue restricting the conformational dynamics of the intermediates, and thereby the direct deprotonation by the general base T298 dominantly produce α-santalene. The subsequent mutagenesis of this plastic residue leads to generation of a mutant enzyme SanSynF441V which can produce both α- and β-santalenes. Through metabolic engineering efforts, the santalene/santalol titer reaches 704.2 mg/L and the component ratio well matches the ISO 3518:2002 standard. This study represents a paradigm of constructing biotechnological platforms of PEOs with desirable component ratios by the combination of metabolic and enzymatic engineering. Controlling the component ratios of plant essential oils is challenging in their heterologous bioproduction. Here, the authors combine metabolic and enzymatic engineering strategies to achieve the production of sandalwood oil with a desirable component ratio in baker’s yeast.
Collapse
Affiliation(s)
- Wenlong Zha
- College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiaqi Shao
- College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Xingmei Ma
- College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Jianxun Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China.
| | - Jiachen Zi
- College of Pharmacy, Jinan University, 510632, Guangzhou, China. .,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China. .,Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, 510632, Guangzhou, China.
| |
Collapse
|
34
|
Baerenzung dit Baron T, Yobrégat O, Jacques A, Simon V, Geffroy O. A novel approach to discriminate the volatilome of Vitis vinifera berries by Selected Ion Flow Tube Mass Spectrometry analysis and chemometrics. Food Res Int 2022; 157:111434. [DOI: 10.1016/j.foodres.2022.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
|
35
|
Use of Multivariate Statistics in the Processing of Data on Wine Volatile Compounds Obtained by HS-SPME-GC-MS. Foods 2022; 11:foods11070910. [PMID: 35406997 PMCID: PMC8997410 DOI: 10.3390/foods11070910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
This review takes a snapshot of the main multivariate statistical techniques and methods used to process data on the concentrations of wine volatile molecules extracted by means of solid phase micro-extraction and analyzed using GC-MS. Hypothesis test, exploratory analysis, regression models, and unsupervised and supervised pattern recognition methods are illustrated and discussed. Several applications in the wine volatolomic sector are described to highlight different interactions among the various matrix components and volatiles. In addition, the use of Artificial Intelligence-based methods is discussed as an innovative class of methods for validating wine varietal authenticity and geographical traceability.
Collapse
|
36
|
Combination of GC-MS Molecular Networking and Larvicidal Effect against Aedes aegypti for the Discovery of Bioactive Substances in Commercial Essential Oils. Molecules 2022; 27:molecules27051588. [PMID: 35268689 PMCID: PMC8912102 DOI: 10.3390/molecules27051588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023] Open
Abstract
Dengue is a neglected disease, present mainly in tropical countries, with more than 5.2 million cases reported in 2019. Vector control remains the most effective protective measure against dengue and other arboviruses. Synthetic insecticides based on organophosphates, pyrethroids, carbamates, neonicotinoids and oxadiazines are unattractive due to their high degree of toxicity to humans, animals and the environment. Conversely, natural-product-based larvicides/insecticides, such as essential oils, present high efficiency, low environmental toxicity and can be easily scaled up for industrial processes. However, essential oils are highly complex and require modern analytical and computational approaches to streamline the identification of bioactive substances. This study combined the GC-MS spectral similarity network approach with larvicidal assays as a new strategy for the discovery of potential bioactive substances in complex biological samples, enabling the systematic and simultaneous annotation of substances in 20 essential oils through LC50 larvicidal assays. This strategy allowed rapid intuitive discovery of distribution patterns between families and metabolic classes in clusters, and the prediction of larvicidal properties of acyclic monoterpene derivatives, including citral, neral, citronellal and citronellol, and their acetate forms (LC50 < 50 µg/mL).
Collapse
|
37
|
Deeper Insight into the Volatile Profile of Rosa willmottiae with Headspace Solid-Phase Microextraction and GC–MS Analysis. Molecules 2022; 27:molecules27041240. [PMID: 35209030 PMCID: PMC8874665 DOI: 10.3390/molecules27041240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
As the distribution center of Rosa in the world, China has abundant wild germplasm resources, which can contribute to the breeding of modern roses. To explore the potential value of wild roses distributed in the Sichuan–Tibet region, solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS) were used to determine the volatile organic compounds (VOCs) in Rosa willmottiae flowers at three flowering stages (bud stage, initial flowering stage, full flowering stage). Meanwhile, we compared the VOCs of R. willmottiae with different phenotypes (double flowers and single flowers). A total of 74 volatile compounds were identified. The results show that the essential substances belong to alcohols and terpenoids. The main volatile organic compounds are 2-phenyl ethanol (20.49%), benzyl alcohol (10.69%), β-maaliene (8.66%), geranyl acetate (8.47%), and (+)-α-long pinene (6.127%). Different flowering stages had great influence on the volatile profile, from the bud stage to full flowering stage; the content of terpenoids released decreased by 6.17%, whereas alcohols and esters increased by 8.58% and 11.56%, respectively. The chemical diversity and the content of the main components with a different phenotype were not significantly different. Our result will provide a theoretical basis for the development and utilization of Rosa willmottiae in Sichuan and Tibet.
Collapse
|
38
|
Non-intrusive prediction of fruit spoilage and storage time via detecting volatiles in sealed packaging using laser spectroscopy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
40
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
41
|
Hou A, Dickschat JS. The EI‐MS Fragmentation Mechanisms of the Bacterial Diterpenes Polytrichastrene A and Wanju‐2,5‐diene. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Institute of Microbiology Jiangxi Academy of Sciences Changdong Road No. 7777 330096 Nanchang China
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
42
|
Xia S, Luo X. Analysis of 2D nanomaterial BC 3 for COVID-19 biomarker ethyl butyrate sensor. J Mater Chem B 2021; 9:9221-9229. [PMID: 34705009 DOI: 10.1039/d1tb00897h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethyl butyrate (EB) was identified in recent research as a prominent biomarker of COVID-19, as concentrations of EB were higher in exhaled breath of COVID-19 patients. Electronic sensitivities of pristine, Al- and Si-doped BC3 nanosheets to the EB molecule were investigated in this study using density functional theory. It is found that the pure BC3 was ineffective in sensing EB due to low adsorption energy and sensitivity. Aluminum- and silicon-doped BC3 nanosheets were effective in forming a strong interaction with EB and were also sensitive. Our calculations show that the band gaps of the Al-doped and Si-doped BC3 sheets were significantly decreased upon EB adsorption, which increased the electrical conductance of the sheets and the sensitivity. However, Si-doped BC3 had a recovery time of almost 22 hours, making it less potent than Al-doped BC3, which had a recovery time of just 7.7 minutes. The shorter recovery time of the Al-doped BC3 sheet is due to its moderate adsorption energy of 25.8 kcal mol-1. These results can help facilitate the development of an EB biosensor for COVID-19 testing and other similar applications.
Collapse
Affiliation(s)
- Stephen Xia
- National Graphene Research and Development Center, USA.
| | - Xuan Luo
- National Graphene Research and Development Center, USA.
| |
Collapse
|
43
|
Andrewes P, Bullock S, Turnbull R, Coolbear T. Chemical instrumental analysis versus human evaluation to measure sensory properties of dairy products: What is fit for purpose? Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Deng H, Zhang Y, Reuss L, Suh JH, Yu Q, Liang G, Wang Y, Gmitter FG. Comparative Leaf Volatile Profiles of Two Contrasting Mandarin Cultivars against Candidatus Liberibacter asiaticus Infection Illustrate Huanglongbing Tolerance Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10869-10884. [PMID: 34499509 DOI: 10.1021/acs.jafc.1c02875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Huanglongbing (HLB), presumably caused by Candidatus Liberibacter asiaticus (CaLas), is a devastating citrus disease worldwide. While all citrus are affected by HLB, some cultivars display greater tolerance; however, the underlying mechanisms are not fully understood. Here, volatile changes in HLB-tolerant LB8-9 Sugar Belle (SB) and HLB-sensitive Murcott mandarins after CaLas infection were comprehensively compared to determine if specific volatiles are associated with HLB responses and to discern the underlying tolerance mechanisms. These cultivars emitted qualitatively and quantitatively different volatiles in response to HLB induced by artificial graft or natural psyllid inoculation. Increasing amounts of total volatiles and de novo-synthesized new volatiles were two key responses to HLB of both cultivars. Markers potentially associated with HLB and host susceptibility were identified. Terpenoid biosynthetic pathway, green leaf volatile, and thymol metabolic pathways responsive to CaLas infection were dramatically altered. SB mandarin allows simultaneous defense and growth, contributing to its greater HLB tolerance.
Collapse
Affiliation(s)
- Honghong Deng
- College of Horticulture, Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Citrus Research and Education Center, Horticultural Science, University of Florida, Lake Alfred, Florida 33850, United States
- College of Horticulture and Landscape Architecture, Horticultural Science, Southwest University, Chongqing 400715, China
| | - Yi Zhang
- Citrus Research and Education Center, Horticultural Science, University of Florida, Lake Alfred, Florida 33850, United States
| | - Laura Reuss
- Citrus Research and Education Center, Food Science and Human Nutrition, University of Florida, Lake Alfred, Florida 33850, United States
| | - Joon Hyuk Suh
- Citrus Research and Education Center, Food Science and Human Nutrition, University of Florida, Lake Alfred, Florida 33850, United States
| | - Qibin Yu
- Citrus Research and Education Center, Horticultural Science, University of Florida, Lake Alfred, Florida 33850, United States
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Horticultural Science, Southwest University, Chongqing 400715, China
| | - Yu Wang
- Citrus Research and Education Center, Food Science and Human Nutrition, University of Florida, Lake Alfred, Florida 33850, United States
| | - Fred G Gmitter
- Citrus Research and Education Center, Horticultural Science, University of Florida, Lake Alfred, Florida 33850, United States
| |
Collapse
|
45
|
Abstract
The evaluation of volatiles in food is an important aspect of food production. It gives knowledge about the quality of foods and their relationship to consumers’ choices. Alcohols, aldehydes, acids, esters, terpenes, pyrazines, and furans are the main chemical groups that are involved in aroma formation. They are products of food processing: thermal treatment, fermentation, storage, etc. Food aroma is a mixture of varied molecules. Because of this, the analysis of aroma composition can be challenging. The four main steps can be distinguished in the evaluation of the volatiles in the food matrix as follows: (1) isolation and concentration; (2) separation; (3) identification; and (4) sensory characterization. The most commonly used techniques to separate a fraction of volatiles from non-volatiles are solid-phase micro-(SPME) and stir bar sorptive extractions (SBSE). However, to study the active components of food aroma by gas chromatography with olfactometry detector (GC-O), solvent-assisted flavor evaporation (SAFE) is used. The volatiles are mostly separated on GC systems (GC or comprehensive two-dimensional GCxGC) with the support of mass spectrometry (MS, MS/MS, ToF–MS) for chemical compound identification. Besides omics techniques, the promising part could be a study of aroma using electronic nose. Therefore, the main assumptions of volatolomics are here described.
Collapse
|
46
|
Profiling of 2-Acetyl-1-Pyrroline and Other Volatile Compounds in Raw and Cooked Rice of Traditional and Improved Varieties of India. Foods 2021; 10:foods10081917. [PMID: 34441694 PMCID: PMC8392510 DOI: 10.3390/foods10081917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, optimized headspace solid phase microextraction with gas chromatography–tandem mass spectrometry (HS-SPME-GC-MS/MS) was used to estimate the 2-acetyl-1-pyrroline (2-AP) in raw and cooked rice samples of ten different traditional and improved varieties. Furthermore, HS-SPME-GC-MS-based volatile profiling was subjected to untargeted analyses to identify major odorants in raw and cooked rice samples, and to understand chemical proximities among volatile profiles. Results showed that 2-AP content was remarkably increased in cooked rice compared to raw. Among the varieties studied, Pusa-1652 (Improved Kala Namak) and Kala Namak-2 were superior in the 2-AP content than Basmati varieties. Additionally, Govind Bhog, Kala Jeera and Jeera-32 had 2-AP content equivalent to or superior to Basmati rice varieties. Altogether, 18 and 22 volatiles were identified in the raw and cooked rice samples studied, respectively. Of these, ethyl butyrate, ethyl 3-methylbutanoate, 2-undecanone, ethyl benzoate, ethyl benzeneacetate, 2-methylnaphthalene, and 1-methylnaphthalene were characteristically detected in the cooked rice. The high amount of 2-ethyl-1-hexanol was uniquely found in raw rice samples, which can be a marker compound for freshly milled rice. Along with 2-AP, butanoic acid and benzoic acid derivatives, phenylethyl alcohol, ethyl 3-hydroxybutyrate, and indole may be responsible for the overall perceived characteristic Basmati-like aroma in cooked rice.
Collapse
|
47
|
Giordano GF, Freitas VMS, Schleder GR, Santhiago M, Gobbi AL, Lima RS. Bifunctional Metal Meshes Acting as a Semipermeable Membrane and Electrode for Sensitive Electrochemical Determination of Volatile Compounds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35914-35923. [PMID: 34309352 DOI: 10.1021/acsami.1c07874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The monitoring of toxic inorganic gases and volatile organic compounds has brought the development of field-deployable, sensitive, and scalable sensors into focus. Here, we attempted to meet these requirements by using concurrently microhole-structured meshes as (i) a membrane for the gas diffusion extraction of an analyte from a donor sample and (ii) an electrode for the sensitive electrochemical determination of this target with the receptor electrolyte at rest. We used two types of meshes with complementary benefits, i.e., Ni mesh fabricated by robust, scalable, and well-established methods for manufacturing specific designs and stainless steel wire mesh (SSWM), which is commercially available at a low cost. The diffusion of gas (from a donor) was conducted in headspace mode, thus minimizing issues related to mesh fouling. When compared with the conventional polytetrafluoroethylene (PTFE) membrane, both the meshes (40 μm hole diameter) led to a higher amount of vapor collected into the electrolyte for subsequent detection. This inedited fashion produced a kind of reverse diffusion of the analyte dissolved into the electrolyte (receptor), i.e., from the electrode to bulk, which further enabled highly sensitive analyses. Using Ni mesh coated with Ni(OH)2 nanoparticles, the limit of detection reached for ethanol was 24-fold lower than the data attained by a platform with a PTFE membrane and placement of the electrode into electrolyte bulk. This system was applied in the determination of ethanol in complex samples related to the production of ethanol biofuel. It is noteworthy that a simple equation fitted by machine learning was able to provide accurate assays (accuracies from 97 to 102%) by overcoming matrix effect-related interferences on detection performance. Furthermore, preliminary measurements demonstrated the successful coating of the meshes with gold films as an alternative raw electrode material and the monitoring of HCl utilizing Au-coated SSWMs. These strategies extend the applicability of the platform that may help to develop valuable volatile sensing solutions.
Collapse
Affiliation(s)
- Gabriela F Giordano
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
| | - Vitoria M S Freitas
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Faculty of Chemical Engineering, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R Schleder
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Angelo L Gobbi
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
| | - Renato S Lima
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
48
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
49
|
Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021; 10:foods10071611. [PMID: 34359483 PMCID: PMC8308100 DOI: 10.3390/foods10071611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
The presence of nuts in diets has notably increased due to their composition, and the presence of antioxidants and their unsaturated fatty acid profile has led to a considerable increase in their consumption. The volatile profile of nuts is important from different points of view. It affects consumer’s selection, influences raw material selection for the production of composite foods, dictates variety selection in breeding programs, and, from a quality perspective, its changes can indicate food degradation or alteration. A review of the published bibliography concerning the determination of volatiles in nuts has been carried out. The information retrieved has been divided into four main sections. First, a discussion on the main volatiles present in nuts is performed; next, a revision of the methods used to determine the volatiles is presented; and, finally, two sections describing how harvesting conditions, healthy state and the thermal treatment of nuts modifies their volatile profile are added. Analysis of the published bibliography denoted the complexity of volatile determination and the different variables that can modify the compounds present in the volatile fraction of nuts.
Collapse
|
50
|
Zanin RC, Smrke S, Yeretzian C, Kurozawa LE, Yamashita F. Ultrasound-Assisted Emulsification of Roasted Coffee Oil in Complex Coacervates and Real-time Coffee Aroma Release by PTR-ToF–MS. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02683-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|